51
|
Licursi M, Komatsu Y, Pongnopparat T, Hirasawa K. Promotion of viral internal ribosomal entry site-mediated translation under amino acid starvation. J Gen Virol 2012; 93:951-962. [DOI: 10.1099/vir.0.040386-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cap-dependent and internal ribosomal entry site (IRES)-mediated translation are regulated differently within cells. Viral IRES-mediated translation often remains active when cellular cap-dependent translation is severely impaired under cellular stresses induced by virus infection. To investigate how cellular stresses influence the efficiency of viral IRES-mediated translation, we used a bicistronic luciferase reporter construct harbouring IRES elements from the following viruses: encephalomyocarditis virus (EMCV), foot-and-mouth disease virus (FMDV), hepatitis C virus (HCV) or human rhinovirus (HRV). NIH3T3 cells transfected with these bicistronic reporter constructs were subjected to different cellular stresses. Increased translation initiation was only observed under amino acid starvation when EMCV or FMDV IRES elements were present. To identify cellular mechanisms that promoted viral IRES-mediated translation, we tested the involvement of eukaryotic initiation factor 4E-binding protein (4E-BP), general control non-depressed 2 (GCN2) and eukaryotic initiation factor 2B (eIF2B), as these are known to be modulated under amino acid starvation. Knockdown of 4E-BP1 impaired the promotion of EMCV and FMDV IRES-mediated translation under amino acid starvation, whereas GCN2 and eIF2B were not involved. To further investigate how 4E-BP1 regulates translation initiated by EMCV and FMDV IRES elements, we used a phosphoinositide kinase-3 inhibitor (LY294002), an mTOR inhibitor (Torin1) or leucine starvation to mimic 4E-BP1 dephosphorylation induced by amino acid starvation. 4E-BP1 dephosphorylation induced by the treatments was not sufficient to promote viral IRES-mediated translation. These results suggest that 4E-BP1 regulates EMCV and FMDV IRES-mediated translation under amino acid starvation, but not via its dephosphorylation.
Collapse
Affiliation(s)
- Maria Licursi
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St John’s, NL A1B 3V6, Canada
| | - Yumiko Komatsu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St John’s, NL A1B 3V6, Canada
| | - Theerawat Pongnopparat
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St John’s, NL A1B 3V6, Canada
| | - Kensuke Hirasawa
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St John’s, NL A1B 3V6, Canada
| |
Collapse
|
52
|
Eschenburg G, Eggert A, Schramm A, Lode HN, Hundsdoerfer P. Smac Mimetic LBW242 Sensitizes XIAP-Overexpressing Neuroblastoma Cells for TNF-α–Independent Apoptosis. Cancer Res 2012; 72:2645-56. [DOI: 10.1158/0008-5472.can-11-4072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
53
|
Jin S, Wu M, Cao H, Ying S, Hua J, Chen Y. p27(kip1) upregulated by hnRNPC1/2 antagonizes CagA (a virulence factor of Helicobacter pylori)-mediated pathogenesis. Helicobacter 2012; 17:140-7. [PMID: 22404445 DOI: 10.1111/j.1523-5378.2011.00927.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP-2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. METHODS We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two-dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). RESULTS It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27(kip1) protein. CONCLUSION Our data suggested that hnRNPC1/2 upregulates p27(kip1) expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA-mediated pathogenesis.
Collapse
Affiliation(s)
- Shenghang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | |
Collapse
|
54
|
Tumor suppressor PDCD4 represses internal ribosome entry site-mediated translation of antiapoptotic proteins and is regulated by S6 kinase 2. Mol Cell Biol 2012; 32:1818-29. [PMID: 22431522 DOI: 10.1128/mcb.06317-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Apoptosis can be regulated by extracellular signals that are communicated by peptides such as fibroblast growth factor 2 (FGF-2) that have important roles in tumor cell proliferation. The prosurvival effects of FGF-2 are transduced by the activation of the ribosomal protein S6 kinase 2 (S6K2), which increases the expression of the antiapoptotic proteins X chromosome-linked Inhibitor of Apoptosis (XIAP) and Bcl-x(L). We now show that the FGF-2-S6K2 prosurvival signaling is mediated by the tumor suppressor programmed cell death 4 (PDCD4). We demonstrate that PDCD4 specifically binds to the internal ribosome entry site (IRES) elements of both the XIAP and Bcl-x(L) messenger RNAs and represses their translation by inhibiting the formation of the 48S translation initiation complex. Phosphorylation of PDCD4 by activated S6K2 leads to the degradation of PDCD4 and thus the subsequent derepression of XIAP and Bcl-x(L) translation. Our results identify PDCD4 as a specific repressor of the IRES-dependent translation of cellular mRNAs (such as XIAP and Bcl-x(L)) that mediate FGF-2-S6K2 prosurvival signaling and provide further insight into the role of PDCD4 in tumor suppression.
Collapse
|
55
|
Petz M, Them N, Huber H, Beug H, Mikulits W. La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition. Nucleic Acids Res 2012; 40:290-302. [PMID: 21896617 PMCID: PMC3245933 DOI: 10.1093/nar/gkr717] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/26/2011] [Accepted: 08/21/2011] [Indexed: 12/13/2022] Open
Abstract
The majority of transcripts that harbor an internal ribosome entry site (IRES) are involved in cancer development via corresponding proteins. A crucial event in tumor progression referred to as epithelial to mesenchymal transition (EMT) allows carcinoma cells to acquire invasive properties. The translational activation of the extracellular matrix component laminin B1 (LamB1) during EMT has been recently reported suggesting an IRES-mediated mechanism. In this study, the IRES activity of LamB1 was determined by independent bicistronic reporter assays. Strong evidences exclude an impact of cryptic promoter or splice sites on IRES-driven translation of LamB1. Furthermore, no other LamB1 mRNA species arising from alternative transcription start sites or polyadenylation signals were detected that account for its translational control. Mapping of the LamB1 5'-untranslated region (UTR) revealed the minimal LamB1 IRES motif between -293 and -1 upstream of the start codon. Notably, RNA affinity purification showed that the La protein interacts with the LamB1 IRES. This interaction and its regulation during EMT were confirmed by ribonucleoprotein immunoprecipitation. In addition, La was able to positively modulate LamB1 IRES translation. In summary, these data indicate that the LamB1 IRES is activated by binding to La which leads to translational upregulation during hepatocellular EMT.
