51
|
Shen QT, Ren X, Zhang R, Lee IH, Hurley JH. HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons. Science 2016; 350:aac5137. [PMID: 26494761 DOI: 10.1126/science.aac5137] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lentiviruses HIV and simian immunodeficiency virus (SIV) subvert intracellular membrane traffic as part of their replication cycle. The lentiviral Nef protein helps viruses evade innate and adaptive immune defenses by hijacking the adaptor protein 1 (AP-1) and AP-2 clathrin adaptors. We found that HIV-1 Nef and the guanosine triphosphatase Arf1 induced trimerization and activation of AP-1. Here we report the cryo-electron microscopy structures of the Nef- and Arf1-bound AP-1 trimer in the active and inactive states. A central nucleus of three Arf1 molecules organizes the trimers. We combined the open trimer with a known dimer structure and thus predicted a hexagonal assembly with inner and outer faces that bind the membranes and clathrin, respectively. Hexagons were directly visualized and the model validated by reconstituting clathrin cage assembly. Arf1 and Nef thus play interconnected roles in allosteric activation, cargo recruitment, and coat assembly, revealing an unexpectedly intricate organization of the inner AP-1 layer of the clathrin coat.
Collapse
Affiliation(s)
- Qing-Tao Shen
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuefeng Ren
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rui Zhang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Il-Hyung Lee
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
52
|
Zhou X, Zeng J, Ouyang C, Luo Q, Yu M, Yang Z, Wang H, Shen K, Shi A. A novel bipartite UNC-101/AP-1 μ1 binding signal mediates KVS-4/Kv2.1 somatodendritic distribution inCaenorhabditis elegans. FEBS Lett 2015; 590:76-92. [DOI: 10.1002/1873-3468.12043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/10/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Zhou
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jia Zeng
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Chenxi Ouyang
- Department of Vascular Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Qianyun Luo
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Miao Yu
- Department of Vascular Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Zhenrong Yang
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Hui Wang
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Kang Shen
- Department of Biology; Howard Hughes Medical Institute; Stanford University; Palo Alto CA USA
| | - Anbing Shi
- Department of Medical Genetics; School of Basic Medicine and the Collaborative Innovation Center for Brain Science; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
- Institute for Brain Research; Huazhong University of Science and Technology; Wuhan Hubei China
- Key Laboratory of Neurological Disease of National Education Ministry; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
53
|
Whitfield ST, Burston HE, Bean BDM, Raghuram N, Maldonado-Báez L, Davey M, Wendland B, Conibear E. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting. Mol Biol Cell 2015; 27:588-98. [PMID: 26658609 PMCID: PMC4751606 DOI: 10.1091/mbc.e15-09-0621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
Adaptor complexes are important for cargo sorting in clathrin-coated vesicles. The µ adaptor subunits Apm1 and Apm2 create functionally distinct versions of the yeast AP-1 complex. A novel regulatory protein is identified that selectively binds Apm2-containing complexes and contributes to their membrane recruitment. Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes.
Collapse
Affiliation(s)
- Shawn T Whitfield
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Helen E Burston
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nandini Raghuram
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218-2685
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, University of British Columbia, Vancouver, BC V5Z 4H4, Canada Department of Biochemistry and Molecular Biology and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
54
|
Hasanagic M, Waheed A, Eissenberg JC. Different Pathways to the Lysosome: Sorting out Alternatives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:75-101. [PMID: 26614872 DOI: 10.1016/bs.ircmb.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Considerable research supports a model in which hydrolytic enzymes of mammalian lysosomes are sorted to their destinations in a receptor-dependent mechanism. The ligand for the mammalian sorting receptors is mannose 6-phosphate (M6P). Two M6P receptors have been defined in mammals. Here, we review the foundational evidence supporting this mechanism and highlight the remaining gaps in our understanding of the mammalian mechanism, including evidence for M6P-independent sorting, and its relevance to lysosomal enzyme sorting in metazoa.
Collapse
Affiliation(s)
- Medina Hasanagic
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
55
|
Fölsch H. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity. CELLULAR LOGISTICS 2015; 5:e1074331. [PMID: 27057418 DOI: 10.1080/21592799.2015.1074331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine ; Chicago, IL USA
| |
Collapse
|
56
|
Schroeder B, McNiven MA. Importance of endocytic pathways in liver function and disease. Compr Physiol 2015; 4:1403-17. [PMID: 25428849 DOI: 10.1002/cphy.c140001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular endocytosis is a highly dynamic process responsible for the internalization of a variety of different receptor ligand complexes, trophic factors, lipids, and, unfortunately, many different pathogens. The uptake of these external agents has profound effects on seminal cellular processes including signaling cascades, migration, growth, and proliferation. The hepatocyte, like other well-polarized epithelial cells, possesses a host of different endocytic mechanisms and entry routes to ensure the selective internalization of cargo molecules. These pathways include receptor-mediated endocytosis, lipid raft associated endocytosis, caveolae, or fluid-phase uptake, although there are likely many others. Understanding and defining the regulatory mechanisms underlying these distinct entry routes, sorting and vesicle formation, as well as the postendocytic trafficking pathways is of high importance especially in the liver, as their mis-regulation can contribute to aberrant liver pathology and liver diseases. Further, these processes can be "hijacked" by a variety of different infectious agents and viruses. This review provides an overview of common components of the endocytic and postendocytic trafficking pathways utilized by hepatocytes. It will also discuss in more detail how these general themes apply to liver-specific processes including iron homeostasis, HBV infection, and even hepatic steatosis.
