51
|
Chakraborty PK, Zhang Y, Coomes AS, Kim WJ, Stupay R, Lynch LD, Atkinson T, Kim JI, Nie Z, Daaka Y. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. Cancer Res 2014; 74:3489-500. [PMID: 24755472 DOI: 10.1158/0008-5472.can-13-2708] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptor kinases (GRK) regulate diverse cellular functions ranging from metabolism to growth and locomotion. Here, we report an important contributory role for GRK5 in human prostate cancer. Inhibition of GRK5 kinase activity attenuated the migration and invasion of prostate cancer cells and, concordantly, increased cell attachment and focal adhesion formation. Mass spectrometric analysis of the phosphoproteome revealed the cytoskeletal-membrane attachment protein moesin as a putative GRK5 substrate. GRK5 regulated the subcellular distribution of moesin and colocalized with moesin at the cell periphery. We identified amino acid T66 of moesin as a principal GRK5 phosphorylation site and showed that enforcing the expression of a T66-mutated moesin reduced cell spreading. In a xenograft model of human prostate cancer, GRK5 silencing reduced tumor growth, invasion, and metastasis. Taken together, our results established GRK5 as a key contributor to the growth and metastasis of prostate cancer.
Collapse
Affiliation(s)
- Prabir Kumar Chakraborty
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Yushan Zhang
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Alexandra S Coomes
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Wan-Ju Kim
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Rachel Stupay
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren D Lynch
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Tamieka Atkinson
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Jae I Kim
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Zhongzhen Nie
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Yehia Daaka
- Authors' Affiliation: Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
52
|
Singh V, Raghuwanshi SK, Smith N, Rivers EJ, Richardson RM. G Protein-coupled receptor kinase-6 interacts with activator of G protein signaling-3 to regulate CXCR2-mediated cellular functions. THE JOURNAL OF IMMUNOLOGY 2014; 192:2186-94. [PMID: 24510965 DOI: 10.4049/jimmunol.1301875] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The IL-8 (CXCL8) receptors CXCR1 and CXCR2 couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. We recently showed that CXCR1 couples predominantly to the G protein-coupled receptor kinase (GRK)2, whereas CXCR2 interacts with GRK6 to regulate cellular responses. In addition to G protein-coupled receptors, GRKs displayed a more diverse protein/protein interaction in cells. In this study, we sought to identify GRK6 binding partner(s) that may influence CXCL8 activities, using RBL-2H3 cells stably expressing CXCR1 (RBL-CXCR1) or CXCR2 (RBL-CXCR2), as well as human and murine neutrophils. Our data demonstrated that, upon CXCR2 activation, GRK6 interacts with activator of G protein signaling (AGS)3 and Gαi2 to form a GRK6/AGS3/Gαi2 complex. This complex is time dependent and peaked at 2-3 min postactivation. GTPγS pretreatment blocked GRK6/AGS3/Gαi2 formation, suggesting that this assembly depends on G protein activation. Surprisingly, CXCR2 activation induced AGS3 phosphorylation in a PKC-dependent, but GRK6-independent, fashion. Overexpression of AGS3 in RBL-CXCR2 significantly inhibited CXCL8-induced Ca(2+) mobilization, phosphoinositide hydrolysis, and chemotaxis. In contrast, short hairpin RNA inhibition of AGS3 enhanced CXCL8-induced Ca(2+) mobilization, receptor resistance to desensitization, and recycling to the cell surface, with no effect on receptor internalization. Interestingly, RBL-CXCR2-AGS3(-/-) cells displayed a significant increase in CXCR2 expression on the cell surface but decreased ERK1/2 and P38 MAPK activation. Taken together, these results indicate that GRK6 complexes with AGS3-Gαi2 to regulate CXCR2-mediated leukocyte functions at different levels, including downstream effector activation, receptor trafficking, and expression at the cell membrane.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Biology, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707
| | | | | | | | | |
Collapse
|
53
|
Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:181-201. [PMID: 24924175 DOI: 10.1007/978-3-319-04843-7_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cause of death for the vast majority of cancer patients is the development of metastases at sites distant from that of the primary tumor. For most pediatric sarcoma patients such as those with osteosarcoma (OS), despite successful management of the primary tumor through multimodality approaches, the development of metastases, commonly to the lungs, is the cause of death. Significant improvements in long-term outcome for these patients have not been seen in more than 30 years. Furthermore, the long-term outcome for patients who present with metastatic disease is grave [1-5]. New treatment options are needed.Opportunities to improve outcomes for patients who present with metastases and those at-risk for progression and metastasis require an improved understanding of cancer progression and metastasis. With this goal in mind we and others have identified ezrin as a metastasis-associated protein that associated with OS and other cancers. Ezrin is the prototypical ERM (Ezrin/Radixin/Moesin) protein family member. ERMs function as linker proteins connecting the actin cytoskeleton and the plasma membrane. Since our initial identification of ezrin in pediatric sarcoma, an increasing understanding the role of ezrin in metastasis has emerged. Briefly, ezrin appears to allow metastatic cells to overcome a number of stresses experienced during the metastatic cascade, most notably the stress experienced as cells interact with the microenvironment of the secondary site. Cells must rapidly adapt to this environment in order to survive. Evidence now suggests a connection between ezrin expression and a variety of mechanisms linked to this important cellular adaptation including the ability of metastatic cells to initiate the translation of new proteins and to allow the efficient generation of ATP through a variety of sources. This understanding of the role of ezrin in the biology of metastasis is now sufficient to consider ezrin as an important therapeutic target in osteosarcoma patients. This chapter reviews our understanding of ezrin and the related ERM proteins in normal tissues and physiology, summarizes the expression of ezrin in human cancers and associations with clinical parameters of disease progression, reviews reports that detail a biological understanding of ezrin's role in metastatic progression, and concludes with a rationale that may be considered to target ezrin and ezrin biology in osteosarcoma.
Collapse
Affiliation(s)
- Ling Ren
- Molecular Oncology Section - Metastasis Biology Group, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Rm 2144, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
54
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013. [PMID: 24265619 DOI: 10.3389/fphys.2013.00324.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
55
|
Penela P, Nogués L, Mayor F. Role of G protein-coupled receptor kinases in cell migration. Curr Opin Cell Biol 2013; 27:10-7. [PMID: 24680425 DOI: 10.1016/j.ceb.2013.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor kinases (GRKs) are emerging as important integrative nodes in cell migration processes. Recent evidence links GRKs (particularly the GRK2 isoform) to the complex modulation of diverse aspects of cell motility. In addition to its well-established role in the desensitization of G protein-coupled receptors involved in chemotaxis, GRK2 can play an effector role in the organization of actin and microtubule networks and in adhesion dynamics, by means of novel substrates and transient interacting partners, such as the GIT1 scaffold or the cytoplasmic α-tubulin deacetylase histone deacetylase 6 (HDAC6). The overall effect of altering GRK levels or activity on chemotaxis would depend on how such different roles are integrated in a given cell type and physiological context, and may have relevant implications in inflammatory diseases or cancer progression.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Laura Nogués
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.
| |
Collapse
|
56
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013; 4:324. [PMID: 24265619 PMCID: PMC3820966 DOI: 10.3389/fphys.2013.00324] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
57
|
Parameswaran N, Gupta N. Re-defining ERM function in lymphocyte activation and migration. Immunol Rev 2013; 256:63-79. [DOI: 10.1111/imr.12104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Neetha Parameswaran
- Department of Immunology; Lerner Research Institute; Cleveland Clinic; Cleveland OH USA
| | - Neetu Gupta
- Department of Immunology; Lerner Research Institute; Cleveland Clinic; Cleveland OH USA
| |
Collapse
|
58
|
Robinson JD, Pitcher JA. G protein-coupled receptor kinase 2 (GRK2) is a Rho-activated scaffold protein for the ERK MAP kinase cascade. Cell Signal 2013; 25:2831-9. [PMID: 24018045 DOI: 10.1016/j.cellsig.2013.08.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 11/20/2022]
Abstract
The G protein-coupled receptor kinases (GRKs) are best known for their role in phosphorylating and desensitising G protein-coupled receptors (GPCRs). The GRKs also regulate signalling downstream of other families of receptors and have a number of non-receptor substrates and binding partners. Here we identify RhoAGTP and Raf1 as novel binding partners of GRK2 and report a previously unsuspected function for this kinase. GRK2 is a RhoA effector that serves as a RhoA-activated scaffold protein for the ERK MAP kinase cascade. The ability of GRK2 to bind to Raf1, MEK1 and ERK2 is dependent on RhoAGTP binding to the catalytic domain of the kinase. Exogenous GRK2 has previously been shown to increase ERK activation downstream of the epidermal growth factor receptor (EGFR). Here we find that GRK2-mediated ERK activation downstream of the EGFR is Rho-dependent and that treatment with EGF promotes RhoAGTP binding and ERK scaffolding by GRK2. Depletion of GRK2 expression by RNAi reveals that GRK2 is required for EGF-induced, Rho- and ERK-dependent thymidine incorporation in vascular smooth muscle cells (VSMCs). We therefore hypothesise that Rho-dependent ERK MAPK scaffolding by GRK2 downstream of the EGFR may have an important role in the vasculature, where increased levels of both GRK2 and RhoA have been associated with hypertension.