Collapse
Affiliation(s)
- Michaela Petz
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Nicole Them
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Heidemarie Huber
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Hartmut Beug
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna and Institute for Animal Breeding and Genetics, University of Veterinary Medicine I, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
56
|
Tang YS, Khan RA, Zhang Y, Xiao S, Wang M, Hansen DK, Jayaram HN, Antony AC. Incrimination of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) as a candidate sensor of physiological folate deficiency. J Biol Chem 2011; 286:39100-15. [PMID: 21930702 DOI: 10.1074/jbc.m111.230938] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism underlying the sensing of varying degrees of physiological folate deficiency, prior to adaptive optimization of cellular folate uptake through the translational up-regulation of folate receptors (FR) is unclear. Because homocysteine, which accumulates intracellularly during folate deficiency, stimulated interactions between heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and an 18-base FR-α mRNA cis-element that led to increased FR biosynthesis and net up-regulation of FR at cell surfaces, hnRNP-E1 was a plausible candidate sensor of folate deficiency. Accordingly, using purified components, we evaluated the physiological basis whereby L-homocysteine triggered these RNA-protein interactions to stimulate FR biosynthesis. L-homocysteine induced a concentration-dependent increase in RNA-protein binding affinity throughout the range of physiological folate deficiency, which correlated with a proportionate increase in translation of FR in vitro and in cultured human cells. Targeted reduction of newly synthesized hnRNP-E1 proteins by siRNA to hnRNP-E1 mRNA reduced both constitutive and L-homocysteine-induced rates of FR biosynthesis. Furthermore, L-homocysteine covalently bound hnRNP-E1 via multiple protein-cysteine-S-S-homocysteine mixed disulfide bonds within K-homology domains known to interact with mRNA. These data suggest that a concentration-dependent, sequential disruption of critical cysteine-S-S-cysteine bonds by covalently bound L-homocysteine progressively unmasks an underlying RNA-binding pocket in hnRNP-E1 to optimize interaction with FR-α mRNA cis-element preparatory to FR up-regulation. Collectively, such data incriminate hnRNP-E1 as a physiologically relevant, sensitive, cellular sensor of folate deficiency. Because diverse mammalian and viral mRNAs also interact with this RNA-binding domain with functional consequences to their protein expression, homocysteinylated hnRNP-E1 also appears well positioned to orchestrate a novel, nutrition-sensitive (homocysteine-responsive), posttranscriptional RNA operon in folate-deficient cells.
Collapse
Affiliation(s)
- Ying-Sheng Tang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Maeto CA, Knott ME, Linero FN, Ellenberg PC, Scolaro LA, Castilla V. Differential effect of acute and persistent Junín virus infections on the nucleo-cytoplasmic trafficking and expression of heterogeneous nuclear ribonucleoproteins type A and B. J Gen Virol 2011; 92:2181-2190. [DOI: 10.1099/vir.0.030163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins A and B (hnRNPs A/B), cellular RNA-binding proteins that participate in splicing, trafficking, translation and turnover of mRNAs, have been implicated in the life cycles of several cytoplasmic RNA viruses. Here, we demonstrate that silencing of hnRNPs A1 and A2 significantly reduces the replication of the arenavirus Junín virus (JUNV), the aetiological agent of Argentine haemorrhagic fever. While acute JUNV infection did not modify total levels of expression of hnRNPs A/B in comparison with uninfected cells, non-cytopathic persistent infection exhibited low levels of these cell proteins. Furthermore, acutely infected cells showed a cytoplasmic relocalization of overexpressed hnRNP A1, probably related to the involvement of this protein in virus replicative cycle. This cytoplasmic accumulation was also observed in cells expressing viral nucleoprotein (N), and co-immunoprecipitation studies revealed the interaction between hnRNP A1 and N protein. By contrast, a predominantly nuclear distribution of overexpressed hnRNP A1 was found during persistent infection, even in the presence of endogenous or overexpressed N protein, indicating a differential modulation of nucleo–cytoplasmic trafficking in acute and persistent JUNV infections.
Collapse
Affiliation(s)
- Cynthia A. Maeto
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María E. Knott
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia N. Linero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula C. Ellenberg
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A. Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
58
|
Abstract
Enterovirus 71 (EV71) infections continue to remain an important public health problem around the world, especially in the Asia-Pacific region. There is a significant mortality rate following such infections, and there is neither any proven therapy nor a vaccine for EV71. This has spurred much fundamental research into the replication of the virus. In this review, we discuss recent work identifying host cell factors which regulate the synthesis of EV71 RNA and proteins. Three of these proteins, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), far-upstream element-binding protein 2 (FBP2), and FBP1 are nuclear proteins which in EV71-infected cells are relocalized to the cytoplasm, and they influence EV71 internal ribosome entry site (IRES) activity. hnRNP A1 stimulates IRES activity but can be replaced by hnRNP A2. FBP2 is a negative regulatory factor with respect to EV71 IRES activity, whereas FBP1 has the opposite effect. Two other proteins, hnRNP K and reticulon 3, are required for the efficient synthesis of viral RNA. The cleavage stimulation factor 64K subunit (CstF-64) is a host protein that is involved in the 3' polyadenylation of cellular pre-mRNAs, and recent work suggests that in EV71-infected cells, it may be cleaved by the EV71 3C protease. Such a cleavage would impair the processing of pre-mRNA to mature mRNAs. Host cell proteins play an important role in the replication of EV71, but much work remains to be done in order to understand how they act.
Collapse
|
59
|
HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death Differ 2011; 18:1692-701. [PMID: 21527938 DOI: 10.1038/cdd.2011.35] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Of critical importance in the stress response is the post-transcriptional control of the expression of important genes involved in the control of cell survival and apoptosis. Here we report that miR-19, an oncogenic component of the miR-17-92/Oncomir-1 microRNA polycistron, regulates the expression of Ras homolog B (RhoB) in keratinocytes upon exposure to ultraviolet (UV) radiation. Strikingly, we could not find any evidence for deregulated expression of miR-19 during UV treatment. However, we show that miR-19-mediated regulation of antiapoptotic RhoB expression requires the binding of human antigen R (HuR), an AU-rich element binding protein, to the 3'-untranslated region of the rhoB mRNA. We propose that the loss of the interdependent binding between HuR and miR-19 to the rhoB mRNA upon UV exposure relieves this mRNA from miR-19-dependent inhibition of translation and contributes to the apoptotic response.
Collapse
|
60
|
|
61
|
Durie D, Lewis SM, Liwak U, Kisilewicz M, Gorospe M, Holcik M. RNA-binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene 2011; 30:1460-9. [PMID: 21102524 PMCID: PMC3514411 DOI: 10.1038/onc.2010.527] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/11/2010] [Accepted: 10/11/2010] [Indexed: 12/27/2022]
Abstract
Expression of the intrinsic cellular caspase inhibitor XIAP is regulated primarily at the level of protein synthesis. The 5' untranslated region harbours an Internal Ribosome Entry Site (IRES) motif that supports cap-independent translation of XIAP mRNA during conditions of cellular stress. In this study, we show that the RNA-binding protein HuR, which is known to orchestrate an antiapoptotic cellular program, stimulates translation of XIAP mRNA through XIAP IRES. We further show that HuR binds to XIAP IRES in vitro and in vivo, and stimulates recruitment of the XIAP mRNA into polysomes. Importantly, protection from the apoptosis-inducing agent etoposide by overexpression of HuR requires the presence of XIAP, suggesting that HuR-mediated cytoprotection is partially executed through enhanced XIAP translation. Our data suggest that XIAP belongs to the HuR-regulated RNA operon of antiapoptotic genes, which, along with Bcl-2, Mcl-1 and ProTα, contributes to the regulation of cell survival.