Collapse
Affiliation(s)
- Barbara Schroeder
- Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota
| | | |
Collapse
|
57
|
Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. MEMBRANES 2015; 5:253-87. [PMID: 26151885 PMCID: PMC4584282 DOI: 10.3390/membranes5030253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed.
Collapse
|
58
|
Fölsch H. Analyzing the role of AP-1B in polarized sorting from recycling endosomes in epithelial cells. Methods Cell Biol 2015; 130:289-305. [PMID: 26360041 DOI: 10.1016/bs.mcb.2015.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial cells polarize their plasma membrane into apical and basolateral domains where the apical membrane faces the luminal side of an organ and the basolateral membrane is in contact with neighboring cells and the basement membrane. To maintain this polarity, newly synthesized and internalized cargos must be sorted to their correct target domain. Over the last ten years, recycling endosomes have emerged as an important sorting station at which proteins destined for the apical membrane are segregated from those destined for the basolateral membrane. Essential for basolateral sorting from recycling endosomes is the tissue-specific adaptor complex AP-1B. This chapter describes experimental protocols to analyze the AP-1B function in epithelial cells including the analysis of protein sorting in LLC-PK1 cells lines, immunoprecipitation of cargo proteins after chemical crosslinking to AP-1B, and radioactive pulse-chase experiments in MDCK cells depleted of the AP-1B subunit μ1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
59
|
de la Fuente-Ortega E, Gravotta D, Perez Bay A, Benedicto I, Carvajal-Gonzalez JM, Lehmann GL, Lagos CF, Rodríguez-Boulan E. Basolateral sorting of chloride channel 2 is mediated by interactions between a dileucine motif and the clathrin adaptor AP-1. Mol Biol Cell 2015; 26:1728-42. [PMID: 25739457 PMCID: PMC4436783 DOI: 10.1091/mbc.e15-01-0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 01/03/2023] Open
Abstract
ClC-2 is a ubiquitous chloride channel that regulates cell volume, ion transport, and acid-base balance. Mice knocked out for ClC-2 are blind and sterile. Basolateral localization of ClC-2 in epithelia is mediated by the interaction of a dileucine motif with a highly conserved pocket in the γ1-σ1A hemicomplex of AP-1. In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2's C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel's dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex.
Collapse
Affiliation(s)
- Erwin de la Fuente-Ortega
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Diego Gravotta
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Andres Perez Bay
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Ignacio Benedicto
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | | | - Guillermo L Lehmann
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Carlos F Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago Centro 8330074, Santiago, Chile Facultad de Ciencia, Universidad San Sebastián, Providencia 7510157, Santiago, Chile
| | - Enrique Rodríguez-Boulan
- Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
60
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
61
|
Raman D, Sai J, Hawkins O, Richmond A. Adaptor protein2 (AP2) orchestrates CXCR2-mediated cell migration. Traffic 2014; 15:451-69. [PMID: 24450359 DOI: 10.1111/tra.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
The chemokine receptor CXCR2 is vital for inflammation, wound healing, angiogenesis, cancer progression and metastasis. Adaptor protein 2 (AP2), a clathrin binding heterotetrameric protein comprised of α, β2, μ2 and σ2 subunits, facilitates clathrin-mediated endocytosis. Mutation of the LLKIL motif in the CXCR2 carboxyl-terminal domain (CTD) results in loss of AP2 binding to the receptor and loss of ligand-mediated receptor internalization and chemotaxis. AP2 knockdown also results in diminished ligand-mediated CXCR2 internalization, polarization and chemotaxis. Using knockdown/rescue approaches with AP2-μ2 mutants, the binding domains were characterized in reference to CXCR2 internalization and chemotaxis. When in an open conformation, μ2 Patch 1 and Patch 2 domains bind tightly to membrane PIP2 phospholipids. When AP2-μ2, is replaced with μ2 mutated in Patch 1 and/or Patch 2 domains, ligand-mediated receptor binding and internalization are not lost. However, chemotaxis requires AP2-μ2 Patch 1, but not Patch 2. AP2-σ2 has been demonstrated to bind dileucine motifs to facilitate internalization. Expression of AP2-σ2 V88D and V98S dominant negative mutants resulted in loss of CXCR2 mediated chemotaxis. Thus, AP2 binding to both membrane phosphatidylinositol phospholipids and dileucine motifs is crucial for directional migration or chemotaxis. Moreover, AP2-mediated receptor internalization can be dissociated from AP2-mediated chemotaxis.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | | | | |
Collapse
|
62
|
Jain S, Farías GG, Bonifacino JS. Polarized sorting of the copper transporter ATP7B in neurons mediated by recognition of a dileucine signal by AP-1. Mol Biol Cell 2014; 26:218-28. [PMID: 25378584 PMCID: PMC4294670 DOI: 10.1091/mbc.e14-07-1177] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recognition of dileucine signals by AP-1 mediates somatodendritic sorting of the copper transporter ATP7B and the SNARE VAMP4 in hippocampal neurons, establishing AP-1 as a global regulator of polarized sorting and contributing to the understanding of neuronal copper metabolism under physiological and pathological conditions. Neurons are highly polarized cells having distinct somatodendritic and axonal domains. Here we report that polarized sorting of the Cu2+ transporter ATP7B and the vesicle-SNARE VAMP4 to the somatodendritic domain of rat hippocampal neurons is mediated by recognition of dileucine-based signals in the cytosolic domains of the proteins by the σ1 subunit of the clathrin adaptor AP-1. Under basal Cu2+ conditions, ATP7B was localized to the trans-Golgi network (TGN) and the plasma membrane of the soma and dendrites but not the axon. Mutation of a dileucine-based signal in ATP7B or overexpression of a dominant-negative σ1 mutant resulted in nonpolarized distribution of ATP7B between the somatodendritic and axonal domains. Furthermore, addition of high Cu2+ concentrations, previously shown to reduce ATP7B incorporation into AP-1–containing clathrin-coated vesicles, caused loss of TGN localization and somatodendritic polarity of ATP7B. These findings support the notion of AP-1 as an effector of polarized sorting in neurons and suggest that altered polarity of ATP7B in polarized cell types might contribute to abnormal copper metabolism in the MEDNIK syndrome, a neurocutaneous disorder caused by mutations in the σ1A subunit isoform of AP-1.