Collapse
Affiliation(s)
- James D Robinson
- MRC Laboratory for Molecular Cell Biology, Research Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
59
|
So CH, Michal A, Komolov KE, Luo J, Benovic JL. G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation. Mol Biol Cell 2013; 24:2795-806. [PMID: 23904266 PMCID: PMC3771943 DOI: 10.1091/mbc.e13-01-0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) play a central role in regulating receptor signaling, but recent studies suggest a broader role in modulating normal cellular functions. For example, GRK5 has been shown to localize to centrosomes and regulate microtubule nucleation and cell cycle progression. Here we demonstrate that GRK2 is also localized to centrosomes, although it has no role in centrosome duplication or microtubule nucleation. Of interest, knockdown of GRK2 inhibits epidermal growth factor receptor (EGFR)-mediated separation of duplicated centrosomes. This EGFR/GRK2-mediated process depends on the protein kinases mammalian STE20-like kinase 2 (Mst2) and Nek2A but does not involve polo-like kinase 1. In vitro analysis and dominant-negative approaches reveal that GRK2 directly phosphorylates and activates Mst2. Collectively these findings demonstrate that GRK2 is localized to centrosomes and plays a central role in mitogen-promoted centrosome separation most likely via its ability to phosphorylate Mst2.
Collapse
Affiliation(s)
- Christopher H So
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | | | | | |
Collapse
|
60
|
Adada M, Canals D, Hannun YA, Obeid LM. Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:727-37. [PMID: 23850862 DOI: 10.1016/j.bbalip.2013.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
Abstract
A key but poorly studied domain of sphingolipid functions encompasses endocytosis, exocytosis, cellular trafficking, and cell movement. Recently, the ezrin, radixin and moesin (ERM) family of proteins emerged as novel potent targets regulated by sphingolipids. ERMs are structural proteins linking the actin cytoskeleton to the plasma membrane, also forming a scaffold for signaling pathways that are used for cell proliferation, migration and invasion, and cell division. Opposing functions of the bioactive sphingolipid ceramide and sphingosine-1-phosphate (S1P), contribute to ERM regulation. S1P robustly activates whereas ceramide potently deactivates ERM via phosphorylation/dephosphorylation, respectively. This recent dimension of cytoskeletal regulation by sphingolipids opens up new avenues to target cell dynamics, and provides further understanding of some of the unexplained biological effects mediated by sphingolipids. In addition, these studies are providing novel inroads into defining basic mechanisms of regulation and action of bioactive sphingolipids. This review describes the current understanding of sphingolipid regulation of the cytoskeleton, it also describes the biologies in which ERM proteins have been involved, and finally how these two large fields have started to converge. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Mohamad Adada
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Canals
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- The Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
61
|
GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat Commun 2013; 4:1532. [PMID: 23443560 PMCID: PMC3586722 DOI: 10.1038/ncomms2540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/24/2013] [Indexed: 12/24/2022] Open
Abstract
Efficient engulfment of apoptotic cells is critical for maintaining tissue homoeostasis. When phagocytes recognize ‘eat me’ signals presented on the surface of apoptotic cells, this subsequently induces cytoskeletal rearrangement of phagocytes for the engulfment through Rac1 activation. However, the intracellular signalling cascades that result in Rac1 activation remain largely unknown. Here we show that G-protein-coupled receptor kinase 6 (GRK6) is involved in apoptotic cell clearance. GRK6 cooperates with GIT1 to activate Rac1, which promotes apoptotic engulfment independently from the two known DOCK180/ELMO/Rac1 and GULP1/Rac1 engulfment pathways. As a consequence, GRK6-deficient mice develop an autoimmune disease. GRK6-deficient mice also have increased iron stores in splenic red pulp in which F4/80+ macrophages are responsible for senescent red blood cell clearance. Our results reveal previously unrecognized roles for GRK6 in regulating apoptotic engulfment and its fundamental importance in immune and iron homoeostasis. The clearance of apoptotic cells by macrophages is important for tissue homoeostasis. Here Nakaya et al. reveal a role for GRK6 in the regulation of apoptotic engulfment and show that GRK6 deficiency in mice leads to autoimmune disease and iron accumulation in the spleen.
Collapse
|
62
|
Adyshev DM, Dudek SM, Moldobaeva N, Kim KM, Ma SF, Kasa A, Garcia JGN, Verin AD. Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am J Physiol Lung Cell Mol Physiol 2013; 305:L240-55. [PMID: 23729486 DOI: 10.1152/ajplung.00355.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Endothelial cell (EC) barrier disruption induced by inflammatory agonists such as thrombin leads to potentially lethal physiological dysfunction such as alveolar flooding, hypoxemia, and pulmonary edema. Thrombin stimulates paracellular gap and F-actin stress fiber formation, triggers actomyosin contraction, and alters EC permeability through multiple mechanisms that include protein kinase C (PKC) activation. We previously have shown that the ezrin, radixin, and moesin (ERM) actin-binding proteins differentially participate in sphingosine-1 phosphate-induced EC barrier enhancement. Phosphorylation of a conserved threonine residue in the COOH-terminus of ERM proteins causes conformational changes in ERM to unmask binding sites and is considered a hallmark of ERM activation. In the present study we test the hypothesis that ERM proteins are phosphorylated on this critical threonine residue by thrombin-induced signaling events and explore the role of the ERM family in modulating thrombin-induced cytoskeletal rearrangement and EC barrier function. Thrombin promotes ERM phosphorylation at this threonine residue (ezrin Thr567, radixin Thr564, moesin Thr558) in a PKC-dependent fashion and induces translocation of phosphorylated ERM to the EC periphery. Thrombin-induced ERM threonine phosphorylation is likely synergistically mediated by protease-activated receptors PAR1 and PAR2. Using the siRNA approach, depletion of either moesin alone or of all three ERM proteins significantly attenuates thrombin-induced increase in EC barrier permeability (transendothelial electrical resistance), cytoskeletal rearrangements, paracellular gap formation, and accumulation of phospho-myosin light chain. In contrast, radixin depletion exerts opposing effects on these indexes. These data suggest that ERM proteins play important differential roles in the thrombin-induced modulation of EC permeability, with moesin promoting barrier dysfunction and radixin opposing it.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, COMRB 3154, MC 719, 909 S. Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Zhang X, Eggert US. Non-traditional roles of G protein-coupled receptors in basic cell biology. MOLECULAR BIOSYSTEMS 2013; 9:586-95. [PMID: 23247090 PMCID: PMC3628546 DOI: 10.1039/c2mb25429h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are key signaling proteins that regulate how cells interact with their environment. Traditional signaling cascades involving GPCRs have been well described and are well established and very important clinical targets. With the development of more recent technologies, hints about the involvement of GPCRs in fundamental cell biological processes are beginning to emerge. In this review, we give a basic introduction to GPCR signaling and highlight some less well described roles of GPCRs, including in cell division and membrane trafficking, which may occur through canonical and non-canonical signaling pathways.