Collapse
Affiliation(s)
- D Durie
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - SM Lewis
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - U Liwak
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - M Kisilewicz
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - M Gorospe
- Laboratory of Cellular and Molecular Biology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Paediatrics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
62
|
Tsai BP, Wang X, Huang L, Waterman ML. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 2011; 10:M110.007385. [PMID: 21285413 DOI: 10.1074/mcp.m110.007385] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Identification of proteins in RNA-protein complexes is an important step toward understanding regulation of RNA-based processes. Because of the lack of appropriate methodologies, many studies have relied on the creation of in vitro assembled RNA-protein complexes using synthetic RNA and cell extracts. Such complexes may not represent authentic RNPs as they exist in living cells as synthetic RNA may not fold properly and nonspecific RNA-protein interactions can form during cell lysis and purification processes. To circumvent limitations in current approaches, we have developed a novel integrated strategy namely MS2 in vivo biotin tagged RNA affinity purification (MS2-BioTRAP) to capture bona fide in vivo-assembled RNA-protein complexes. In this method, HB-tagged bacteriophage protein MS2 and stem-loop tagged target or control RNAs are co-expressed in cells. The tight association between MS2 and the RNA stem-loop tags allows efficient HB-tag based affinity purification of authentic RNA-protein complexes. Proteins associated with target RNAs are subsequently identified and quantified using SILAC-based quantitative mass spectrometry. Here the 1.2 kb internal ribosome entry site (IRES) from lymphoid enhancer factor-1 mRNA has been used as a proof-of-principle target RNA. An IRES target was chosen because of its importance in protein translation and our limited knowledge of proteins associated with IRES function. With a conventionally translated target RNA as control, 36 IRES binding proteins have been quantitatively identified including known IRES binding factors, novel interacting proteins, translation initiation factors (eIF4A-1, eIF-2A, and eIF3g), and ribosomal subunits with known noncanonical actions (RPS19, RPS7, and RPL26). Validation studies with the small molecule eIF4A-1 inhibitor Hippuristanol shows that translation of endogenous lymphoid enhancer factor-1 mRNA is especially sensitive to eIF4A-1 activity. Our work demonstrates that MS2 in vivo biotin tagged RNA affinity purification is an effective and versatile approach that is generally applicable for other RNA-protein complexes.
Collapse
Affiliation(s)
- Becky Pinjou Tsai
- Department of Microbiology and Molecular Genetics School of Medicine, University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
63
|
Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 2011; 10:229-40. [PMID: 21220943 DOI: 10.4161/cc.10.2.14472] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translation of cellular mRNAs via initiation at Internal Ribosome Entry Sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.
| | | |
Collapse
|
64
|
Shi Y, Frost P, Hoang B, Benavides A, Gera J, Lichtenstein A. IL-6-induced enhancement of c-Myc translation in multiple myeloma cells: critical role of cytoplasmic localization of the rna-binding protein hnRNP A1. J Biol Chem 2010; 286:67-78. [PMID: 20974848 DOI: 10.1074/jbc.m110.153221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior work indicates that IL-6 can stimulate c-Myc expression in multiple myeloma (MM) cells, which is independent of effects on transcription and due to enhanced translation mediated by an internal ribosome entry site in the 5'-UTR of the c-Myc RNA. The RNA-binding protein hnRNP A1 (A1) was also critical to IL-6-stimulated translation. Because A1 shuttles between nucleus and cytoplasm, we investigated whether the ability of IL-6 to enhance Myc translation was mediated by stimulation of A1 shuttling. In MM cell lines and primary specimens, IL-6 increased A1 cytoplasmic localization. In contrast, there was no effect on the total cellular levels of A1. Use of a dominant negative A1 construct, which prevents endogenous A1 from nucleus-to-cytoplasm transit, prevented the ability of IL-6 to enhance Myc internal ribosome entry site activity, Myc protein expression, and MM cell growth. IL-6-stimulated cytoplasmic localization was mediated by alterations in the C-terminal M9 peptide of A1, and this correlated with the ability of IL-6 to induce serine phosphorylation of this domain. A p38 kinase inhibitor prevented IL-6-induced A1 phosphorylation. Thus, IL-6 activates c-Myc translation in MM cells by inducing A1 phosphorylation and cytoplasmic localization in a p38-dependent fashion. These data suggest A1 as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology Oncology, University of California at Los Angeles-Greater Los Angeles Veterans Affairs Healthcare Center, Jonnsson Comprehensive Cancer Center, Los Angeles, California 90073, USA
| | | | | | | | | | | |
Collapse
|
65
|
Riley A, Jordan LE, Holcik M. Distinct 5' UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 2010; 38:4665-74. [PMID: 20385593 PMCID: PMC2919726 DOI: 10.1093/nar/gkq241] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 01/04/2023] Open
Abstract
X-chromosome linked inhibitor of apoptosis, XIAP, is cellular caspase inhibitor and a key regulator of apoptosis. We and others have previously shown that XIAP expression is regulated primarily at the level of protein synthesis; the 5' untranslated region (UTR) of XIAP mRNA contains an Internal Ribosome Entry Site (IRES) that supports cap-independent expression of XIAP protein during conditions of pathophysiological stress, such as serum deprivation or gamma irradiation. Here, we show that XIAP is encoded by two distinct mRNAs that differ in their 5' UTRs. We further show that the dominant, shorter, 5' UTR promotes a basal level of XIAP expression under normal growth conditions. In contrast, the less abundant longer 5' UTR contains an IRES and supports cap-independent translation during stress. Our data suggest that the combination of alternate regulatory regions and distinct translational initiation modes is critical in maintaining XIAP levels in response to cellular stress and may represent a general mechanism of cellular adaptation.
