51
|
Martínez-Alonso E, Tomás M, Martínez-Menárguez JA. Golgi tubules: their structure, formation and role in intra-Golgi transport. Histochem Cell Biol 2013; 140:327-39. [PMID: 23812035 DOI: 10.1007/s00418-013-1114-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 11/28/2022]
Abstract
Tubules are common Golgi elements that can form extensive networks associated with the cis-, lateral and trans-Golgi sides, but despite this, they have almost been forgotten for decades. The molecular mechanisms involved in their formation, elongation and fission are only just beginning to be understood. However, the role of these membranes is not well understood. In the present review, we analyze the mechanisms that induce Golgi tubulation or, conversely, disrupt tubules in order to throw some lights on the nature of these elements. The putative role of these elements in the framework of current models for intra-Golgi transport is also discussed.
Collapse
Affiliation(s)
- Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
52
|
Abstract
Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.
Collapse
Affiliation(s)
- Francesco Baschieri
- Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
53
|
Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One 2013; 8:e57034. [PMID: 23437303 PMCID: PMC3578815 DOI: 10.1371/journal.pone.0057034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/16/2013] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.
Collapse
|
54
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
55
|
Kirkbride KC, Hong NH, French CL, Clark ES, Jerome WG, Weaver AM. Regulation of late endosomal/lysosomal maturation and trafficking by cortactin affects Golgi morphology. Cytoskeleton (Hoboken) 2012; 69:625-43. [PMID: 22991200 PMCID: PMC3746372 DOI: 10.1002/cm.21051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/23/2023]
Abstract
Cortactin is a branched actin regulator and tumor-overexpressed protein that promotes vesicular trafficking at a variety of cellular sites, including endosomes and the trans-Golgi network. To better understand its role in secretory trafficking, we investigated its function in Golgi homeostasis. Here, we report that knockdown (KD) of cortactin leads to a dramatic change in Golgi morphology by light microscopy, dependent on binding the Arp2/3 actin-nucleating complex. Surprisingly, there was little effect of cortactin-KD on anterograde trafficking of the constitutive cargo vesicular stomatitis virus glycoprotein (VSVG), Golgi assembly from endoplasmic reticulum membranes upon Brefeldin A washout, or Golgi ultrastructure. Instead, electron microscopy studies revealed that cortactin-KD cells contained a large number of immature-appearing late endosomal/lysosomal (LE/Lys) hybrid organelles, similar to those found in lysosomal storage diseases. Consistent with a defect in LE/Lys trafficking, cortactin-KD cells also exhibited accumulation of free cholesterol and retention of the retrograde Golgi cargo mannose-6-phosphate receptor in LE. Inhibition of LE maturation by treatment of control cells with Rab7 siRNA or chloroquine led to a compact Golgi morphology similar to that observed in cortactin-KD cells. Furthermore, the Golgi morphology defects of cortactin-KD cells could be rescued by removal of cholesterol-containing lipids from the media, suggesting that buildup of cholesterol-rich membranes in immature LE/Lys induced disturbances in retrograde trafficking. Taken together, these data reveal that LE/Lys maturation and trafficking are highly sensitive to cortactin-regulated branched actin assembly and suggests that cytoskeletal-induced Golgi morphology changes can be a consequence of altered trafficking at late endosomes.