Collapse
Affiliation(s)
- Shweta Jain
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ginny G Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
63
|
Affiliation(s)
- Yusong Guo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Daniel W. Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3200;
| |
Collapse
|
64
|
Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. THE PLANT CELL 2014; 26:4102-18. [PMID: 25351491 PMCID: PMC4247576 DOI: 10.1105/tpc.114.129759] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/17/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
65
|
Bonnemaison M, Bäck N, Lin Y, Bonifacino JS, Mains R, Eipper B. AP-1A controls secretory granule biogenesis and trafficking of membrane secretory granule proteins. Traffic 2014; 15:1099-121. [PMID: 25040637 DOI: 10.1111/tra.12194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
The adaptor protein 1A complex (AP-1A) transports cargo between the trans-Golgi network (TGN) and endosomes. In professional secretory cells, AP-1A also retrieves material from immature secretory granules (SGs). The role of AP-1A in SG biogenesis was explored using AtT-20 corticotrope tumor cells expressing reduced levels of the AP-1A μ1A subunit. A twofold reduction in μ1A resulted in a decrease in TGN cisternae and immature SGs and the appearance of regulated secretory pathway components in non-condensing SGs. Although basal secretion of endogenous SG proteins was unaffected, secretagogue-stimulated release was halved. The reduced μ1A levels interfered with the normal trafficking of carboxypeptidase D (CPD) and peptidylglycine α-amidating monooxygenase-1 (PAM-1), integral membrane enzymes that enter immature SGs. The non-condensing SGs contained POMC products and PAM-1, but not CPD. Based on metabolic labeling and secretion experiments, the cleavage of newly synthesized PAM-1 into PHM was unaltered, but PHM basal secretion was increased in sh-μ1A PAM-1 cells. Despite lacking a canonical AP-1A binding motif, yeast two-hybrid studies demonstrated an interaction between the PAM-1 cytosolic domain and AP-1A. Coimmunoprecipitation experiments with PAM-1 mutants revealed an influence of the luminal domains of PAM-1 on this interaction. Thus, AP-1A is crucial for normal SG biogenesis, function and composition.
Collapse
Affiliation(s)
- Mathilde Bonnemaison
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | | | | | | | |
Collapse
|
66
|
Baltes J, Larsen JV, Radhakrishnan K, Geumann C, Kratzke M, Petersen CM, Schu P. σ1B adaptin regulates adipogenesis by mediating the sorting of sortilin in adipose tissue. J Cell Sci 2014; 127:3477-87. [PMID: 24928897 DOI: 10.1242/jcs.146886] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here, we describe altered sorting of sortilin in adipocytes deficient for the σ1B-containing AP-1 complex, leading to the inhibition of adipogenesis. The AP-1 complex mediates protein sorting between the trans-Golgi network and endosomes. Vertebrates express three AP1 σ1 subunit isoforms - σ1A, σ1B and σ1C (also known as AP1S1, AP1S2 and AP1S3, respectively). σ1B-deficient mice display impaired recycling of synaptic vesicles and lipodystrophy. Here, we show that sortilin is overexpressed in adipose tissue from σ1B(-/-) mice, and that its overexpression in wild-type cells is sufficient to suppress adipogenesis. σ1B-specific binding of sortilin requires the sortilin DxxD-x12-DSxxxL motif. σ1B deficiency does not lead to a block of sortilin transport out of a specific organelle, but the fraction that reaches lysosomes is reduced. Sortilin binds to the receptor DLK1, an inhibitor of adipocyte differentiation, and the overexpression of sortilin prevents DLK1 downregulation, leading to enhanced inhibition of adipogenesis. DLK1 and sortilin expression are not increased in the brain tissue of σ1B(-/-) mice, although this is the tissue with the highest expression of σ1B and sortilin. Thus, adipose-tissue-specific and σ1B-dependent routes for the transport of sortilin exist and are involved in the regulation of adipogenesis and adipose-tissue mass.
Collapse
Affiliation(s)
- Jennifer Baltes
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Jakob Vejby Larsen
- MIND Center Department of Biomedicine, Ole Worms Allé 3, Aarhus University, 8000 Aarhus, Denmark
| | - Karthikeyan Radhakrishnan
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Constanze Geumann
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Manuel Kratzke
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Claus Munck Petersen
- MIND Center Department of Biomedicine, Ole Worms Allé 3, Aarhus University, 8000 Aarhus, Denmark
| | - Peter Schu
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
67
|
Structure and mechanism of COPI vesicle biogenesis. Curr Opin Cell Biol 2014; 29:67-73. [PMID: 24840894 DOI: 10.1016/j.ceb.2014.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 11/22/2022]
Abstract
Distinct trafficking pathways within the secretory and endocytic systems ensure prompt and precise delivery of specific cargo molecules to different cellular compartments via small vesicular (50-150nm) and tubular carriers. The COPI vesicular coat is required for retrograde trafficking from the cis-Golgi back to the ER and within the Golgi stack. Recent structural data have been obtained from X-ray crystallographic studies on COPI coat components alone and on COPI subunits in complex with either cargo motifs or Arf1, and from reconstructions of COPI coated vesicles by electron tomography. These studies provide important molecular information and indicate key differences in COPI coat assembly as compared with clathrin-based and COPII-based coats.