Collapse
Affiliation(s)
- Alura Riley
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, K1H 8L1, Department of Biochemistry, Microbiology and Immunology and Department of Paediatrics, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Lindsay E. Jordan
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, K1H 8L1, Department of Biochemistry, Microbiology and Immunology and Department of Paediatrics, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, K1H 8L1, Department of Biochemistry, Microbiology and Immunology and Department of Paediatrics, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5, Canada
| |
Collapse
|
66
|
Gui H, Lu CW, Adams S, Stollar V, Li ML. hnRNP A1 interacts with the genomic and subgenomic RNA promoters of Sindbis virus and is required for the synthesis of G and SG RNA. J Biomed Sci 2010; 17:59. [PMID: 20663119 PMCID: PMC2916895 DOI: 10.1186/1423-0127-17-59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/21/2010] [Indexed: 12/04/2022] Open
Abstract
Background Sindbis virus (SV) is the prototype of alphaviruses which are a group of widely distributed human and animal pathogens. Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is an RNA-binding protein that shuttles between the nucleus and the cytoplasm. Our recent studies found that hnRNP A1 relocates from nucleus to cytoplasm in Sindbis virus (SV)-infected cells. hnRNP A1 binds to the 5' UTR of SV RNA and facilitates the viral RNA replication and translation. Methods Making use of standard molecular techniques, virology methods and an in vitro system developed by our lab to assess the role of hnRNP A1 in SV positive strand RNA synthesis. Results hnRNP A1 interacted with the genomic (G) and subgenomic (SG) RNA promoters. Knockdown of hnRNP A1 resulted in markedly decrease in the synthesis of G and SG RNA both in infected cells and in vitro. Conclusions Our study provides the first direct evidence that hnRNP A1 actively participates in viral RNA replication and is required for the synthesis of G and SG RNA.
Collapse
Affiliation(s)
- Hongxing Gui
- Department of Molecular Genetics, Microbiology & Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
67
|
Bevilacqua E, Wang X, Majumder M, Gaccioli F, Yuan CL, Wang C, Zhu X, Jordan LE, Scheuner D, Kaufman RJ, Koromilas AE, Snider MD, Holcik M, Hatzoglou M. eIF2alpha phosphorylation tips the balance to apoptosis during osmotic stress. J Biol Chem 2010; 285:17098-111. [PMID: 20338999 PMCID: PMC2878040 DOI: 10.1074/jbc.m110.109439] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/17/2010] [Indexed: 01/04/2023] Open
Abstract
Regulation of cell volume is of great importance because persistent swelling or shrinkage leads to cell death. Tissues experience hypertonicity in both physiological (kidney medullar cells) and pathological states (hypernatremia). Hypertonicity induces an adaptive gene expression program that leads to cell volume recovery or apoptosis under persistent stress. We show that the commitment to apoptosis is controlled by phosphorylation of the translation initiation factor eIF2alpha, the master regulator of the stress response. Studies with cultured mouse fibroblasts and cortical neurons show that mutants deficient in eIF2alpha phosphorylation are protected from hypertonicity-induced apoptosis. A novel link is revealed between eIF2alpha phosphorylation and the subcellular distribution of the RNA-binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). Stress-induced phosphorylation of eIF2alpha promotes apoptosis by inducing the cytoplasmic accumulation of hnRNP A1, which attenuates internal ribosome entry site-mediated translation of anti-apoptotic mRNAs, including Bcl-xL that was studied here. Hypertonic stress induced the eIF2alpha phosphorylation-independent formation of cytoplasmic stress granules (SGs, structures that harbor translationally arrested mRNAs) and the eIF2alpha phosphorylation-dependent accumulation of hnRNP A1 in SGs. The importance of hnRNP A1 was demonstrated by induction of apoptosis in eIF2alpha phosphorylation-deficient cells that express exogenous cytoplasmic hnRNP A1. We propose that eIF2alpha phosphorylation during hypertonic stress promotes apoptosis by sequestration of specific mRNAs in SGs in a process mediated by the cytoplasmic accumulation of hnRNP A1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lindsay E. Jordan
- the Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa K1H 8L1, Canada
| | | | - Randal J. Kaufman
- the Departments of Biological Chemistry and
- Internal Medicine and the Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, and
| | - Antonis E. Koromilas
- the Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Martin D. Snider
- Biochemistry, Case Western University School of Medicine, Cleveland, Ohio 44106
| | - Martin Holcik
- the Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa K1H 8L1, Canada
| | | |
Collapse
|
68
|
Miura P, Coriati A, Bélanger G, De Repentigny Y, Lee J, Kothary R, Holcik M, Jasmin BJ. The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Hum Mol Genet 2010; 19:1211-20. [PMID: 20053670 DOI: 10.1093/hmg/ddp591] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms regulating expression of utrophin A are of therapeutic interest since upregulating its expression at the sarcolemma can compensate for the lack of dystrophin in animal models of Duchenne Muscular Dystrophy (DMD). The 5'-UTR of utrophin A has been previously shown to drive cap-independent internal ribosome entry site (IRES)-mediated translation in response to muscle regeneration and glucocorticoid treatment. To determine whether the utrophin A IRES displays tissue specific activity, we generated transgenic mice harboring control (CMV/betaGAL/CAT) or utrophin A 5'-UTR (CMV/betaGAL/UtrA/CAT) bicistronic reporter transgenes. Examination of multiple tissues from two CMV/betaGAL/UtrA/CAT lines revealed that the utrophin A 5'-UTR drives cap-independent translation of the reporter gene exclusively in skeletal muscles and no other examined tissues. This expression pattern suggested that skeletal muscle-specific factors are involved in IRES-mediated translation of utrophin A. We performed RNA-affinity chromatography experiments combined with mass spectrometry to identify trans-factors that bind the utrophin A 5'-UTR and identified eukaryotic elongation factor 1A2 (eEF1A2). UV-crosslinking experiments confirmed the specificity of this interaction. Regions of the utrophin A 5'-UTR that bound eEF1A2 also mediated cap-independent translation in C2C12 muscle cells. Cultured cells lacking eEF1A2 had reduced IRES activity compared with cells overexpressing eEF1A2. Together, these results suggest an important role for eEF1A2 in driving cap-independent translation of utrophin A in skeletal muscle. The trans-factors and signaling pathways driving skeletal-muscle specific IRES-mediated translation of utrophin A could provide unique targets for developing pharmacological-based DMD therapies.