Collapse
Affiliation(s)
- Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
56
|
Chen KY, Tsai PC, Liu YW, Lee FJS. Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi. J Cell Sci 2012; 125:4586-96. [PMID: 22767516 DOI: 10.1242/jcs.107797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Golgins play diverse roles in regulating the structure and function of the Golgi. The yeast golgin Imh1p is targeted to the trans-Golgi network (TGN) through interaction of its GRIP domain with GTP-bound Arl1p. Recycling of Arl1p and Imh1p to the cytosol requires the hydrolysis of GTP bound to Arl1p; however, the point at which GTP hydrolysis occurs remains unknown. Here, we report that self-interaction of Imh1p plays a role in modulating spatial inactivation of Arl1p. Deletion of IMH1 in yeast decreases the amount of the GTP-bound Arl1p and results in less Arl1p residing on the TGN. Biochemically, purified Imh1p competes with Gcs1p, an Arl1p GTPase-activating protein (GAP), for binding to Arl1p, thus interfering with the GAP activity of Gcs1p toward Arl1p. Furthermore, we demonstrate that the self-interaction of Imh1p attenuates the Gcs1p-dependent GTP hydrolysis of Arl1p. Thus, we propose that the golgin Imh1p serves as a feedback regulator to modulate the GTP hydrolysis of Arl1p.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
57
|
Nottingham RM, Pusapati GV, Ganley IG, Barr FA, Lambright DG, Pfeffer SR. RUTBC2 protein, a Rab9A effector and GTPase-activating protein for Rab36. J Biol Chem 2012; 287:22740-8. [PMID: 22637480 DOI: 10.1074/jbc.m112.362558] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab GTPases regulate vesicle budding, motility, docking, and fusion. In cells, their cycling between active, GTP-bound states and inactive, GDP-bound states is regulated by the action of opposing enzymes called guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). The substrates for most RabGAPs are unknown, and the potential for cross-talk between different membrane trafficking pathways remains uncharted territory. Rab9A and its effectors regulate recycling of mannose 6-phosphate receptors from late endosomes to the trans Golgi network. We show here that RUTBC2 is a TBC domain-containing protein that binds to Rab9A specifically both in vitro and in cultured cells but is not a GAP for Rab9A. Biochemical screening of Rab protein substrates for RUTBC2 revealed highest GAP activity toward Rab34 and Rab36. In cells, membrane-associated RUTBC2 co-localizes with Rab36, and expression of wild type RUTBC2, but not the catalytically inactive, RUTBC2 R829A mutant, decreases the amount of membrane-associated Rab36 protein. These data show that RUTBC2 can act as a Rab36 GAP in cells and suggest that RUTBC2 links Rab9A function to Rab36 function in the endosomal system.
Collapse
Affiliation(s)
- Ryan M Nottingham
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
58
|
Hynson RMG, Jeffries CM, Trewhella J, Cocklin S. Solution structure studies of monomeric human TIP47/perilipin-3 reveal a highly extended conformation. Proteins 2012; 80:2046-55. [PMID: 22508559 DOI: 10.1002/prot.24095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/11/2012] [Indexed: 11/12/2022]
Abstract
Tail-interacting protein of 47 kDa (TIP47) has two putative functions: lipid biogenesis and mannose 6-phosphate receptor recycling. Progress in understanding the molecular details of these two functions has been hampered by the lack of structural data on TIP47, with a crystal structure of the C-terminal domain of the mouse homolog constituting the only structural data in the literature so far. Our studies have first provided a strategy to obtain pure monodisperse preparations of the full-length TIP47/perilipin-3 protein, as well as a series of N-terminal truncation mutants with no exogenous sequences. These constructs have then enabled us to obtain the first structural characterization of the full-length protein in solution. Our work demonstrates that the N-terminal region of TIP47/perilipin-3, in contrast to the largely helical C-terminal region, is predominantly β-structure with turns and bends. Moreover, we show that full-length TIP47/perilipin-3 adopts an extended conformation in solution, with considerable spatial separation of the N- and C-termini that would likely translate into a separation of functional domains.
Collapse
Affiliation(s)
- Robert M G Hynson
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
59
|
Liu S, Storrie B. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 2012; 69:4093-106. [PMID: 22581368 DOI: 10.1007/s00018-012-1021-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022]
Abstract
The fundamental separation of Golgi function between subcompartments termed cisternae is conserved across all eukaryotes. Likewise, Rab proteins, small GTPases of the Ras superfamily, are putative common coordinators of Golgi organization and protein transport. However, despite sequence conservation, e.g., Rab6 and Ypt6 are conserved proteins between humans and yeast, the fundamental organization of the organelle can vary profoundly. In the yeast Saccharomyces cerevisiae, the Golgi cisternae are physically separated from one another, while in mammalian cells, the cisternae are stacked one upon the other. Moreover, in mammalian cells, many Golgi stacks are typically linked together to generate a ribbon structure. Do evolutionarily conserved Rab proteins regulate secretory membrane trafficking and diverse Golgi organization in a common manner? In mammalian cells, some Golgi-associated Rab proteins function in coordination of protein transport and maintenance of Golgi organization. These include Rab6, Rab33B, Rab1, Rab2, Rab18, and Rab43. In yeast, these include Ypt1, Ypt32, and Ypt6. Here, based on evidence from both yeast and mammalian cells, we speculate on the essential role of Rab proteins in Golgi organization and protein transport.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