Collapse
Affiliation(s)
- Xin Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, P.R. China
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| |
Collapse
|
64
|
Santulli G, Trimarco B, Iaccarino G. G-protein-coupled receptor kinase 2 and hypertension: molecular insights and pathophysiological mechanisms. High Blood Press Cardiovasc Prev 2013; 20:5-12. [PMID: 23532739 DOI: 10.1007/s40292-013-0001-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022] Open
Abstract
Numerous factors partake in the fine-tuning of arterial blood pressure. The heptahelical G-protein-coupled receptors (GPCRs) represent one of the largest classes of cell-surface receptors. Further, ligands directed at GPCRs account for nearly 30 % of current clinical pharmaceutical agents available. Given the wide variety of GPCRs involved in blood pressure control, it is reasonable to speculate for a potential role of established intermediaries involved in the GPCR desensitization process, like the G-protein-coupled receptor kinases (GRKs), in the regulation of vascular tone. Of the seven mammalian GRKs, GRK2 seems to be the most relevant isoform at the cardiovascular level. This review attempts to assemble the currently available information concerning GRK2 and hypertension, opening new potential fields of translational investigation to treat this vexing disease.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131, Naples, Italy.
| | | | | |
Collapse
|
65
|
Astrocyte GRK2 as a novel regulator of glutamate transport and brain damage. Neurobiol Dis 2013; 54:206-15. [PMID: 23313319 DOI: 10.1016/j.nbd.2012.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/23/2012] [Accepted: 12/28/2012] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) regulates cellular signaling via desensitization of GPCRs and by direct interaction with intracellular signaling molecules. We recently described that ischemic brain injury decreases cerebral GRK2 levels. Here we studied the effect of astrocyte GRK2-deficiency on neonatal brain damage in vivo. As astrocytes protect neurons by taking up glutamate via plasma-membrane transporters, we also studied the effect of GRK2 on the localization of the GLutamate ASpartate Transporter (GLAST). Brain damage induced by hypoxia-ischemia was significantly reduced in GFAP-GRK2(+/-) mice, which have a 60% reduction in astrocyte GRK2 compared to GFAP-WT littermates. In addition, GRK2-deficient astrocytes have higher plasma-membrane levels of GLAST and an increased capacity to take up glutamate in vitro. In search for the mechanism by which GRK2 regulates GLAST expression, we observed increased GFAP levels in GRK2-deficient astrocytes. GFAP and the cytoskeletal protein ezrin are known regulators of GLAST localization. In line with this evidence, GRK2-deficiency reduced phosphorylation of the GRK2 substrate ezrin and enforced plasma-membrane GLAST association after stimulation with the group I mGluR-agonist DHPG. When ezrin was silenced, the enhanced plasma-membrane GLAST association in DHPG-exposed GRK2-deficient astrocytes was prevented. In conclusion, we identified a novel role of astrocyte GRK2 in regulating plasma-membrane GLAST localization via an ezrin-dependent route. We demonstrate that the 60% reduction in astrocyte GRK2 protein level that is observed in GFAP-GRK2(+/-) mice is sufficient to significantly reduce neonatal ischemic brain damage. These findings underline the critical role of GRK2 regulation in astrocytes for dampening the extent of brain damage after ischemia.
Collapse
|
66
|
Ibrahim IAH, Nakaya M, Kurose H. Ezrin, Radixin, and Moesin Phosphorylation in NIH3T3 Cells Revealed Angiotensin II Type 1 Receptor Cell-Type–Dependent Biased Signaling. J Pharmacol Sci 2013; 122:1-9. [DOI: 10.1254/jphs.12288fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
67
|
Miller F, Lécuyer H, Join-Lambert O, Bourdoulous S, Marullo S, Nassif X, Coureuil M. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion. Cell Microbiol 2012. [PMID: 23189983 DOI: 10.1111/cmi.12082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed.
Collapse
Affiliation(s)
- Florence Miller
- INSERM, unité U1002, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
68
|
Lafarga V, Mayor F, Penela P. The interplay between G protein-coupled receptor kinase 2 (GRK2) and histone deacetylase 6 (HDAC6) at the crossroads of epithelial cell motility. Cell Adh Migr 2012; 6:495-501. [PMID: 23076141 DOI: 10.4161/cam.21585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is emerging as a key integrative node in cell migration control. In addition to its canonical role in the desensitization of G protein-coupled receptors involved in chemotaxis, novel recently identified GRK2 substrates and interacting partners appear to mediate the GRK2-dependent modulation of diverse molecular processes involved in motility, such as gradient sensing, cell polarity or cytoskeletal reorganization. We have recently identified an interaction between GRK2 and histone deacetylase 6 (HDAC6), a major cytoplasmic α-tubulin deacetylase involved in cell motility and adhesion. GRK2 dynamically associates with and phosphorylates HDAC6 to stimulate its α-tubulin deacetylase activity at specific cellular localizations such as the leading edge of migrating cells, thus promoting local tubulin deacetylation and enhanced motility. This GRK2-HDAC6 functional interaction may have important implications in pathological contexts related to aberrant epithelial cell migration.
Collapse
Affiliation(s)
- Vanesa Lafarga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
69
|
Otten JJT, de Jager SCA, Kavelaars A, Seijkens T, Bot I, Wijnands E, Beckers L, Westra MM, Bot M, Busch M, Bermudez B, van Berkel TJC, Heijnen CJ, Biessen EAL. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. FASEB J 2012; 27:265-76. [PMID: 23047899 DOI: 10.1096/fj.12-205351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr(-/-)) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2(+/-) chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2(+/-) chimeras. LDLr(-/-) mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2(flox/flox); n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.
Collapse
Affiliation(s)
- Jeroen J T Otten
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Dehvari N, Hutchinson DS, Nevzorova J, Dallner OS, Sato M, Kocan M, Merlin J, Evans BA, Summers RJ, Bengtsson T. β(2)-Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor C-terminal tail. Br J Pharmacol 2012; 165:1442-56. [PMID: 21883150 DOI: 10.1111/j.1476-5381.2011.01647.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE β-Adrenoceptor stimulation induces glucose uptake in several insulin-sensitive tissues by poorly understood mechanisms. EXPERIMENTAL APPROACH We used a model system in CHO-K1 cells expressing the human β(2)-adrenoceptor and glucose transporter 4 (GLUT4) to investigate the signalling mechanisms involved. KEY RESULTS In CHO-K1 cells, there was no response to β-adrenoceptor agonists. The introduction of β(2)-adrenoceptors and GLUT4 into these cells caused increased glucose uptake in response to β-adrenoceptor agonists. GLUT4 translocation occurred in response to insulin and β(2)-adrenoceptor stimulation, although the key insulin signalling intermediate PKB was not phosphorylated in response to β(2)-adrenoceptor stimulation. Truncation of the C-terminus of the β(2)-adrenoceptor at position 349 to remove known phosphorylation sites for GPCR kinases (GRKs) or at position 344 to remove an additional PKA site together with the GRK phosphorylation sites did not significantly affect cAMP accumulation but decreased β(2)-adrenoceptor-stimulated glucose uptake. Furthermore, inhibition of GRK by transfection of the βARKct construct inhibited β(2)-adrenoceptor-mediated glucose uptake and GLUT4 translocation, and overexpression of a kinase-dead GRK2 mutant (GRK2 K220R) also inhibited GLUT4 translocation. Introducing β(2)-adrenoceptors lacking phosphorylation sites for GRK or PKA demonstrated that the GRK sites, but not the PKA sites, were necessary for GLUT4 translocation. CONCLUSIONS AND IMPLICATIONS Glucose uptake in response to activation of β(2)-adrenoceptors involves translocation of GLUT4 in this model system. The mechanism is dependent on the C-terminus of the β(2)-adrenoceptor, requires GRK phosphorylation sites, and involves a signalling pathway distinct from that stimulated by insulin.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Physiology, The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wu Z, Chen Y, Yang T, Gao Q, Yuan M, Ma L. Targeted ubiquitination and degradation of G-protein-coupled receptor kinase 5 by the DDB1-CUL4 ubiquitin ligase complex. PLoS One 2012; 7:e43997. [PMID: 22952844 PMCID: PMC3428324 DOI: 10.1371/journal.pone.0043997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
The G protein-coupled receptor kinases (GRKs) phosphorylate agonist occupied G protein-coupled receptors (GPCRs) and desensitize GPCR-mediated signaling. Recent studies indicate they also function non-catalytically via interaction with other proteins. In this study, a proteomic approach was used to screen interacting proteins of GRK5 in MDA-MB-231 cells and HUVEC cells. Mass spectrometry analysis reveals several proteins in the GRK5 immunocomplex including damaged DNA-binding protein 1 (DDB1), an adaptor subunit of the CUL4-ROC1 E3 ubiquitin ligase complex. Co-immunoprecipitation experiments confirmed the association of GRK5 with DDB1-CUL4 complex, and reveal that DDB1 acts as an adapter to link GRK5 to CUL4 to form the complex. Overexpression of DDB1 promoted, whereas knockdown of DDB1 inhibited the ubiquitination of GRK5, and the degradation of GRK5 was reduced in cells deficient of DDB1. Furthermore, the depletion of DDB1 decreased Hsp90 inhibitor-induced GRK5 destabilization and UV irradiation-induced GRK5 degradation. Thus, our study identified potential GRK5 interacting proteins, and reveals the association of GRK5 with DDB1 in cell and the regulation of GRK5 level by DDB1-CUL4 ubiquitin ligase complex-dependent proteolysis pathway.