Collapse
Affiliation(s)
- P Miura
- Department of Cellular & Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Zhang X, Zou T, Rao JN, Liu L, Xiao L, Wang PY, Cui YH, Gorospe M, Wang JY. Stabilization of XIAP mRNA through the RNA binding protein HuR regulated by cellular polyamines. Nucleic Acids Res 2009; 37:7623-37. [PMID: 19825980 PMCID: PMC2794158 DOI: 10.1093/nar/gkp755] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/23/2022] Open
Abstract
The X chromosome-linked inhibitor of apoptosis protein (XIAP) is the most potent intrinsic caspase inhibitor and plays an important role in the maintenance of intestinal epithelial integrity. The RNA binding protein, HuR, regulates the stability and translation of many target transcripts. Here, we report that HuR associated with both the 3'-untranslated region and coding sequence of the mRNA encoding XIAP, stabilized the XIAP transcript and elevated its expression in intestinal epithelial cells. Ectopic HuR overexpression or elevated cytoplasmic levels of endogenous HuR by decreasing cellular polyamines increased [HuR/XIAP mRNA] complexes, in turn promoting XIAP mRNA stability and increasing XIAP protein abundance. Conversely, HuR silencing in normal and polyamine-deficient cells rendered the XIAP mRNA unstable, thus reducing the steady state levels of XIAP. Inhibition of XIAP expression by XIAP silencing or by HuR silencing reversed the resistance of polyamine-deficient cells to apoptosis. Our findings demonstrate that HuR regulates XIAP expression by stabilizing its mRNA and implicates HuR-mediated XIAP in the control of intestinal epithelial apoptosis.
Collapse
Affiliation(s)
- Xian Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Peng-Yuan Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Yu-Hong Cui
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore Veterans Affairs Medical Center, Department of Pathology, University of Maryland School of Medicine and Laboratory of Cellular and Molecular Biology, National Institute on Aging-IRP, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
70
|
Graber TE, Baird SD, Kao PN, Mathews MB, Holcik M. NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 2009; 17:719-29. [PMID: 19893574 DOI: 10.1038/cdd.2009.164] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Expression of the cellular inhibitor of apoptosis protein 1 (cIAP1) is unexpectedly repressed at the level of translation under normal physiological conditions in many cell lines. We have previously shown that the 5' untranslated region of cIAP1 mRNA contains a stress-inducible internal ribosome entry site (IRES) that governs expression of cIAP1 protein. Although inactive in unstressed cells, the IRES supports cap-independent translation of cIAP1 in response to endoplasmic reticulum stress. To gain an insight into the mechanism of cIAP1 IRES function, we empirically derived the minimal free energy secondary structure of the cIAP1 IRES using enzymatic cleavage mapping. We subsequently used RNA affinity chromatography to identify several cellular proteins, including nuclear factor 45 (NF45) as cIAP1 IRES binding proteins. In this report we show that NF45 is a novel RNA binding protein that enhances IRES-dependent translation of endogenous cIAP1. Further, we show that NF45 is required for IRES-mediated induction of cIAP1 protein during the unfolded protein response. The data presented are consistent with a model in which translation of cIAP1 is governed, at least in part, by NF45, a novel cellular IRES trans-acting factor.
Collapse
Affiliation(s)
- T E Graber
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
71
|
Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:109-53. [PMID: 20374740 DOI: 10.1016/s1877-1173(09)90003-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribosomal protein S6 kinase (S6K) has been implicated in the phosphorylation of multiple substrates and is subject to activation by a wide variety of signals that converge at mammalian target of rapamycin (mTOR). In the course of the search for its physiological role, it was proposed that S6K activation and ribosomal protein S6 (rpS6) phosphorylation account for the translational activation of a subgroup of transcripts, the TOP mRNAs. The structural hallmark of these mRNAs is an oligopyrimidine tract at their 5'-terminus, known as the 5'-TOP motif. TOP mRNAs consists of about 90 members that encode multiple components of the translational machinery, such as ribosomal proteins and translation factors. The translation efficiency of TOP mRNAs indeed correlates with S6K activation and rpS6 phosphorylation, yet recent biochemical and genetic studies have established that, although S6K and TOP mRNAs respond to similar signals and are regulated by mTOR, they maintain no cause and effect relationship. Instead, S6K is primarily involved in regulation of cell size, and affects glucose homeostasis, but is dispensable for global protein synthesis, whereas translational efficiency of TOP mRNAs is a determinant of the cellular protein synthesis capacity. Despite extensive studies of their function and mode of regulation, the mechanism underlying the effect of S6K on the cell size, as well as the trans-acting factor that mediates the translational control of TOP mRNAs, still await their identification.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
72
|
Monette A, Ajamian L, López-Lastra M, Mouland AJ. Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem 2009; 284:31350-62. [PMID: 19737937 DOI: 10.1074/jbc.m109.048736] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
73
|
Fox JT, Shin WK, Caudill MA, Stover PJ. A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem 2009; 284:31097-108. [PMID: 19734144 DOI: 10.1074/jbc.m109.015800] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Thymidine nucleotides are required for faithful DNA synthesis and repair, and their de novo biosynthesis is regulated by serine hydroxymethyltransferase 1 (SHMT1). The SHMT1 transcript contains a heavy chain ferritin, heterogeneous nuclear ribonucleoprotein H2, and CUG-binding protein 1-responsive internal ribosome entry site (IRES) that regulates SHMT1 translation. In this study a non-lethal dose of UVC is shown to increase SHMT1 IRES activity and protein levels in four different cell lines. The mechanism for the UV-induced activation of the SHMT1 IRES involves an increase in heavy chain ferritin and heterogeneous nuclear ribonucleoprotein H2 expression and the translocation of CUG-binding protein 1 from the nucleus to the cytoplasm. The UV-induced increase in SHMT1 translation is accompanied by an increase in the small ubiquitin-like modifier-dependent nuclear localization of the de novo thymidylate biosynthesis pathway and a decrease in DNA strand breaks, indicating a role for SHMT1 and nuclear folate metabolism in DNA repair.
Collapse
Affiliation(s)
- Jennifer T Fox
- Graduate Field of Biochemistry and Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
74
|
Gu L, Zhu N, Zhang H, Durden DL, Feng Y, Zhou M. Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell 2009; 15:363-75. [PMID: 19411066 PMCID: PMC2696306 DOI: 10.1016/j.ccr.2009.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 12/23/2008] [Accepted: 03/02/2009] [Indexed: 02/02/2023]
Abstract
Increases in protein levels of XIAP in cancer cells have been associated with resistance to apoptosis induced by cellular stress. Herein we demonstrate that the upregulation of XIAP protein levels is regulated by MDM2 at the translational level. MDM2 was found to physically interact with the IRES of the XIAP 5'-UTR, and to positively regulate XIAP IRES activity. This XIAP IRES-dependent translation was significantly increased in MDM2-transfected cells where MDM2 accumulated in the cytoplasm. Cellular stress and DNA damage triggered by irradiation induced the dephosphorylation and cytoplasmic localization of MDM2, which also led to an increase in IRES-dependent XIAP translation. Upregulation of XIAP in MDM2-overexpressing cancer cells in response to irradiation resulted in resistance of these cells to radiation-induced apoptosis.