60
|
Ng EL, Gan BQ, Ng F, Tang BL. Rab GTPases regulating receptor trafficking at the late endosome-lysosome membranes. Cell Biochem Funct 2012; 30:515-23. [DOI: 10.1002/cbf.2827] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/07/2012] [Accepted: 03/09/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Bin Qi Gan
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Fanny Ng
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
61
|
Lin YC, Chiang TC, Liu YT, Tsai YT, Jang LT, Lee FJS. ARL4A acts with GCC185 to modulate Golgi complex organization. J Cell Sci 2011; 124:4014-26. [PMID: 22159419 DOI: 10.1242/jcs.086892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation factor-like protein 4A (ARL4A) is a developmentally regulated member of the ARF/ARL GTPase family. The primary structure of ARL4A is very similar to that of other ARF/ARL molecules, but its function remains unclear. The trans-Golgi network golgin GCC185 is required for maintenance of Golgi structure and distinct endosome-to-Golgi transport. We show here that GCC185 acts as a new effector for ARL4 to modulate Golgi organization. ARL4A directly interacts with GCC185 in a GTP-dependent manner. Sub-coiled-coil regions of the CC2 domain of GCC185 are required for the interaction between GCC185 and ARL4A. Depletion of ARL4A reproduces the GCC185-depleted phenotype, causing fragmentation of the Golgi compartment and defects in endosome-to-Golgi transport. GCC185 and ARL4A localize to the Golgi independently of each other. Deletion of the ARL4A-interacting region of GCC185 results in inability to maintain Golgi structure. Depletion of ARL4A impairs the interaction between GCC185 and cytoplasmic linker-associated proteins 1 and 2 (CLASP1 and CLASP2, hereafter CLASPs) in vivo, and abolishes the GCC185-mediated Golgi recruitment of these CLASPs, which is crucial for the maintenance of Golgi structure. In summary, we suggest that ARL4A alters the integrity of the Golgi structure by facilitating the interaction of GCC185 with CLASPs.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
62
|
Brown FC, Schindelhaim CH, Pfeffer SR. GCC185 plays independent roles in Golgi structure maintenance and AP-1-mediated vesicle tethering. ACTA ACUST UNITED AC 2011; 194:779-87. [PMID: 21875948 PMCID: PMC3171126 DOI: 10.1083/jcb.201104019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
GCC185 is a long coiled-coil protein localized to the trans-Golgi network (TGN) that functions in maintaining Golgi structure and tethering mannose 6-phosphate receptor (MPR)-containing transport vesicles en route to the Golgi. We report the identification of two distinct domains of GCC185 needed either for Golgi structure maintenance or transport vesicle tethering, demonstrating the independence of these two functions. The domain needed for vesicle tethering binds to the clathrin adaptor AP-1, and cells depleted of GCC185 accumulate MPRs in transport vesicles that are AP-1 decorated. This study supports a previously proposed role of AP-1 in retrograde transport of MPRs from late endosomes to the Golgi and indicates that docking may involve the interaction of vesicle-associated AP-1 protein with the TGN-associated tethering protein GCC185.
Collapse
Affiliation(s)
- Frank C Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
63
|
Nottingham RM, Ganley IG, Barr FA, Lambright DG, Pfeffer SR. RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J Biol Chem 2011; 286:33213-22. [PMID: 21808068 DOI: 10.1074/jbc.m111.261115] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab GTPases regulate all steps of membrane trafficking. Their interconversion between active, GTP-bound states and inactive, GDP-bound states is regulated by guanine nucleotide exchange factors and GTPase-activating proteins. The substrates for most Rab GTPase-activating proteins (GAPs) are unknown. Rab9A and its effectors regulate transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. We show here that RUTBC1 is a Tre2/Bub2/Cdc16 domain-containing protein that binds to Rab9A-GTP both in vitro and in cultured cells, but is not a GTPase-activating protein for Rab9A. Biochemical screening of RUTBC1 Rab protein substrates revealed highest in vitro GTP hydrolysis-activating activity with Rab32 and Rab33B. Catalysis required Arg-803 of RUTBC1, and RUTBC1 could activate a catalytically inhibited Rab33B mutant (Q92A), in support of a dual finger mechanism for RUTBC1 action. Rab9A binding did not influence GAP activity of bead-bound RUTBC1 protein. In cells and cell extracts, RUTBC1 influenced the ability of Rab32 to bind its effector protein, Varp, consistent with a physiological role for RUTBC1 in regulating Rab32. In contrast, binding of Rab33B to its effector protein, Atg16L1, was not influenced by RUTBC1 in cells or extracts. The identification of a protein that binds Rab9A and inactivates Rab32 supports a model in which Rab9A and Rab32 act in adjacent pathways at the boundary between late endosomes and the biogenesis of lysosome-related organelles.