Collapse
Affiliation(s)
- Ziyan Wu
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuejun Chen
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
- * E-mail:
| | - Tong Yang
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qinqin Gao
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Man Yuan
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
72
|
Darmellah A, Rayah A, Auger R, Cuif MH, Prigent M, Arpin M, Alcover A, Delarasse C, Kanellopoulos JM. Ezrin/radixin/moesin are required for the purinergic P2X7 receptor (P2X7R)-dependent processing of the amyloid precursor protein. J Biol Chem 2012; 287:34583-95. [PMID: 22891241 DOI: 10.1074/jbc.m112.400010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein (APP) can be cleaved by α-secretases in neural cells to produce the soluble APP ectodomain (sAPPα), which is neuroprotective. We have shown previously that activation of the purinergic P2X7 receptor (P2X7R) triggers sAPPα shedding from neural cells. Here, we demonstrate that the activation of ezrin, radixin, and moesin (ERM) proteins is required for the P2X7R-dependent proteolytic processing of APP leading to sAPPα release. Indeed, the down-regulation of ERM by siRNA blocked the P2X7R-dependent shedding of sAPPα. We also show that P2X7R stimulation triggered the phosphorylation of ERM. Thus, ezrin translocates to the plasma membrane to interact with P2X7R. Using specific pharmacological inhibitors, we established the order in which several enzymes trigger the P2X7R-dependent release of sAPPα. Thus, a Rho kinase and the MAPK modules ERK1/2 and JNK act upstream of ERM, whereas a PI3K activity is triggered downstream. For the first time, this work identifies ERM as major partners in the regulated non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Amaria Darmellah
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, France
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Horvat SJ, Deshpande DA, Yan H, Panettieri RA, Codina J, DuBose TD, Xin W, Rich TC, Penn RB. A-kinase anchoring proteins regulate compartmentalized cAMP signaling in airway smooth muscle. FASEB J 2012; 26:3670-9. [PMID: 22649031 DOI: 10.1096/fj.11-201020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A-kinase anchoring proteins (AKAPs) have emerged as important regulatory molecules that can compartmentalize cAMP signaling transduced by β2-adrenergic receptors (β(2)ARs); such compartmentalization ensures speed and fidelity of cAMP signaling and effects on cell function. This study aimed to assess the role of AKAPs in regulating global and compartmentalized β(2)AR signaling in human airway smooth muscle (ASM). Transcriptome and proteomic analyses were used to characterize AKAP expression in ASM. Stable expression or injection of peptides AKAP-IS or Ht31 was used to disrupt AKAP-PKA interactions, and global and compartmentalized cAMP accumulation stimulated by β-agonist was assessed by radioimmunoassay and membrane-delineated flow through cyclic nucleotide-gated channels, respectively. ASM expresses multiple AKAP family members, with gravin and ezrin among the most readily detected. AKAP-PKA disruption had minimal effects on whole-cell cAMP accumulation stimulated by β-agonist (EC(50) and B(max)) concentrations, but significantly increased the duration of plasma membrane-delineated cAMP (τ=251±51 s for scrambled peptide control vs. 399±79 s for Ht31). Direct PKA inhibition eliminated decay of membrane-delineated cAMP levels. AKAPs coordinate compartmentalized cAMP signaling in ASM cells by regulating multiple elements of β(2)AR-mediated cAMP accumulation, thereby representing a novel target for manipulating β(2)AR signaling and function in ASM.
Collapse
Affiliation(s)
- Sarah J Horvat
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201-1075, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
So CH, Michal AM, Mashayekhi R, Benovic JL. G protein-coupled receptor kinase 5 phosphorylates nucleophosmin and regulates cell sensitivity to polo-like kinase 1 inhibition. J Biol Chem 2012; 287:17088-17099. [PMID: 22467873 PMCID: PMC3366848 DOI: 10.1074/jbc.m112.353854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/27/2012] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.
Collapse
Affiliation(s)
- Christopher H So
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Allison M Michal
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Rouzbeh Mashayekhi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
75
|
Canals D, Roddy P, Hannun YA. Protein phosphatase 1α mediates ceramide-induced ERM protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. J Biol Chem 2012; 287:10145-10155. [PMID: 22311981 DOI: 10.1074/jbc.m111.306456] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ERM (ezrin, radixin, and moesin) proteins are cytoskeletal interacting proteins that bind cortical actin, the plasma membrane, and membrane proteins, which are found in specialized plasma membrane structures such as microvilli and filopodia. ERM proteins are regulated by phosphatidylinositol 4, 5-biphosphate (PIP(2)) and by phosphorylation of a C-terminal threonine, and its inactivation involves PIP(2) hydrolysis and/or myosin phosphatase (MP). Recently, we demonstrated that ERM proteins are also subject to counter regulation by the bioactive sphingolipids ceramide and sphingosine 1-phosphate. Plasma membrane ceramide induces ERM dephosphorylation whereas sphingosine 1-phosphate induces their phosphorylation. In this work, we pursue the mechanisms by which ceramide regulates dephosphorylation. We found that this dephosphorylation was independent of hydrolysis and localization of PIP(2) and MP. However, the results show that ERM dephosphorylation was blocked by treatment with protein phosphatase 1 (PP1) pharmacological inhibitors and specifically by siRNA to PP1α, whereas okadaic acid, a PP2A inhibitor, failed. Moreover, a catalytic inactive mutant of PP1α acted as dominant negative of the endogenous PP1α. Additional results showed that the ceramide mechanism of PP1α activation is largely independent of PIP(2) hydrolysis and MP. Taken together, these results demonstrate a novel, acute mechanism of ERM regulation dependent on PP1α and plasma membrane ceramide.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Patrick Roddy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yusuf A Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
76
|
Evron T, Daigle TL, Caron MG. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 2012; 33:154-64. [PMID: 22277298 DOI: 10.1016/j.tips.2011.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinases (GRKs) regulate numerous G protein-coupled receptors (GPCRs) by phosphorylating the intracellular domain of the active receptor, resulting in receptor desensitization and internalization. GRKs also regulate GPCR trafficking in a phosphorylation-independent manner via direct protein-protein interactions. Emerging evidence suggests that GRK2, the most widely studied member of this family of kinases, modulates multiple cellular responses in various physiological contexts by either phosphorylating non-receptor substrates or interacting directly with signaling molecules. In this review, we discuss traditional and newly discovered roles of GRK2 in receptor internalization and signaling as well as its impact on non-receptor substrates. We also discuss novel exciting roles of GRK2 in the regulation of dopamine receptor signaling and in the activation and trafficking of the atypical GPCR, Smoothened (Smo).
Collapse
Affiliation(s)
- Tama Evron
- Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
77
|
Michal AM, So CH, Beeharry N, Shankar H, Mashayekhi R, Yen TJ, Benovic JL. G Protein-coupled receptor kinase 5 is localized to centrosomes and regulates cell cycle progression. J Biol Chem 2012; 287:6928-40. [PMID: 22223642 DOI: 10.1074/jbc.m111.298034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.