Collapse
|
68
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
69
|
Ross BH, Lin Y, Corales EA, Burgos PV, Mardones GA. Structural and functional characterization of cargo-binding sites on the μ4-subunit of adaptor protein complex 4. PLoS One 2014; 9:e88147. [PMID: 24498434 PMCID: PMC3912200 DOI: 10.1371/journal.pone.0088147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 01/06/2014] [Indexed: 11/20/2022] Open
Abstract
Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4.
Collapse
Affiliation(s)
- Breyan H. Ross
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban A. Corales
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro de Investigación Sur-Austral en Enfermedades del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
70
|
Ren X, Park SY, Bonifacino JS, Hurley JH. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. eLife 2014; 3:e01754. [PMID: 24473078 PMCID: PMC3901399 DOI: 10.7554/elife.01754] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Nef protein of HIV-1 downregulates the cell surface co-receptor CD4 by hijacking the clathrin adaptor complex AP-2. The structural basis for the hijacking of AP-2 by Nef is revealed by a 2.9 Å crystal structure of Nef bound to the α and σ2 subunits of AP-2. Nef binds to AP-2 via its central loop (residues 149–179) and its core. The determinants for Nef binding include residues that directly contact AP-2 and others that stabilize the binding-competent conformation of the central loop. Residues involved in both direct and indirect interactions are required for the binding of Nef to AP-2 and for downregulation of CD4. These results lead to a model for the docking of the full AP-2 tetramer to membranes as bound to Nef, such that the cytosolic tail of CD4 is situated to interact with its binding site on Nef. DOI:http://dx.doi.org/10.7554/eLife.01754.001 Infection by a pathogen, such as a bacterium or virus, activates both the innate immune response—which is immediate but not specific to the pathogen—and the adaptive immune response, which is stronger and specific to the pathogen. White blood cells called CD4+ T helper cells play an important role in the early stages of the adaptive immune response by helping to activate and regulate other white blood cells that go on to eradicate the pathogen. HIV-1 is a retrovirus that infects immune cells that have the CD4 receptor on their surface, including CD4+ T helper cells. As the number of worker CD4+ T helper cells falls, the adaptive immune response gradually weakens, and the HIV-1 infected individual becomes increasingly susceptible to infection and disease. An individual is said to develop AIDS when either their CD4+ T helper cell count falls below 200 cells per microliter or they begin to experience specific diseases associated with the HIV-1 infection. In an effort to prevent and treat AIDS, researchers have worked to understand the HIV-1 genome and have developed medicines that target the enzymatic activity of viral proteins involved in viral replication. When used in combination, these drugs have helped to reduce transmission of HIV-1, and also to reduce deaths from the disease. However, worries about side effects and drug resistance mean that there is a need to develop new drugs. The HIV-1 genome codes for a number of accessory proteins, including a protein known as Nef that attacks the CD4+ T helper cells, removing the CD4 protein that gives the cells their name. This reduces the ability of the T cells to activate the immune system and allows the virus to spread. Nef acts by forming a complex with a protein called AP-2 in the T cells, and this complex then interacts with the CD4 proteins, causing them to be internalized and then destroyed inside the cells. Ren et al. have now worked out the structure of the Nef:AP-2 complex at the molecular level and identified the amino acid residues within the Nef protein that interact with the AP-2 protein. This allowed Ren et al. to propose a detailed model of the interaction between the complex and the CD4 protein, and how this leads to the protein being destroyed. This information could be used to develop drugs that work by blocking the amino residues on AP-2 that bind to Nef. Moreover, since these sites are not susceptible to rapid mutations, such drugs are less likely to encounter the problem of drug resistance. DOI:http://dx.doi.org/10.7554/eLife.01754.002
Collapse
Affiliation(s)
- Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | | | | |
Collapse
|
71
|
Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc Natl Acad Sci U S A 2013; 110:E4770-9. [PMID: 24248335 DOI: 10.1073/pnas.1309195110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful macrophage colonization by Coxiella burnetii, the cause of human Q fever, requires pathogen-directed biogenesis of a large, growth-permissive parasitophorous vacuole (PV) with phagolysosomal characteristics. The vesicular trafficking pathways co-opted by C. burnetii for PV development are poorly defined; however, it is predicted that effector proteins delivered to the cytosol by a defective in organelle trafficking/intracellular multiplication (Dot/Icm) type 4B secretion system are required for membrane recruitment. Here, we describe involvement of clathrin-mediated vesicular trafficking in PV generation and the engagement of this pathway by the C. burnetii type 4B secretion system substrate Coxiella vacuolar protein A (CvpA). CvpA contains multiple dileucine [DERQ]XXXL[LI] and tyrosine (YXXΦ)-based endocytic sorting motifs like those recognized by the clathrin adaptor protein (AP) complexes AP1, AP2, and AP3. A C. burnetii ΔcvpA mutant exhibited significant defects in replication and PV development, confirming the importance of CvpA in infection. Ectopically expressed mCherry-CvpA localized to tubular and vesicular domains of pericentrosomal recycling endosomes positive for Rab11 and transferrin receptor, and CvpA membrane interactions were lost upon mutation of endocytic sorting motifs. Consistent with CvpA engagement of the endocytic recycling system, ectopic expression reduced uptake of transferrin. In pull-down assays, peptides containing CvpA-sorting motifs and full-length CvpA interacted with AP2 subunits and clathrin heavy chain. Furthermore, depletion of AP2 or clathrin by siRNA treatment significantly inhibited C. burnetii replication. Thus, our results reveal the importance of clathrin-coated vesicle trafficking in C. burnetii infection and define a role for CvpA in subverting these transport mechanisms.