Collapse
Affiliation(s)
- Lubing Gu
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322
| | - Ningxi Zhu
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322
| | - Hongying Zhang
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322
| | - Donald L. Durden
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322
| | - Muxiang Zhou
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
75
|
hnRNP A1 interacts with the 5' untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol 2009; 83:6106-14. [PMID: 19339352 DOI: 10.1128/jvi.02476-08] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is involved in pre-mRNA splicing in the nucleus and translational regulation in the cytoplasm. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here we demonstrate that hnRNP A1 not only is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5' untranslated region (UTR) of enterovirus 71 (EV71) and regulates IRES-dependent translation but also binds to the 5' UTR of Sindbis virus (SV) and facilitates its translation. The cytoplasmic relocalization of hnRNP A1 in EV71-infected cells leads to the enhancement of EV71 IRES-mediated translation, and its function can be substituted by hnRNP A2, whereas the cytoplasmic relocalization of hnRNP A1 following SV infection enhances the SV translation, but this function cannot be replaced by hnRNP A2. Our study provides the first direct evidence that the cytoplasmic relocalization of hnRNP A1 controls not only the IRES-dependent but also non-IRES-dependent translation initiations of RNA viruses.
Collapse
|
76
|
The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 2009; 29:2899-912. [PMID: 19273590 DOI: 10.1128/mcb.01774-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.
Collapse
|
77
|
Shi Y, Frost PJ, Hoang BQ, Benavides A, Sharma S, Gera JF, Lichtenstein AK. IL-6-induced stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site function and the RNA-binding protein, hnRNP A1. Cancer Res 2008; 68:10215-22. [PMID: 19074889 PMCID: PMC2701383 DOI: 10.1158/0008-5472.can-08-1066] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prior work indicates that c-myc translation is up-regulated in multiple myeloma cells. To test a role for interleukin (IL)-6 in myc translation, we studied the IL-6-responsive ANBL-6 and IL-6-autocrine U266 cell lines as well as primary patient samples. IL-6 increased c-myc translation, which was resistant to rapamycin, indicating a mechanism independent of mammalian target of rapamycin (mTOR) and cap-dependent translation. In contrast, the cytokine enhanced cap-independent translation via a stimulatory effect on the myc internal ribosome entry site (IRES). As known IRES-trans-activating factors (ITAF) were unaffected by IL-6, we used a yeast-three-hybrid screen to identify novel ITAFs and identified hnRNP A1 (A1) as a mediator of the IL-6 effect. A1 specifically interacted with the myc IRES in filter binding assays as well as EMSAs. Treatment of myeloma cells with IL-6 induced serine phosphorylation of A1 and increased its binding to the myc IRES in vivo in myeloma cells. Primary patient samples also showed binding between A1 and the IRES. RNA interference to knock down hnRNP A1 prevented an IL-6 increase in myc protein expression, myc IRES activity, and cell growth. These data point to hnRNP A1 as a critical regulator of c-myc translation and a potential therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- Yijiang Shi
- Department of Medicine, Greater Los Angeles VA Healthcare System and University of California at Los Angeles Medical School, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
hnRNPs Relocalize to the cytoplasm following infection with vesicular stomatitis virus. J Virol 2008; 83:770-80. [PMID: 19004954 DOI: 10.1128/jvi.01279-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix protein inhibits nuclear-cytoplasmic mRNA transport. The goal of this work is to determine whether VSV inhibits the nuclear-cytoplasmic transport of heterogeneous ribonucleoproteins (hnRNPs), which are thought to serve as mRNA export factors. Confocal microscopy experiments showed that hnRNPA1, hnRNPK, and hnRNPC1/C2, but not hnRNPB1 or lamin A/C, are relocalized to the cytoplasm during VSV infection. We determined whether protein import is inhibited by VSV by transfecting cells with a plasmid encoding enhanced green fluorescent protein (EGFP) tagged with either the M9 nuclear localization sequence (NLS) or the classical NLS. These experiments revealed that both the M9 NLS and the classical NLS are functional during VSV infection. These data suggest that the inhibition of protein import is not responsible for hnRNP relocalization during VSV infection but that hnRNP export is enhanced. We found that hnRNPA1 relocalization was significantly reduced following the silencing of the mRNA export factor Rae1, indicating that Rae1 is necessary for hnRNP export. In order to determine the role of hnRNPA1 in VSV infection, we silenced hnRNPA1 in HeLa cells and assayed three aspects of the viral life cycle: host protein synthesis shutoff concurrent with the onset of viral protein synthesis, replication by plaque assay, and cell killing. We observed that host shutoff and replication are unaffected by the reduction in hnRNPA1 but that the rate of VSV-induced apoptosis is slower in cells that have reduced hnRNPA1. These data suggest that VSV promotes hnRNPA1 relocalization in a Rae1-dependent manner for apoptotic signaling.
Collapse
|
79
|
Kazadi K, Loeuillet C, Deutsch S, Ciuffi A, Muñoz M, Beckmann JS, Moradpour D, Antonarakis SE, Telenti A. Genomic determinants of the efficiency of internal ribosomal entry sites of viral and cellular origin. Nucleic Acids Res 2008; 36:6918-25. [PMID: 18978018 PMCID: PMC2588522 DOI: 10.1093/nar/gkn812] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Variation in cellular gene expression levels has been shown to be inherited. Expression is controlled at transcriptional and post-transcriptional levels. Internal ribosome entry sites (IRES) are used by viruses to bypass inhibition of cap-dependent translation, and by eukaryotic cells to control translation under conditions when protein synthesis is inhibited. We aimed at identifying genomic determinants of variability in IRES-mediated translation of viral [Encephalomyocarditis virus (EMCV)] and cellular IRES [X-linked inhibitor-of-apoptosis (XIAP) and c-myc]. Bicistronic lentiviral constructs expressing two fluorescent reporters were used to transduce laboratory and B lymphoblastoid cell lines [15 CEPH pedigrees (n = 205) and 50 unrelated individuals]. IRES efficiency varied according to cell type and among individuals. Control of IRES activity has a significant genetic component (h2 of 0.47 and 0.36 for EMCV and XIAP, respectively). Quantitative linkage analysis identified a suggestive locus (LOD 2.35) on chromosome 18q21.2, and genome-wide association analysis revealed of a cluster of SNPs on chromosome 3, intronic to the FHIT gene, marginally associated (P = 5.9E-7) with XIAP IRES function. This study illustrates the in vitro generation of intermediate phenotypes by using cell lines for the evaluation of genetic determinants of control of elements such as IRES.