Collapse
Affiliation(s)
- Ryan M Nottingham
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
64
|
Chia PZC, Gasnereau I, Lieu ZZ, Gleeson PA. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 2011; 124:2401-13. [PMID: 21693586 DOI: 10.1242/jcs.083782] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin-TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
65
|
Abstract
A number of long coiled-coil proteins are present on the Golgi. Often referred to as "golgins," they are well conserved in evolution and at least five are likely to have been present in the last common ancestor of all eukaryotes. Individual golgins are found in different parts of the Golgi stack, and they are typically anchored to the membrane at their carboxyl termini by a transmembrane domain or by binding a small GTPase. They appear to have roles in membrane traffic and Golgi structure, but their precise function is in most cases unclear. Many have binding sites for Rab family GTPases along their length, and this has led to the suggestion that the golgins act collectively to form a tentacular matrix that surrounds the Golgi to capture Rab-coated membranes in the vicinity of the stack. Such a collective role might explain the lack of cell lethality seen following loss of some of the genes in human familial conditions or mouse models.
Collapse
|
66
|
Abstract
Some proteins and lipids traffic from the plasma membrane to the trans Golgi network (TGN)/Golgi apparatus and the endoplasmic reticulum, via the retrograde transport route. Endosomes are an obligatory through station. Whether early, recycling and late endosomes all hand off material to the TGN have remained a matter of debate. In this review, we give a short historical overview on how retrograde transport was discovered and explored. We then summarize and critically discuss data that have been put forward in favour of the existence of trafficking interfaces between each of the different endocytic localizations and the TGN. We finally point out some conceptual and technological challenges that will have to be met to establish definite conclusions for each of these scenarios.
Collapse
Affiliation(s)
- Ludger Johannes
- Traffic, Signaling, and Delivery Laboratory, Centre de Recherche, Institut Curie, CNRS UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
67
|
Abstract
The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome.
Collapse
|
68
|
Chia PZC, Gleeson PA. The Regulation of Endosome-to-Golgi Retrograde Transport by Tethers and Scaffolds. Traffic 2011; 12:939-47. [DOI: 10.1111/j.1600-0854.2011.01185.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
69
|
Abstract
The trans-Golgi network (TGN) receives a select set of proteins from the endocytic pathway-about 5% of total plasma membrane glycoproteins (Duncan and Kornfeld 1988). Proteins that are delivered include mannose 6-phosphate receptors (MPRs), TGN46, sortilin, and various toxins that hitchhike a ride backward through the secretory pathway to intoxicate cells after they exit into the cytoplasm from the endoplasmic reticulum (ER). This article will review work on the molecular players that drive protein transport from the endocytic pathway to the TGN. Distinct requirements have revealed multiple routes for retrograde transport; in addition, the existence of multiple, potential coat proteins and/or cargo adaptors imply that multiple vesicular transfers are likely involved. Several comprehensive reviews have appeared recently and should be sought for additional details (Bonifacino and Rojas 2006; Johannes and Popoff 2008).
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5307, USA.
| |
Collapse
|
70
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
71
|
Abstract
The Golgi complex is a central processing compartment in the secretory pathway of eukaryotic cells. This essential compartment processes more than 30% of the proteins encoded by the human genome, yet we still do not fully understand how the Golgi is assembled and how proteins pass through it. Recent advances in our understanding of the molecular basis for protein transport through the Golgi and within the endocytic pathway provide clues to how this complex organelle may function and how proteins may be transported through it. Described here is a possible model for transport of cargo through a tightly stacked Golgi that involves continual fusion and fission of stable, "like" subcompartments and provides a mechanism to grow the Golgi complex from a stable progenitor, in an ordered manner.
Collapse
|
72
|
Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 2010; 21:3041-53. [PMID: 20610657 PMCID: PMC2929997 DOI: 10.1091/mbc.e10-04-0313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/22/2022] Open
Abstract
Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.
Collapse
Affiliation(s)
- Jian Jing
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | | | - Christine Wu
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Jemima Burden
- MRC Cell Biology Unit, University College London, London, WC1E 6BT, United Kingdom
| | - Hugo Matern
- Exelixis Inc., South San Francisco, CA 94080; and
| | - Andrew A. Peden
- University of Cambridge, Cambridge Institute for Medical Research, Hills Road, CB20XY, United Kingdom
| | - Rytis Prekeris
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
73
|
Cayouette S, Bousquet SM, Francoeur N, Dupré É, Monet M, Gagnon H, Guedri YB, Lavoie C, Boulay G. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:805-12. [DOI: 10.1016/j.bbamcr.2010.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 01/30/2023]
|
74
|
TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 2010; 20:329-36. [DOI: 10.1016/j.tcb.2010.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/22/2022]
|
75
|
Abstract
The Golgi complex is a central processing station for proteins traversing the secretory pathway, yet we are still learning how this compartment is constructed and how cargo moves through it. Recent experiments suggest a key role for Ras-like Rab GTPases and provide important new ideas for how the Golgi may function.