Collapse
|
72
|
Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2013; 5:a016790. [PMID: 24186068 DOI: 10.1101/cshperspect.a016790] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endosomal system is expansive and complex, characterized by swift morphological transitions, dynamic remodeling of membrane constituents, and intracellular positioning changes. To properly navigate this ever-altering membrane labyrinth, transmembrane protein cargoes typically require specific sorting signals that are decoded by components of protein coats. The best-characterized sorting process within the endosomal system is the rapid internalization of select transmembrane proteins within clathrin-coated vesicles. Endocytic signals consist of linear motifs, conformational determinants, or covalent modifications in the cytosolic domains of transmembrane cargo. These signals are interpreted by a diverse set of clathrin-associated sorting proteins (CLASPs) that translocate from the cytosol to the inner face of the plasma membrane. Signal recognition by CLASPs is highly cooperative, involving additional interactions with phospholipids, Arf GTPases, other CLASPs, and clathrin, and is regulated by large conformational changes and covalent modifications. Related sorting events occur at other endosomal sorting stations.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
73
|
Poudel KR, Bai J. Synaptic vesicle morphology: a case of protein sorting? Curr Opin Cell Biol 2013; 26:28-33. [PMID: 24529243 DOI: 10.1016/j.ceb.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Synaptic vesicles (SVs) are the repositories of neurotransmitters. They are locally recycled at nerve terminals following exocytosis. A unique feature of these vesicles is the uniformity of their morphology, which is well maintained even after rounds of exocytosis and endocytosis. Several studies suggest that disruption of clathrin adaptor proteins leads to defects in sorting cargoes and alterations in SV morphology. Here, we review the links between adaptor proteins and SV size, and highlight how protein sorting may impact SV architecture. Molecular players such as clathrin, adaptor proteins, accessory proteins, SV cargoes and lipid composition may act together to establish a stable regulatory network to maintain SV morphology.
Collapse
Affiliation(s)
- Kumud R Poudel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
74
|
Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z, Botella MA, Wang H, Lin J. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 2013; 140:3826-37. [DOI: 10.1242/dev.095711] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clathrin-mediated endocytosis, which depends on the AP2 complex, plays an essential role in many cellular and developmental processes in mammalian cells. However, the function of the AP2 complex in plants remains largely unexplored. Here, we show in Arabidopsis that the AP2 σ subunit mutant (ap2 σ) displays various developmental defects that are similar to those of mutants defective in auxin transport and/or signaling, including single, trumpet-shaped and triple cotyledons, impaired vascular pattern, reduced vegetative growth, defective silique development and drastically reduced fertility. We demonstrate that AP2 σ is closely associated and physically interacts with the clathrin light chain (CLC) in vivo using fluorescence cross-correlation spectroscopy (FCCS), protein proximity analyses and co-immunoprecipitation assays. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), we show that AP2 σ-mCherry spots colocalize with CLC-EGFP at the plasma membrane, and that AP2 σ-mCherry fluorescence appears and disappears before CLC-EGFP fluorescence. The density and turnover rate of the CLC-EGFP spots are significantly reduced in the ap2 σ mutant. The internalization and recycling of the endocytic tracer FM4-64 and the auxin efflux carrier protein PIN1 are also significantly reduced in the ap2 σ mutant. Further, the polar localization of PIN1-GFP is significantly disrupted during embryogenesis in the ap2 σ mutant. Taken together, our results support an essential role of AP2 σ in the assembly of a functional AP2 complex in plants, which is required for clathrin-mediated endocytosis, polar auxin transport and plant growth regulation.
Collapse
Affiliation(s)
- Lusheng Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiqun Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Ding
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Miguel A. Botella
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
75
|
Agarwal S, Rastogi R, Gupta D, Patel N, Raje M, Mukhopadhyay A. Clathrin-mediated hemoglobin endocytosis is essential for survival of Leishmania. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1065-77. [DOI: 10.1016/j.bbamcr.2013.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
|
76
|
Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 2013; 152:755-67. [PMID: 23415225 DOI: 10.1016/j.cell.2012.12.042] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/16/2012] [Accepted: 12/18/2012] [Indexed: 11/23/2022]
Abstract
AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.