Collapse
Affiliation(s)
- Kayole Kazadi
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Zhao TT, Graber TE, Jordan LE, Cloutier M, Lewis SM, Goulet I, Côté J, Holcik M. hnRNP A1 regulates UV-induced NF-κB signalling through destabilization of cIAP1 mRNA. Cell Death Differ 2008; 16:244-52. [DOI: 10.1038/cdd.2008.146] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
81
|
Kozak M. Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 2008; 423:108-15. [PMID: 18692553 DOI: 10.1016/j.gene.2008.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/07/2008] [Accepted: 07/15/2008] [Indexed: 12/14/2022]
Abstract
Despite a recent surge of reports about how microRNAs might regulate translation, the question has not been answered. The proposed mechanisms contradict one another, and none is supported by strong evidence. This review explains some deficiencies in the experiments with microRNAs. Some of the problems are traceable to bad habits carried over from older studies of translational regulation, here illustrated by discussing two models involving mRNA binding proteins. One widely-accepted model, called into doubt by recent findings, is the maskin hypothesis for translational repression of cyclin B1 in Xenopus oocytes. The second dubious model postulates repression of translation of ceruloplasmin by mRNA binding proteins. A big fault in the latter case is reconstructing the imagined mechanism before looking carefully at the real thing--a criticism that applies also to studies with microRNAs. Experiments with microRNAs often employ internal ribosome entry sequences (IRESs) as tools, necessitating brief discussion of that topic. A sensitive new assay reveals that many putative IRESs promote expression of downstream cistrons via splicing rather than internal initiation of translation. Recent claims about the biological importance of IRES-binding proteins--including suggestions that these proteins might serve as targets for cancer therapy--are not supported by any meaningful evidence. The bottom line is that older studies of mRNA binding proteins and putative IRESs have created a confusing picture of translational regulation which is not helpful when trying to understand how microRNAs might work. The obvious biological importance of microRNAs makes it essential to understand how they do what they do. Fresh ways of thinking and looking are needed.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
82
|
Cammas A, Lewis SM, Vagner S, Holcik M. Post-transcriptional control of gene expression through subcellular relocalization of mRNA binding proteins. Biochem Pharmacol 2008; 76:1395-403. [PMID: 18582437 DOI: 10.1016/j.bcp.2008.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells have developed multiple mechanisms to respond to different physiological cues, such as cellular stress, which allow the cells to adapt themselves to their new environment. The regulation of post-transcriptional gene expression is an important component of the cellular stress response and is mediated by mRNA binding proteins (mRBPs). Recently, several studies have shown that regulated subcellular localization of mRBPs upon diverse stimuli (such as cellular stress) provides an additional level of regulation for gene expression.
Collapse
|
83
|
Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A, Gera J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 2008; 283:23274-87. [PMID: 18562319 DOI: 10.1074/jbc.m801185200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation of the cyclin D1 and c-myc mRNAs occurs via internal ribosome entry site (IRES)-mediated initiation under conditions of reduced eIF-4F complex formation and Akt activity. Here we identify hnRNP A1 as an IRES trans-acting factor that regulates cyclin D1 and c-myc IRES activity, depending on the Akt status of the cell. hnRNP A1 binds both IRESs in vitro and in intact cells and enhances in vitro IRES-dependent reporter expression. Akt regulates this IRES activity by inducing phosphorylation of hnRNP A1 on serine 199. Serine 199-phosphorylated hnRNP A1 binds to the IRESs normally but is unable to support IRES activity in vitro. Reducing expression levels of hnRNP A1 or overexpressing a dominant negative version of the protein markedly inhibits rapamycin-stimulated IRES activity in cells and correlated with redistribution of cyclin D1 and c-myc transcripts from heavy polysomes to monosomes. Importantly, knockdown of hnRNP A1 also renders quiescent Akt-containing cells sensitive to rapamycin-induced G(1) arrest. These results support a role for hnRNP A1 in mediating rapamycin-induced alterations of cyclin D1 and c-myc IRES activity in an Akt-dependent manner and provide the first direct link between Akt and the regulation of IRES activity.
Collapse
Affiliation(s)
- Oak D Jo
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA
| | | | | | | | | | | |
Collapse
|
84
|
Miura P, Andrews M, Holcik M, Jasmin BJ. IRES-mediated translation of utrophin A is enhanced by glucocorticoid treatment in skeletal muscle cells. PLoS One 2008; 3:e2309. [PMID: 18545658 PMCID: PMC2396518 DOI: 10.1371/journal.pone.0002309] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/25/2008] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids are currently the only drug treatment recognized to benefit Duchenne muscular dystrophy (DMD) patients. The nature of the mechanisms underlying the beneficial effects remains incompletely understood but may involve an increase in the expression of utrophin. Here, we show that treatment of myotubes with 6α−methylprednisolone-21 sodium succinate (PDN) results in enhanced expression of utrophin A without concomitant increases in mRNA levels thereby suggesting that translational regulation contributes to the increase. In agreement with this, we show that PDN treatment of cells transfected with monocistronic reporter constructs harbouring the utrophin A 5′UTR, causes an increase in reporter protein expression while leaving levels of reporter mRNAs unchanged. Using bicistronic reporter assays, we further demonstrate that PDN enhances activity of an Internal Ribosome Entry Site (IRES) located within the utrophin A 5′UTR. Analysis of polysomes demonstrate that PDN causes an overall reduction in polysome-associated mRNAs indicating that global translation rates are depressed under these conditions. Importantly, PDN causes an increase in the polysome association of endogenous utrophin A mRNAs and reporter mRNAs harbouring the utrophin A 5′UTR. Additional experiments identified a distinct region within the utrophin A 5′UTR that contains the inducible IRES activity. Together, these studies demonstrate that a translational regulatory mechanism involving increased IRES activation mediates, at least partially, the enhanced expression of utrophin A in muscle cells treated with glucocorticoids. Targeting the utrophin A IRES may thus offer an important and novel therapeutic avenue for developing drugs appropriate for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Meghan Andrews
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, Ottawa, Onatario, Canada
- * E-mail:
| |
Collapse
|
85
|
Concomitant transitory up-regulation of X-linked inhibitor of apoptosis protein (XIAP) and the heterogeneous nuclear ribonucleoprotein C1-C2 in surviving cells during neuronal apoptosis. Neurochem Res 2008; 33:1859-68. [PMID: 18363099 DOI: 10.1007/s11064-008-9658-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
Although cap-dependent translation initiation is the prevalent mode of ribosome binding to mRNAs in eukaryotes, some mRNAs exhibit the ability to bypass the requirement for the cap structure. The translation of X-chromosome-linked inhibitor of apoptosis protein (XIAP) mRNA is controlled by an internal ribosome entry site (IRES) element, which requires the interaction of the heterogeneous nuclear ribonucleoprotein C1-C2 (hnRNP-C1/C2). We analyze, at the protein level, the time course and distribution of XIAP and hnRNP-C1/C2 upon ischemia in mice or staurosporine (STP)-induced apoptosis in HT22 cells. Both ischemia and STP induced a parallel upregulation of XIAP and hnRNP-C1/C2 protein levels in the penumbra and in HT22 cells. These results suggest that the increased levels of hnRNP C1/C2 may modulate XIAP translation, probably by interacting with the XIAP-IRES. The up-regulation of hnRNP-C1/C2 may foster the synthesis of XIAP as a protective pathway by which neurons try to counteract the initial deleterious effects of apoptosis.