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine Stanford, CA 94305-5307 USA
| |
Collapse
|
76
|
Lieu ZZ, Gleeson PA. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 2010; 89:379-93. [PMID: 20138391 DOI: 10.1016/j.ejcb.2009.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/22/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
The retrograde transport pathways from early/recycling endosomes are critical for recycling a range of endogenous cargo, as well as internalisation of bacterial and plant toxins. We have previously shown that the retrograde transport of the two model cargos, TGN38 and Shiga toxin, differs in the requirement for TGN golgins; transport of TGN38 requires the TGN golgin GCC88 whereas that of Shiga toxin requires GCC185. Here we have further defined the retrograde transport requirements of these two cargos. Tracking the transport of these cargos demonstrated that the bulk of Shiga toxin is transported from early endosomes to recycling endosomes en route to the TGN whereas the bulk of TGN38 is transported from early endosomes to the TGN with only low levels detected in recycling endosomes. In cells depleted of the TGN t-SNARE syntaxin 16, TGN38 accumulated predominantly in early endosomes whereas Shiga toxin accumulated in Rab11-positive recycling endosomes, suggesting distinct routes for each cargo. Retrograde transport of Shiga toxin and TGN38 requires retromer, however, whereas sorting nexin 1 (SNX1) is specifically required for transport of Shiga toxin, sorting nexin 2 (SNX2) is required for the transport of TGN38. Overall, our data have identified different itineraries for the retrograde transport of Shiga toxin and TGN38 and distinct retromer components that regulate the transport of these cargos.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
77
|
Zhou F. Expression of Multiple Granzymes by Cytotoxic T Lymphocyte Implies that They Activate Diverse Apoptotic Pathways in Target Cells. Int Rev Immunol 2010; 29:38-55. [DOI: 10.3109/08830180903247889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
78
|
Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp Gerontol 2009; 45:611-20. [PMID: 20036725 DOI: 10.1016/j.exger.2009.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
Abstract
Aging is a complex process accompanied by a decreased capacity to tolerate and respond to various stresses. Heat shock proteins as part of cell defense mechanisms are up-regulated following stress. In Drosophila, the mitochondrial Hsp22 is preferentially up-regulated in aged flies. Its over-expression results in an extension of lifespan and an increased resistance to stress. Hsp22 has chaperone-like activity in vitro, but the mechanism(s) by which it increases lifespan in flies are unknown. Genome-wide analysis was performed on long-lived Hsp22+ and control flies to unveil transcriptional changes brought by Hsp22. Transcriptomes obtained at 45days, 90% and 50% survival were then compared between them to focus more on genes up- or down-regulated in presence of higher levels of hsp22 mRNA. Hsp22+ flies display an up-regulation of genes mainly related to mitochondrial energy production and protein biosynthesis, two functions normally down-regulated during aging. Interestingly, among the 26 genes up-regulated in Hsp22+ flies, 7 genes encode for mitochondrial proteins, 5 of which being involved in OXPHOS complexes. Other genes that could influence aging such as CG5002, dGCC185 and GstS1 also displayed a regulation linked to Hsp22 expression. The up-regulation of genes of the OXPHOS system in Hsp22+ flies suggest that mitochondrial homeostasis is at the center of Hsp22 beneficial effects on lifespan.
Collapse
|
79
|
Affiliation(s)
- Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
80
|
Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
81
|
Pfeffer SR. Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett 2009; 583:3811-6. [PMID: 19879268 DOI: 10.1016/j.febslet.2009.10.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
Proteins use multiple routes for transport from endosomes to the Golgi complex. Shiga and cholera toxins and TGN38/46 are routed from early and recycling endosomes, while mannose 6-phosphate receptors are routed from late endosomes. The identification of distinct molecular requirements for each of these pathways makes it clear that mammalian cells have evolved more complex targeting mechanisms and routes than previously anticipated.
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, 279 Campus Drive B400, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
82
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 5410=5410-- pmza] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
83
|
|
84
|
|
85
|
|
86
|
|
87
|
|
88
|
|
89
|
|
90
|
|
91
|
|
92
|
|
93
|
|
94
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 6285=8708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
95
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1-- gjxv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
96
|
|
97
|
|
98
|
|
99
|
|
100
|
|