Collapse
|
77
|
Jin YJ, Cai CY, Mezei M, Ohlmeyer M, Sanchez R, Burakoff SJ. Identification of a novel binding site between HIV type 1 Nef C-terminal flexible loop and AP2 required for Nef-mediated CD4 downregulation. AIDS Res Hum Retroviruses 2013; 29:725-31. [PMID: 23151229 DOI: 10.1089/aid.2012.0286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 Nef is an accessory protein necessary for HIV-1 virulence and rapid AIDS development. Nef promotes viral replication and infection by connecting CD4 and several other cell surface receptors to the clathrin adaptor protein AP2, resulting in the internalization and degradation of the receptors interacting with Nef. We investigated how Nef can mediate constitutive receptor endocytosis through the interaction of the dileucine motif in its C-terminal flexible loop (C-loop) with AP2, whereas AP2 binding of the transmembrane receptors usually results in an equilibrated (recycled) endocytosis. Our results indicated that in addition to the dileucine motif, there is a second motif in the Nef C-loop involved in the Nef-AP2 interaction. Nef-mediated CD4 downregulation was impaired when the residue in the hydrophobic region in the Nef C-loop (LL165HPMSLHGM173) was mutated to a basic residue K/R or an acidic residue E/D or to the rigid residue P, or when M168L170, L170H171, or G172M173 was mutated to AA. A pull-down assay indicated that AP2 was not coprecipitated with Nef mutants that did not downregulate CD4. Molecular modeling of the Nef C-terminal flexible loop in complex with AP2 suggests that M168L170 occupies a pocket in the AP2 σ2 subunit. Our data suggest a new model in the Nef-AP2 interaction in which the hydrophobic region in the Nef C-loop with the dileucine (L164L165) motif and M168L170 motif binds to AP2(σ2), while the acidic motif E174 and D175 binds to AP2(α), which explains how Nef through the flexible loop connects CD4 to AP2 for constitutive CD4 downregulation.
Collapse
Affiliation(s)
- Yong-Jiu Jin
- Department of Oncological Sciences, Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Catherine Yi Cai
- Department of Oncological Sciences, Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Cancer Institute, Mount Sinai School of Medicine, New York, New York
- Experimental Therapeutics Institute, Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Michael Ohlmeyer
- Department of Structural and Chemical Biology, Cancer Institute, Mount Sinai School of Medicine, New York, New York
- Experimental Therapeutics Institute, Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Roberto Sanchez
- Department of Structural and Chemical Biology, Cancer Institute, Mount Sinai School of Medicine, New York, New York
- Experimental Therapeutics Institute, Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Steven J. Burakoff
- Department of Oncological Sciences, Cancer Institute, Mount Sinai School of Medicine, New York, New York
- Cancer Institute, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
78
|
Canagarajah BJ, Ren X, Bonifacino JS, Hurley JH. The clathrin adaptor complexes as a paradigm for membrane-associated allostery. Protein Sci 2013; 22:517-29. [PMID: 23424177 DOI: 10.1002/pro.2235] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 11/12/2022]
Abstract
The clathrin-associated adaptor protein (AP) complexes AP-1 and AP-2 are two members of a family of heterotetrameric assemblies that connect transmembrane protein cargo to vesicular coats. Cargo binding by AP-1 is activated by the small GTPase Arf1, while AP-2 is activated by the phosphoinositide PI(4,5)P₂. The structures of both AP-1 and AP-2 have been determined in their locked and unlocked conformations. The structures show how different activators use different mechanisms to trigger similar large scale conformational rearrangements. The details of these mechanisms show how membrane docking and allosteric activation of AP complexes are intimately connected.
Collapse
Affiliation(s)
- Bertram J Canagarajah
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
79
|
Gu M, Liu Q, Watanabe S, Sun L, Hollopeter G, Grant BD, Jorgensen EM. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis. eLife 2013; 2:e00190. [PMID: 23482940 PMCID: PMC3591783 DOI: 10.7554/elife.00190] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/25/2013] [Indexed: 11/13/2022] Open
Abstract
The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining μ2/β hemicomplex retains some function. Conversely, in μ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-μ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or μ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and μ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI:http://dx.doi.org/10.7554/eLife.00190.001.
Collapse
Affiliation(s)
- Mingyu Gu
- Department of Biology , Howard Hughes Medical Institute, University of Utah , Salt Lake City , United States
| | | | | | | | | | | | | |
Collapse
|
80
|
Niu YS, Cai ZZ, Lu Y, Wang MX, Liang S, Zhou F, Miao YG. Characterization of adaptor protein complex-1 in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:84-95. [PMID: 23300124 DOI: 10.1002/arch.21077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To investigate the function of adaptor protein complex-1 (AP-1) in the silkworm, we characterized AP-1 in the silkworm by RNAi technique and co-localization methods. As a result, AP-1 was found to exist as cytosolic form and membrane-bound form distinguished by phosphate status, showing molecular mass difference. There was relatively more cytosolic form of AP-1 than its membrane-bound counterpart in the silkworm. However, AP-1 distributed predominantly as cytosolic form in BmN cells. Interruption of AP-1 expression via DsRNA was more efficient in BmN cells than in the insect larval, which led to a tendency to dissociation between subcellular organelles like the Golgi apparatus and the mitochondria. Environmental condition changes like relatively higher temperature and treatment with dimethyl sulfoxide can lead to expression variance of AP-1 both in mRNA and protein level. In BmN cells, both the heavy chain γ and light chain σ could clearly co-localize with AP-1 β, mostly forming pits in cytoplasm. Two isoforms of AP-1 σ corresponded to distinct subcellular distribution pattern, possibly due to C-terminal amino acids difference.