Collapse
|
86
|
Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 2008; 100:27-38. [PMID: 18072942 DOI: 10.1042/bc20070098] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is now an overwhelming body of evidence to suggest that internal ribosome entry is required to maintain the expression of specific proteins during patho-physiological situations when cap-dependent translation is compromised, for example, following heat shock or during mitosis, hypoxia, differentiation and apoptosis. Translational profiling has been used by several groups to assess the extent to which alternative mechanisms of translation initiation selectively recruit mRNAs to polysomes during cell stress. The data from these studies have shown that under each condition 3-5% of coding mRNAs remain associated with the polysomes. Importantly, the genes identified in each of these studies do not show a significant amount of overlap, suggesting that 10-15% of all mRNAs have the capability for their initiation to occur via alternative mechanism(s).
Collapse
|
87
|
Kairisalo M, Korhonen L, Blomgren K, Lindholm D. X-linked inhibitor of apoptosis protein increases mitochondrial antioxidants through NF-κB activation. Biochem Biophys Res Commun 2007; 364:138-44. [DOI: 10.1016/j.bbrc.2007.09.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 01/04/2023]
|
88
|
Cammas A, Pileur F, Bonnal S, Lewis SM, Lévêque N, Holcik M, Vagner S. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell 2007; 18:5048-59. [PMID: 17898077 PMCID: PMC2096577 DOI: 10.1091/mbc.e07-06-0603] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/07/2007] [Accepted: 09/14/2007] [Indexed: 01/30/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a nucleocytoplasmic shuttling protein that regulates gene expression through its action on mRNA metabolism and translation. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here, we show that hnRNP A1 is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5' untranslated region of both the human rhinovirus-2 and the human apoptotic peptidase activating factor 1 (apaf-1) mRNAs, thereby regulating their translation. Furthermore, the cytoplasmic redistribution of hnRNP A1 after rhinovirus infection leads to enhanced rhinovirus IRES-mediated translation, whereas the cytoplasmic relocalization of hnRNP A1 after UVC irradiation limits the UVC-triggered translational activation of the apaf-1 IRES. Therefore, this study provides a direct demonstration that IRESs behave as translational enhancer elements regulated by specific trans-acting mRNA binding proteins in given physiological conditions. Our data highlight a new way to regulate protein synthesis in eukaryotes through the subcellular relocalization of a nuclear mRNA-binding protein.
Collapse
Affiliation(s)
- Anne Cammas
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Frédéric Pileur
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Sophie Bonnal
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Stephen M. Lewis
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada; and
| | - Nicolas Lévêque
- Laboratoire de Virologie et Pathologie Humaine, Centre National de la Recherche Scientifique FRE 3011, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laënnec, F-69372 Lyon, France
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada; and
| | - Stéphan Vagner
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| |
Collapse
|
89
|
Graber TE, Holcik M. Cap-independent regulation of gene expression in apoptosis. MOLECULAR BIOSYSTEMS 2007; 3:825-34. [PMID: 18000559 DOI: 10.1039/b708867a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expression of the proteome is tightly regulated at the level of protein synthesis. Translational control is a critical homeostatic mechanism that allows the cell to rapidly change its phenotype in the face of an intra- and extra-cellular environment in constant flux. It is becoming increasingly clear that when it comes to protein translation during cell stress, all mRNAs are not treated equally. The translation of the majority of mRNAs is compromised during cell stresses that induce programmed cell death such as hypoxia, or DNA damage. However, cellular messages harbouring Internal Ribosome Entry Site elements (IRES) within their 5' untranslated regions are insensitive to stress-induced repression of global translation. Instead, these IRES-containing mRNAs use a poorly understood alternative mechanism of translation that allows continued expression of proteins that are required for the cell to recover from a transient stress or to proceed down the path toward apoptotic death. This review will highlight recent literature that suggests why global translation rates are impaired during stress and apoptosis and how these conditions mediate a switch in the mechanism by which pertinent proteins are synthesized. In addition, recent advances towards our understanding of the physiological role and mechanism of IRES-mediated translation in the context of cell stress-induced apoptosis and human disease will be examined.
Collapse
Affiliation(s)
- Tyson E Graber
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Room 3116, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | | |
Collapse
|
90
|
Abstract
The translation of many proteins involved in transcription, cell cycle progression, apoptosis and cell survival is mediated by internal ribosome entry sites (IRESs) present within the 5'-untranslated regions (5'-UTRs) of their messenger RNA molecules (mRNAs). Several recent reports now demonstrate that the proteins controlling IRES-dependent translation initiation are regulated by their subcellular localization.
Collapse
Affiliation(s)
- S M Lewis
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
91
|
Baird SD, Lewis SM, Turcotte M, Holcik M. A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 2007; 35:4664-77. [PMID: 17591613 PMCID: PMC1950536 DOI: 10.1093/nar/gkm483] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 01/01/2023] Open
Abstract
Internal ribosome entry sites (IRES) allow ribosomes to be recruited to mRNA in a cap-independent manner. Some viruses that impair cap-dependent translation initiation utilize IRES to ensure that the viral RNA will efficiently compete for the translation machinery. IRES are also employed for the translation of a subset of cellular messages during conditions that inhibit cap-dependent translation initiation. IRES from viruses like Hepatitis C and Classical Swine Fever virus share a similar structure/function without sharing primary sequence similarity. Of the cellular IRES structures derived so far, none were shown to share an overall structural similarity. Therefore, we undertook a genome-wide search of human 5'UTRs (untranslated regions) with an empirically derived structure of the IRES from the key inhibitor of apoptosis, X-linked inhibitor of apoptosis protein (XIAP), to identify novel IRES that share structure/function similarity. Three of the top matches identified by this search that exhibit IRES activity are the 5'UTRs of Aquaporin 4, ELG1 and NF-kappaB repressing factor (NRF). The structures of AQP4 and ELG1 IRES have limited similarity to the XIAP IRES; however, they share trans-acting factors that bind the XIAP IRES. We therefore propose that cellular IRES are not defined by overall structure, as viral IRES, but are instead dependent upon short motifs and trans-acting factors for their function.
Collapse
Affiliation(s)
- Stephen D. Baird
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Stephen M. Lewis
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Marcel Turcotte
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| | - Martin Holcik
- Department of Biochemistry, Microbiology and Immunology, Department of Pediatrics and School of Information Technology and Engineering, University of Ottawa, ON, Canada and Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, K1H 8L1
| |
Collapse
|