Collapse
Affiliation(s)
- Allison M Michal
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
79
|
A novel GRK2/HDAC6 interaction modulates cell spreading and motility. EMBO J 2011; 31:856-69. [PMID: 22193721 DOI: 10.1038/emboj.2011.466] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/23/2011] [Indexed: 01/08/2023] Open
Abstract
Cell motility and adhesion involves dynamic microtubule (MT) acetylation/deacetylation, a process regulated by enzymes as HDAC6, a major cytoplasmic α-tubulin deacetylase. We identify G protein-coupled receptor kinase 2 (GRK2) as a key novel stimulator of HDAC6. GRK2, which levels inversely correlate with the extent of α-tubulin acetylation in epithelial cells and fibroblasts, directly associates with and phosphorylates HDAC6 to stimulate α-tubulin deacetylase activity. Remarkably, phosphorylation of GRK2 itself at S670 specifically potentiates its ability to regulate HDAC6. GRK2 and HDAC6 colocalize in the lamellipodia of migrating cells, leading to local tubulin deacetylation and enhanced motility. Consistently, cells expressing GRK2-K220R or GRK2-S670A mutants, unable to phosphorylate HDAC6, exhibit highly acetylated cortical MTs and display impaired migration and protrusive activity. Finally, we find that a balanced, GRK2/HDAC6-mediated regulation of tubulin acetylation differentially modulates the early and late stages of cellular spreading. This novel GRK2/HDAC6 functional interaction may have important implications in pathological contexts.
Collapse
|
80
|
Morris GE, Nelson CP, Brighton PJ, Standen NB, Challiss RAJ, Willets JM. Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle. Am J Physiol Cell Physiol 2011; 302:C723-34. [PMID: 22159081 DOI: 10.1152/ajpcell.00202.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overstimulation of endothelin type A (ET(A)) and nucleotide (P2Y) Gα(q)-coupled receptors in vascular smooth muscle causes vasoconstriction, hypertension, and, eventually, hypertrophy and vascular occlusion. G protein-coupled receptor kinases (GRKs) and arrestin proteins are sequentially recruited by agonist-occupied Gα(q)-coupled receptors to terminate phospholipase C signaling, preventing prolonged/inappropriate contractile signaling. However, these proteins also play roles in the regulation of several mitogen-activated protein kinase (MAPK) signaling cascades known to be essential for vascular remodeling. Here we investigated whether different arrestin isoforms regulate endothelin and nucleotide receptor MAPK signaling in rat aortic smooth muscle cells (ASMCs). When intracellular Ca(2+) levels were assessed in isolated ASMCs loaded with Ca(2+)-sensitive dyes, P2Y(2) and ET(A) receptor desensitization was attenuated by selective small-interfering (si)RNA-mediated depletion of G protein-coupled receptor kinase 2 (GRK2). Using similar siRNA techniques, knockdown of arrestin2 prevented P2Y(2) receptor desensitization and enhanced and prolonged p38 and ERK MAPK signals, while arrestin3 depletion was ineffective. Conversely, arrestin3 knockdown prevented ET(A) receptor desensitization and attenuated ET1-stimulated p38 and ERK signals, while arrestin2 depletion had no effect. Using Transwell assays to assess agonist-stimulated ASMC migration, we found that UTP-stimulated migration was markedly attenuated following arrestin2 depletion, while ET1-stimulated migration was attenuated following knockdown of either arrestin. These data highlight a differential arrestin-dependent regulation of ET(A) and P2Y(2) receptor-stimulated MAPK signaling. GRK2 and arrestin expression are essential for agonist-stimulated ASMC migration, which, as a key process in vascular remodeling, highlights the potential roles of GRK2 and arrestin proteins in the progression of vascular disease.
Collapse
Affiliation(s)
- Gavin E Morris
- Dept. of Cancer Studies and Molecular Medicine, Leicester Royal Infirmary, Leicester, UK
| | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Tang F, Zou F, Peng Z, Huang D, Wu Y, Chen Y, Duan C, Cao Y, Mei W, Tang X, Dong Z. N,N'-dinitrosopiperazine-mediated ezrin protein phosphorylation via activation of Rho kinase and protein kinase C is involved in metastasis of nasopharyngeal carcinoma 6-10B cells. J Biol Chem 2011; 286:36956-67. [PMID: 21878630 DOI: 10.1074/jbc.m111.259234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
N,N'-Dinitrosopiperazine (DNP) is a carcinogen for nasopharyngeal carcinoma (NPC), which shows organ specificity to nasopharyngeal epithelium. Herein, we demonstrate that DNP induces fiber formation of NPC cells (6-10B) and also increases invasion and motility of 6-10B cells. DNP-mediated NPC metastasis also was confirmed in nude mice. Importantly, DNP induced the expression of phosphorylated ezrin (phos-ezrin) at threonine 567 (Thr-567) dose- and time-dependently but had no effect on the total ezrin expression at these concentrations. Furthermore, DNP-induced phos-ezrin expression was dependent on increased Rho kinase and protein kinase C (PKC) activity. DNP may activate Rho kinase through binding to its pleckstrin homology and may activate PKC through promoting its translocation to the plasma membrane in vivo. DNP-induced phos-ezrin was associated with induction of fiber growth in 6-10B cells. However, DNP could not induce motility and invasion of NPC cells containing ezrin mutated at Thr-567. Similarly, DNP could not induce motility and invasion of the cells containing siRNAs against Rho or PKC. These results indicate that DNP induces ezrin phosphorylation at Thr-567, increases motility and invasion of cells, and promotes tumor metastasis. DNP may be involved in NPC metastasis through regulation of ezrin phosphorylation at Thr-567.
Collapse
Affiliation(s)
- Faqing Tang
- Medical Research Center, Zhuhai Hospital, Guangzhou 510000, Guangdong, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Adyshev DM, Moldobaeva NK, Elangovan VR, Garcia JGN, Dudek SM. Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell Signal 2011; 23:2086-96. [PMID: 21864676 DOI: 10.1016/j.cellsig.2011.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 01/07/2023]
Abstract
Endothelial cell (EC) barrier dysfunction induced by inflammatory agonists is a frequent pathophysiologic event in multiple diseases. The platelet-derived phospholipid sphingosine-1 phosphate (S1P) reverses this dysfunction by potently enhancing the EC barrier through a process involving Rac GTPase-dependent cortical actin rearrangement as an integral step. In this study we explored the role of the ezrin, radixin, and moesin (ERM) family of actin-binding linker protein in modulating S1P-induced human pulmonary EC barrier enhancement. S1P induces ERM translocation to the EC periphery and promotes ERM phosphorylation on a critical threonine residue (Ezrin-567, Radixin-564, Moesin-558). This phosphorylation is dependent on activation of PKC isoforms and Rac1. The majority of ERM phosphorylation on these critical threonine residues after S1P occurs in moesin and ezrin. Baseline radixin phosphorylation is higher than in the other two ERM proteins but does not increase after S1P. S1P-induced moesin and ezrin threonine phosphorylation is not mediated by the barrier enhancing receptor S1PR1 because siRNA downregulation of S1PR1 fails to inhibit these phosphorylation events, while stimulation of EC with the S1PR1-specific agonist SEW2871 fails to induce these phosphorylation events. Silencing of either all ERM proteins or radixin alone (but not moesin alone) reduced S1P-induced Rac1 activation and phosphorylation of the downstream Rac1 effector PAK1. Radixin siRNA alone, or combined siRNA for all three ERM proteins, dramatically attenuates S1P-induced EC barrier enhancement (measured by transendothelial electrical resistance (TER), peripheral accumulation of di-phospho-MLC, and cortical cytoskeletal rearrangement. In contrast, moesin depletion has the opposite effects on these parameters. Ezrin silencing partially attenuates S1P-induced EC barrier enhancement and cytoskeletal changes. Thus, despite structural similarities and reported functional redundancy, the ERM proteins differentially modulate S1P-induced alterations in lung EC cytoskeleton and permeability. These results suggest that ERM activation is an important regulatory event in EC barrier responses to S1P.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Institute for Personalized Respiratory Medicine, Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
84
|
Zheng S, Huang J, Zhou K, Zhang C, Xiang Q, Tan Z, Wang T, Fu X. 17β-Estradiol enhances breast cancer cell motility and invasion via extra-nuclear activation of actin-binding protein ezrin. PLoS One 2011; 6:e22439. [PMID: 21818323 PMCID: PMC3144228 DOI: 10.1371/journal.pone.0022439] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022] Open
Abstract
Estrogen promotes breast cancer metastasis. However, the detailed mechanism remains largely unknown. The actin binding protein ezrin is a key component in tumor metastasis and its over-expression is positively correlated to the poor outcome of breast cancer. In this study, we investigate the effects of 17β-estradiol (E2) on the activation of ezrin and its role in estrogen-dependent breast cancer cell movement. In T47-D breast cancer cells, E2 rapidly enhances ezrin phosphorylation at Thr567 in a time- and concentration-dependent manner. The signalling cascade implicated in this action involves estrogen receptor (ER) interaction with the non-receptor tyrosine kinase c-Src, which activates the phosphatidylinositol-3 kinase/Akt pathway and the small GTPase RhoA/Rho-associated kinase (ROCK-2) complex. E2 enhances the horizontal cell migration and invasion of T47-D breast cancer cells in three-dimensional matrices, which is reversed by transfection of cells with specific ezrin siRNAs. In conclusion, E2 promotes breast cancer cell movement and invasion by the activation of ezrin. These results provide novel insights into the effects of estrogen on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.