Collapse
Affiliation(s)
- Yan-shan Niu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
81
|
Bonnemaison ML, Eipper BA, Mains RE. Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol (Lausanne) 2013; 4:101. [PMID: 23966980 PMCID: PMC3743005 DOI: 10.3389/fendo.2013.00101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/31/2013] [Indexed: 12/29/2022] Open
Abstract
In the regulated secretory pathway, secretory granules (SGs) store peptide hormones that are released on demand. SGs are formed at the trans-Golgi network and must undergo a maturation process to become responsive to secretagogues. The production of mature SGs requires concentrating newly synthesized soluble content proteins in granules whose membranes contain the appropriate integral membrane proteins. The mechanisms underlying the sorting of soluble and integral membrane proteins destined for SGs from other proteins are not yet well understood. For soluble proteins, luminal pH and divalent metals can affect aggregation and interaction with surrounding membranes. The trafficking of granule membrane proteins can be controlled by both luminal and cytosolic factors. Cytosolic adaptor proteins (APs), which recognize the cytosolic domains of proteins that span the SG membrane, have been shown to play essential roles in the assembly of functional SGs. Adaptor protein 1A (AP-1A) is known to interact with specific motifs in its cargo proteins and with the clathrin heavy chain, contributing to the formation of a clathrin coat. AP-1A is present in patches on immature SG membranes, where it removes cargo and facilitates SG maturation. AP-1A recruitment to membranes can be modulated by Phosphofurin Acidic Cluster Sorting protein 1 (PACS-1), a cytosolic protein which interacts with both AP-1A and cargo that has been phosphorylated by casein kinase II. A cargo/PACS-1/AP-1A complex is necessary to drive the appropriate transport of several cargo proteins within the regulated secretory pathway. The Golgi-localized, γ-ear containing, ADP-ribosylation factor binding (GGA) family of APs serve a similar role. We review the functions of AP-1A, PACS-1, and GGAs in facilitating the retrieval of proteins from immature SGs and review examples of cargo proteins whose trafficking within the regulated secretory pathway is governed by APs.
Collapse
Affiliation(s)
- Mathilde L. Bonnemaison
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A. Eipper
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT, USA
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard E. Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
- *Correspondence: Richard E. Mains, Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA e-mail:
| |
Collapse
|
82
|
Cotton CU, Hobert ME, Ryan S, Carlin CR. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells. Traffic 2012. [PMID: 23205726 DOI: 10.1111/tra.12032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders.
Collapse
Affiliation(s)
- Calvin U Cotton
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
83
|
High-affinity Dkk1 receptor Kremen1 is internalized by clathrin-mediated endocytosis. PLoS One 2012; 7:e52190. [PMID: 23251700 PMCID: PMC3522622 DOI: 10.1371/journal.pone.0052190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/15/2012] [Indexed: 12/16/2022] Open
Abstract
Kremens are high-affinity receptors for Dickkopf 1 (Dkk1) and regulate the Wnt/β-catenin signaling pathway by down-regulating the low-density lipoprotein receptor-related protein 6 (LRP6). Dkk1 competes with Wnt for binding to LRP6; binding of Dkk1 inhibits canonical signaling through formation of a ternary complex with Kremen. The majority of down-regulated clathrin-mediated endocytic receptors contain short conserved regions that recognize tyrosine or dileucine sorting motifs. In this study, we found that Kremen1 is internalized from the cell surface in a clathrin-dependent manner. Kremen1 contains an atypical dileucine motif with the sequence DXXXLV. Mutation of LV to AA in this motif blocked Kremen1 internalization; as reported previously for other proteins, the aspartic acid residue in Kremen1 is not critical. Inhibition of expression of the adaptor protein 2 (AP-2) or inhibition of clathrin by pitstop 2 also blocked Kremen1 internalization. The novel amino acid sequence identified in Kremen1 is similar to the motif previously identified in hydra, yeast, and other organisms known to signal from the trans-Golgi network to the endosomal compartment.
Collapse
|
84
|
Niu YS, Wang MX, Liang S, Zhou F, Miao YG. Expression and localization of silkworm adaptor protein complex-1 subunits, which were down-regulated post baculovirus infection. Mol Biol Rep 2012; 39:10775-83. [PMID: 23053975 DOI: 10.1007/s11033-012-1971-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
Adaptor protein complexes (APs) function as vesicle coat components in different membrane traffic pathways. In this study the subunits of adaptor protein complex-1 (AP-1) of silkworm Bombyx mori were molecularly characterized. All coding genes for the four subunits were cloned and sequenced. Phylogenic tree for each adaptin was constructed and all subunits were found to be conserved in respective group among organisms. The mRNA expression pattern for each adaptin was similar among tissues. Alternative splicing event was observed in genes encoding both the heavy chain gamma and beta adaptin and the light chain subunit, which could generate other possible adaptin forms. GFP-tagged fusion proteins indicated that AP-1 located in the peripheral plasma area. Furthermore, the BmNPV infection in B. mori cells had differentiated effect on the expression level of AP-1 subunits.
Collapse
Affiliation(s)
- Yan-Shan Niu
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
85
|
Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLoS One 2012; 7:e46386. [PMID: 23056294 PMCID: PMC3463608 DOI: 10.1371/journal.pone.0046386] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Traffic of the integral yeast membrane protein chitin synthase III (Chs3p) from the trans-Golgi network (TGN) to the cell surface and to and from the early endosomes (EE) requires active protein sorting decoded by a number of protein coats. Here we define overlapping signals on Chs3p responsible for sorting in both exocytic and intracellular pathways by the coats exomer and AP-1, respectively. Residues 19DEESLL24, near the N-terminal cytoplasmically-exposed domain, comprise both an exocytic di-acidic signal and an intracellular di-leucine signal. Additionally we show that the AP-3 complex is required for the intracellular retention of Chs3p. Finally, residues R374 and W391, comprise another signal responsible for an exomer-independent alternative pathway that conveys Chs3p to the cell surface. These results establish a role for active protein sorting at the trans-Golgi en route to the plasma membrane (PM) and suggest a possible mechanism to regulate protein trafficking.