Collapse
Affiliation(s)
- Shuhui Zheng
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinghe Huang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chengxi Zhang
- Department of Cardiovascular Internal Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuling Xiang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XDF); (THW)
| | - Xiaodong Fu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XDF); (THW)
| |
Collapse
|
85
|
Barker BL, Benovic JL. G protein-coupled receptor kinase 5 phosphorylation of hip regulates internalization of the chemokine receptor CXCR4. Biochemistry 2011; 50:6933-41. [PMID: 21728385 DOI: 10.1021/bi2005202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization.
Collapse
Affiliation(s)
- Breann L Barker
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | | |
Collapse
|
86
|
Eijkelkamp N, Wang H, Garza-Carbajal A, Willemen HLDM, Zwartkruis FJ, Wood JN, Dantzer R, Kelley KW, Heijnen CJ, Kavelaars A. Low nociceptor GRK2 prolongs prostaglandin E2 hyperalgesia via biased cAMP signaling to Epac/Rap1, protein kinase Cepsilon, and MEK/ERK. J Neurosci 2010; 30:12806-15. [PMID: 20861385 PMCID: PMC6633564 DOI: 10.1523/jneurosci.3142-10.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/26/2010] [Accepted: 08/01/2010] [Indexed: 11/21/2022] Open
Abstract
Hyperexcitability of peripheral nociceptive pathways is often associated with inflammation and is an important mechanism underlying inflammatory pain. Here we describe a completely novel mechanism via which nociceptor G-protein-coupled receptor kinase 2 (GRK2) contributes to regulation of inflammatory hyperalgesia. We show that nociceptor GRK2 is downregulated during inflammation. In addition, we show for the first time that prostaglandin E2 (PGE2)-induced hyperalgesia is prolonged from <6 h in wild-type (WT) mice to 3 d in mice with low GRK2 in Nav1.8+ nociceptors (SNS-GRK2+/- mice). This prolongation of PGE2 hyperalgesia in SNS-GRK2+/- mice does not depend on changes in the sensitivity of the prostaglandin receptors because prolonged hyperalgesia also developed in response to 8-Br-cAMP. PGE2 or cAMP-induced hyperalgesia in WT mice is PKA dependent. However, PKA activity is not required for hyperalgesia in SNS-GRK2+/- mice. SNS-GRK2+/- mice developed prolonged hyperalgesia in response to the Exchange proteins directly activated by cAMP (Epac) activator 8-pCPT-2'-O-Me-cAMP (8-pCPT). Coimmunoprecipitation experiments showed that GRK2 binds to Epac1. In vitro, GRK2 deficiency increased 8-pCPT-induced activation of the downstream effector of Epac, Rap1, and extracellular signal-regulated kinase (ERK). In vivo, inhibition of MEK1 or PKCε prevented prolonged PGE2, 8-Br-cAMP, and 8-pCPT hyperalgesia in SNS-GRK2+/- mice. In conclusion, we discovered GRK2 as a novel Epac1-interacting protein. A reduction in the cellular level of GRK2 enhances activation of the Epac-Rap1 pathway. In vivo, low nociceptor GRK2 leads to prolonged inflammatory hyperalgesia via biased cAMP signaling from PKA to Epac-Rap1, ERK/PKCε pathways.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Huijing Wang
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Anibal Garza-Carbajal
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Hanneke L. D. M. Willemen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Fried J. Zwartkruis
- Department of Physiological Chemistry, University Medical Center Utrecht, Center for Biomedical Genetics and Cancer Genomics Center, 3584 CG, Utrecht, The Netherlands, and
| | - John N. Wood
- Molecular Nociception Group, University College London, London WC1E 6BT, United Kingdom
| | - Robert Dantzer
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Keith W. Kelley
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Cobi J. Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
- Integrative Immunology and Behavior Program, College of Agricultural, Consumer, and Environmental Sciences and College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
87
|
Abstract
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.
Collapse
Affiliation(s)
- Nan Sethakorn
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| | - Douglas M. Yau
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| | - Nickolai O. Dulin
- Department of Medicine, the University of Chicago, 5841 S. Maryland Ave, MC 6076, Chicago, IL 60637, USA
| |
Collapse
|
88
|
Canals D, Jenkins RW, Roddy P, Hernández-Corbacho MJ, Obeid LM, Hannun YA. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane. J Biol Chem 2010; 285:32476-85. [PMID: 20679347 DOI: 10.1074/jbc.m110.141028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ERM proteins are regulated by phosphorylation of the most C-terminal threonine residue, switching them from an activated to an inactivated form. However, little is known about the control of this regulation. Previous work in our group demonstrated that secretion of acid sphingomyelinase acts upstream of ERM dephosphorylation, suggesting the involvement of sphingomyelin (SM) hydrolysis in ERM regulation. To define the role of specific lipids, we employed recombinant bacterial sphingomyelinase (bSMase) as a direct probe of SM metabolism at the plasma membrane. bSMase induced a rapid dose- and time-dependent decrease in ERM dephosphorylation. ERM dephosphorylation was driven by ceramide generation and not by sphingomyelin depletion, as shown using recombinant sphingomyelinase D. The generation of ceramide at the plasma membrane was sufficient for ERM regulation, and no intracellular SM hydrolysis was required, as was visualized using Venus-tagged lysenin probe, which specifically binds SM. Interestingly, hydrolysis of plasma membrane bSMase-induced ceramide using bacterial ceramidase caused ERM hyperphosphorylation and formation of cell surface protrusions. The effects of plasma membrane ceramide hydrolysis were due to sphingosine 1-phosphate formation, as ERM phosphorylation was blocked by an inhibitor of sphingosine kinase and induced by sphingosine 1-phosphate. Taken together, these results demonstrate a new regulatory mechanism of ERM phosphorylation by sphingolipids with opposing actions of ceramide and sphingosine 1-phosphate. The approach also defines a tool kit to probe sphingolipid signaling at the plasma membrane.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
89
|
G-protein-coupled-receptor kinases mediate TNFα-induced NFκB signalling via direct interaction with and phosphorylation of IκBα. Biochem J 2009; 425:169-78. [PMID: 19796012 DOI: 10.1042/bj20090908] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-α (TNFα) is a multifunctional cytokine involved in the pathophysiology of many chronic inflammatory diseases. TNFα activation of the nuclear factor κB (NFκB) signaling pathway particularly in macrophages has been implicated in many diseases. We demonstrate here that G-protein coupled receptor kinase-2 and 5 (GRK2 and 5) regulate TNFα-induced NFκB signaling in Raw264.7 macrophages. RNAi knockdown of GRK2 or 5 in macrophages significantly inhibits TNFα-induced IκBα phosphorylation and degradation, NFκB activation, and expression of the NFκB-regulated gene, macrophage inflammatory protein-1β. Consistent with these results, over-expression of GRK2 or 5 enhances TNFα-induced NFκB activity. In addition,we show that GRK2 and 5 interact with IκBα via the N-terminal domain of IκBα and that IκBα isa substrate for GRK2 and 5 in vitro. Furthermore, we also find that GRK5 but not GRK2 phosphorylates IκBα at the same amino acid residues (Ser32/36) as that of IKKβ. Interestingly,associated with these results, knockdown of IKKβ in Raw264.7 macrophages did not affect TNFα-induced IκBα phosphorylation. Taken together, these results demonstrate that both GRK2 and 5 are important and novel mediators of a non-traditional IκBα-NFκB signaling pathway.
Collapse
|
90
|
Kahsai AW, Zhu S, Fenteany G. G protein-coupled receptor kinase 2 activates radixin, regulating membrane protrusion and motility in epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:300-10. [PMID: 19913059 DOI: 10.1016/j.bbamcr.2009.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022]
Abstract
Ezrin/radixin/moesin (ERM) proteins are membrane-cytoskeleton linkers that also have roles in signal transduction. Here we show that G protein-coupled receptor kinase 2 (GRK2) regulates membrane protrusion and cell migration during wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers at least partly through activating phosphorylation of radixin on a conserved, regulatory C-terminal Thr residue. GRK2 phosphorylated radixin exclusively on Thr 564 in vitro. Expression of a phosphomimetic (Thr-564-to-Asp) mutant of radixin resulted in increased Rac1 activity, membrane protrusion and cell motility in MDCK cells, suggesting that radixin functions "upstream" of Rac1, presumably as a scaffolding protein. Phosphorylation of ERM proteins was highest during the most active phase of epithelial cell sheet migration over the course of wound closure. In view of these results, we explored the mode of action of quinocarmycin/quinocarcin analog DX-52-1, an inhibitor of cell migration and radixin function with considerable selectivity for radixin over the other ERM proteins, finding that its mechanism of inhibition of radixin does not appear to involve binding and antagonism at the site of regulatory phosphorylation.
Collapse
Affiliation(s)
- Alem W Kahsai
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
91
|
Namkung Y, Dipace C, Urizar E, Javitch JA, Sibley DR. G protein-coupled receptor kinase-2 constitutively regulates D2 dopamine receptor expression and signaling independently of receptor phosphorylation. J Biol Chem 2009; 284:34103-15. [PMID: 19815545 DOI: 10.1074/jbc.m109.055707] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the regulatory effects of GRK2 on D(2) dopamine receptor signaling and found that this kinase inhibits both receptor expression and functional signaling in a phosphorylation-independent manner, apparently through different mechanisms. Overexpression of GRK2 was found to suppress receptor expression at the cell surface and enhance agonist-induced internalization, whereas short interfering RNA knockdown of endogenous GRK2 led to an increase in cell surface receptor expression and decreased agonist-mediated endocytosis. These effects were not due to GRK2-mediated phosphorylation of the D(2) receptor as a phosphorylation-null receptor mutant was regulated similarly, and overexpression of a catalytically inactive mutant of GRK2 produced the same effects. The suppression of receptor expression is correlated with constitutive association of GRK2 with the receptor complex as we found that GRK2 and several of its mutants were able to co-immunoprecipitate with the D(2) receptor. Agonist pretreatment did not enhance the ability of GRK2 to co-immunoprecipitate with the receptor. We also found that overexpression of GRK2 attenuated the functional coupling of the D(2) receptor and that this activity required the kinase activity of GRK2 but did not involve receptor phosphorylation, thus suggesting the involvement of an additional GRK2 substrate. Interestingly, we found that the suppression of functional signaling also required the G betagamma binding activity of GRK2 but did not involve the GRK2 N-terminal RH domain. Our results suggest a novel mechanism by which GRK2 negatively regulates G protein-coupled receptor signaling in a manner that is independent of receptor phosphorylation.
Collapse
Affiliation(s)
- Yoon Namkung
- Molecular Neuropharmacology Section, NINDS, National Institutes of Health, Bethesda, Maryland 20892-9405, USA
| | | | | | | | | |
Collapse
|
92
|
Tang F, Wang D, Duan C, Huang D, Wu Y, Chen Y, Wang W, Xie C, Meng J, Wang L, Wu B, Liu S, Tian D, Zhu F, He Z, Deng F, Cao Y. Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567. J Biol Chem 2009; 284:27456-66. [PMID: 19651779 PMCID: PMC2785675 DOI: 10.1074/jbc.m109.033795] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/23/2009] [Indexed: 01/21/2023] Open
Abstract
Ezrin is highly expressed in metastatic tumors and is involved in filopodia formation as well as promotion of tumor metastasis. Thus, Ezrin may serve as a potential target for anti-metastatic therapy. This study demonstrates that berberine reduces filopodia formation of a nasopharyngeal carcinoma (NPC) cell line, 5-8F, at non-cytotoxic concentrations. Furthermore, invasion and motility of 5-8F cells are decreased in a dose- and time-dependent manner, resulting in 73.0% invasion and 67.0% motility inhibition at 20 mum. The inhibitory effects of berberine on 5-8F cell metastasis were further confirmed in a mouse model of metastasis. Berberine treatment in vivo resulted in a 51.1% inhibition of tumor metastasis to the lymph nodes and decreased Ezrin phosphorylation at threonine 567 in metastatic samples. Berberine suppressed the presence of phosphorylated Ezrin (phospho-Ezrin) in a dose- and time-dependent manner but had no effect on total Ezrin protein expression at non-cytotoxic concentrations. Furthermore, the inhibitory effects of berberine on phospho-Ezrin were dependent on the suppression of Rho kinase activity. Reduction of Ezrin phosphorylation at Thr(567) by berberine was associated with its inhibitory effect on filopodia formation in 5-8F cells. However, berberine did not effectively inhibit the motility and invasion of NPC cells containing Ezrin Thr(567) mutants. These results confirm that berberine inhibits Ezrin phosphorylation at Thr(567). Nonetheless, berberine reduces motility and invasion of cells and inhibits tumor metastasis. The reduction of Rho kinase-mediated Ezrin phosphorylation mediated by berberine may be a novel anti-metastatic pathway in NPC 5-8F cells.
Collapse
Affiliation(s)
- Faqing Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Orsatti L, Forte E, Tomei L, Caterino M, Pessi A, Talamo F. 2-D Difference in gel electrophoresis combined with Pro-Q Diamond staining: A successful approach for the identification of kinase/phosphatase targets. Electrophoresis 2009; 30:2469-76. [DOI: 10.1002/elps.200800780] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
94
|
G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009; 21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
|
95
|
Ren L, Hong SH, Cassavaugh J, Osborne T, Chou AJ, Kim SY, Gorlick R, Hewitt SM, Khanna C. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 2009; 28:792-802. [PMID: 19060919 PMCID: PMC7213760 DOI: 10.1038/onc.2008.437] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 10/03/2008] [Accepted: 11/01/2008] [Indexed: 11/08/2022]
Abstract
Ezrin is a member of the ERM (ezrin, radixin, moesin) protein family and links F-actin to the cell membrane following phosphorylation. Ezrin has been associated with tumor progression and metastasis in several cancers including the pediatric solid tumors, osteosarcoma and rhabdomyosarcoma. In this study, we were surprised to find that ezrin was not constitutively phosphorylated but rather was dynamically regulated during metastatic progression in osteosarcoma. Metastatic osteosarcoma cells expressed phosphorylated ERM early after their arrival in the lung, and then late in progression, only at the invasive front of larger metastatic lesions. To pursue mechanisms for this regulation, we found that inhibitors of PKC (protein kinase C) blocked phosphorylation of ezrin, and that ezrin coimmunoprecipitated in cells with PKCalpha, PKCiota and PKCgamma. Furthermore, phosphorylated forms of ezrin and PKC had identical expression patterns at the invasive front of pulmonary metastatic lesions in murine and human patient samples. Finally, we showed that the promigratory effects of PKC were linked to ezrin phosphorylation. These data are the first to suggest a dynamic regulation of ezrin phosphorylation during metastasis and to connect the PKC family members with this regulation.
Collapse
Affiliation(s)
- L Ren
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - SH Hong
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - J Cassavaugh
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - T Osborne
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - AJ Chou
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - SY Kim
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Gorlick
- Department of Pediatrics, Albert Einstein College of Medicine, The Children’s Hospital at Montefiore, Bronx, NY, USA
| | - SM Hewitt
- Tissue Array Research Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Khanna
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
96
|
Peters MF, Scott CW. Evaluating Cellular Impedance Assays for Detection of GPCR Pleiotropic Signaling and Functional Selectivity. ACTA ACUST UNITED AC 2009; 14:246-55. [DOI: 10.1177/1087057108330115] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
G-protein—coupled receptors can couple to different signal transduction pathways in different cell types (termed cell-specific signaling) and can activate different signaling pathways depending on the receptor conformation(s) stabilized by the activating ligand (functional selectivity). These concepts offer potential for developing pathway-specific drugs that increase efficacy and reduce side effects. Despite significant interest, functional selectivity has been difficult to exploit in drug discovery, in part due to the burden of multiple assays. Cellular impedance assays use an emerging technology that can qualitatively distinguish Gs, Gi/o, and Gq signaling in a single assay and is thereby suited for studying these pharmacological concepts. Cellular impedance confirmed cell-specific Gs and Gq coupling for the melanocortin-4 receptor and dual Gi and Gs signaling with the cannabinoid-1 (CB1) receptor. The balance of Gi versus Gs signaling depended on the cell line. In CB1-HEKs, Giand Gs-like responses combined to yield a novel impedance profile demonstrating the dynamic nature of these traces. Cellspecific signaling was observed with endogenous D1 receptor in U-2 cells and SK-N-MC cells, yet the pharmacological profile of partial and full agonists was similar in both cell lines. We conclude that the dynamic impedance profile encodes valuable relative signaling information and is sufficiently robust to help evaluate cell-specific signaling and functional selectivity. ( Journal of Biomolecular Screening 2009:246-255)
Collapse
Affiliation(s)
- Matthew F. Peters
- Lead Generation Department, AstraZeneca Pharmaceuticals LP, Wilmington, Delaware,
| | - Clay W. Scott
- Lead Generation Department, AstraZeneca Pharmaceuticals LP, Wilmington, Delaware
| |
Collapse
|
97
|
Penela P, Ribas C, Aymerich I, Mayor F. New roles of G protein-coupled receptor kinase 2 (GRK2) in cell migration. Cell Adh Migr 2009; 3:19-23. [PMID: 19372742 DOI: 10.4161/cam.3.1.7149] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) was initially identified as a key player, together with beta-arrestins, in the regulation of multiple G protein-coupled receptors (GPCR). Further research has revealed a complex GRK2 interactome, that includes a variety of proteins related to cell motility, and a role for GRK2 kinase activity in inhibiting chemokine-induced immune cell migration. In addition, we have recently reported that GRK2 positively regulates integrin and sphingosine-1-phosphate-dependent motility in epithelial cell types and fibroblasts, acting as a scaffold molecule. We suggest that the positive or negative correlation of GRK2 levels with cell migration would depend on the cell type, specific stimuli acting through plasma membrane receptors, or on the signalling context, leading to differential networks of interaction of GRK2 with cell migration-related signalosomes.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
98
|
Shankaranarayanan A, Thal DM, Tesmer VM, Roman DL, Neubig RR, Kozasa T, Tesmer JJG. Assembly of high order G alpha q-effector complexes with RGS proteins. J Biol Chem 2008; 283:34923-34. [PMID: 18936096 DOI: 10.1074/jbc.m805860200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmembrane signaling through G alpha(q)-coupled receptors is linked to physiological processes such as cardiovascular development and smooth muscle function. Recent crystallographic studies have shown how G alpha(q) interacts with two activation-dependent targets, p63RhoGEF and G protein-coupled receptor kinase 2 (GRK2). These proteins bind to the effector-binding site of G alpha(q) in a manner that does not appear to physically overlap with the site on G alpha(q) bound by regulator of G-protein signaling (RGS) proteins, which function as GTPase-activating proteins (GAPs). Herein we confirm the formation of RGS-G alpha(q)-GRK2/p63RhoGEF ternary complexes using flow cytometry protein interaction and GAP assays. RGS2 and, to a lesser extent, RGS4 are negative allosteric modulators of Galpha(q) binding to either p63RhoGEF or GRK2. Conversely, GRK2 enhances the GAP activity of RGS4 but has little effect on that of RGS2. Similar but smaller magnitude responses are induced by p63RhoGEF. The fact that GRK2 and p63RhoGEF respond similarly to these RGS proteins supports the hypothesis that GRK2 is a bona fide G alpha(q) effector. The results also suggest that signal transduction pathways initiated by GRK2, such as the phosphorylation of G protein-coupled receptors, and by p63RhoGEF, such as the activation of gene transcription, can be regulated by RGS proteins via both allosteric and GAP mechanisms.
Collapse
|
99
|
Hsu HH, Hoffmann S, Endlich N, Velic A, Schwab A, Weide T, Schlatter E, Pavenstädt H. Mechanisms of angiotensin II signaling on cytoskeleton of podocytes. J Mol Med (Berl) 2008; 86:1379-94. [PMID: 18773185 DOI: 10.1007/s00109-008-0399-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 07/12/2008] [Accepted: 08/01/2008] [Indexed: 01/16/2023]
Abstract
Podocytes are significant in establishing the glomerular filtration barrier. Sustained rennin-angiotensin system (RAS) activation is crucial in the pathogenesis of podocyte injury and causes proteinuria. This study demonstrates that angiotensin II (Ang II) caused a reactive oxygen species (ROS)-dependent rearrangement of cortical F-actin and a migratory phenotype switch in cultured mouse podocytes with stable Ang II type 1 receptor (AT1R) expression. Activated small GTPase Rac-1 and phosphorylated ezrin/radixin/moesin (ERM) proteins provoked Ang II-induced F-actin cytoskeletal remodeling. This work also shows increased expression of Rac-1 and phosphorylated ERM proteins in cultured podocytes, and in glomeruli of podocyte-specific AT1R transgenic rats (Neph-hAT1 TGRs). The free radical scavenger DMTU eliminated Ang II-induced cell migration, ERM protein phosphorylation and cortical F-actin remodeling, indicating that ROS mediates the influence of Rac-1 on podocyte AT1R signaling. Heparin, a potent G-coupled protein kinase 2 inhibitor, was found to abolish ERM protein phosphorylation and cortical F-actin ring formation in Ang II-treated podocytes, indicating that phosphorylated ERM proteins are the cytoskeletal effector in AT1R signaling. Moreover, Ang II stimulation triggered down-regulation of alpha actinin-4 and reduced focal adhesion expression in podocytes. Signaling inhibitor assay of Ang II-treated podocytes reveals that Rac-1, RhoA, and F-actin reorganization were involved in expressional regulation of alpha actinin-4 in AT1R signaling. With persistent RAS activation, the Ang II-induced phenotype shifts from being dynamically stable to adaptively migratory, which may eventually exhaust podocytes with a high actin cytoskeletal turnover, causing podocyte depletion and focal segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Hsiang-Hao Hsu
- Department of Medicine D, Division of General Internal Medicine and Nephrology, University Hospital Muenster, Albert-Schweitzer-Str. 33, 48149 Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Gurevich VV, Gurevich EV. Rich tapestry of G protein-coupled receptor signaling and regulatory mechanisms. Mol Pharmacol 2008; 74:312-6. [PMID: 18515421 PMCID: PMC2865845 DOI: 10.1124/mol.108.049015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins and the most common therapeutic targets. In the last 2 decades, impressive progress in the understanding of GPCR function has been achieved, driven largely by the idea of similarity of the molecular mechanisms underlying their signaling and regulation. However, recent comprehensive studies of signaling and trafficking of several GPCR subtypes, including endogenous M3 muscarinic and H1 histamine receptor and expressed cysteinyl leukotriene type 1 receptor in human embryonic kidney 293 cells, clearly demonstrate that each receptor is regulated by a unique set of molecular mechanisms involving different players. These data indicate that the "gold mine" of similarities is nearly exhausted and that extrapolation from one receptor to another is as likely to be misleading as illuminating. Further progress in the field requires careful analysis of the regulation of individual GPCR subtypes in defined cellular context. In this issue of Molecular Pharmacology, Luo et al. (p. 338) describe a complex pattern of the regulation of M3 muscarinic receptor signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|