Collapse
|
86
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
87
|
Sitaram A, Dennis MK, Chaudhuri R, De Jesus-Rojas W, Tenza D, Setty SRG, Wood CS, Sviderskaya EV, Bennett DC, Raposo G, Bonifacino JS, Marks MS. Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes. Mol Biol Cell 2012; 23:3178-92. [PMID: 22718909 PMCID: PMC3418312 DOI: 10.1091/mbc.e11-06-0509] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OCA2 is used as a model melanosome cargo protein to define primary sequence elements required for acidic dileucine–motif binding to adaptors AP-1 and AP-3. OCA2 must bind to AP-3 for melanosome localization. BLOC-1 is also required and thus can cooperate with either adaptor for cargo delivery to lysosome-related organelles. Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine–based sorting signal in the pigment cell–specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1– and AP-3–favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.
Collapse
Affiliation(s)
- Anand Sitaram
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Ortega B, Mason AK, Welling PA. A tandem Di-hydrophobic motif mediates clathrin-dependent endocytosis via direct binding to the AP-2 ασ2 subunits. J Biol Chem 2012; 287:26867-75. [PMID: 22711530 DOI: 10.1074/jbc.m112.341990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Select plasma membrane proteins can be marked as cargo for inclusion into clathrin-coated pits by common internalization signals (e.g. YXXΦ, dileucine motifs, NPXY) that serve as universal recognition sites for the AP-2 adaptor complex or other clathrin-associated sorting proteins. However, some surface proteins, such as the Kir2.3 potassium channel, lack canonical signals but are still targeted for clathrin-dependent endocytosis. Here, we explore the mechanism. We found an unusual endocytic signal in Kir2.3 that is based on two consecutive pairs of hydrophobic residues. Characterized by the sequence ΦΦXΦΦ (a tandem di-hydrophobic (TDH) motif, where Φ is a hydrophobic amino acid), the signal shows no resemblance to other endocytic motifs, yet it directly interacts with AP-2 to target the Kir2.3 potassium channel into the endocytic pathway. We found that the tandem di-hydrophobic motif directly binds to the ασ2 subunits of AP-2, interacting within a large hydrophobic cleft that encompasses part of the docking site for di-Leu signals, but includes additional structures. These observations expand the repertoire of clathrin-dependent internalization signals and the ways in which AP-2 can coordinate endocytosis of cargo proteins.
Collapse
Affiliation(s)
- Bernardo Ortega
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
89
|
Nakada-Tsukui K, Tsuboi K, Furukawa A, Yamada Y, Nozaki T. A novel class of cysteine protease receptors that mediate lysosomal transport. Cell Microbiol 2012; 14:1299-317. [PMID: 22486861 PMCID: PMC3465781 DOI: 10.1111/j.1462-5822.2012.01800.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transport of lysosomal proteins is, in general, mediated by mannose 6-phosphate receptors via carbohydrate modifications. Here, we describe a novel class of receptors that regulate the transport of lysosomal hydrolases in the enteric protozoan Entamoeba histolytica, which is a good model organism to investigate membrane traffic. A novel 110 kDa cysteine protease (CP) receptor (CP-binding protein family 1, CPBF1) was initially discovered by affinity co-precipitation of the major CP (EhCP-A5), which plays a pivotal role in the pathogenesis of E. histolytica. We demonstrated that CPBF1 regulates EhCP-A5 transport from the endoplasmic reticulum to lysosomes and its binding to EhCP-A5 is independent of carbohydrate modifications. Repression of CPBF1 by gene silencing led to the accumulation of the unprocessed form of EhCP-A5 in the non-acidic compartment and the mis-secretion of EhCP-A5, suggesting that CPBF1 is involved in the trafficking and processing of EhCP-A5. The CPBF represents a new class of transporters that bind to lysosomal hydrolases in a carbohydrate-independent fashion and regulate their trafficking, processing and activation and, thus, regulate the physiology and pathogenesis of E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
90
|
Prabhu Y, Burgos PV, Schindler C, Farías GG, Magadán JG, Bonifacino JS. Adaptor protein 2-mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing. Mol Biol Cell 2012; 23:2339-51. [PMID: 22553349 PMCID: PMC3374752 DOI: 10.1091/mbc.e11-11-0944] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An adaptor protein complex, AP-2, is involved in the endocytosis of β-secretase (BACE1) via the clathrin-dependent machinery. Endosomal targeting of either the amyloid precursor protein (APP) and/or BACE1 is expendable for the amyloidogenic processing of APP. The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.
Collapse
Affiliation(s)
- Yogikala Prabhu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
91
|
Identification of a pivotal endocytosis motif in c-Met and selective modulation of HGF-dependent aggressiveness of cancer using the 16-mer endocytic peptide. Oncogene 2012; 32:1018-29. [PMID: 22525273 DOI: 10.1038/onc.2012.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since c-Met has an important role in the development of cancer, it is considered as an attractive target for cancer therapy. Although molecular mechanisms for oncogenic property of c-Met have been actively investigated, regulatory elements for c-Met endocytosis and its effect on c-Met signaling remain unclear. In this study, we identified a pivotal endocytic motif in c-Met and tested it for selective modulation of HGF-induced c-Met response. Using various chimeric constructs with the cytoplasmic tail of c-Met, we were able to demonstrate that a dileucine motif located in the C-terminus of c-Met acts to regulate its endocytosis. Synthetic peptide Ant-3S, consisting of antennapedia-derived protein transduction domain (designated as Ant) and c-Met-derived 16 amino-acids (designated as 3S, spanning amino-acids 1378 to 1393), rapidly moved into cancer cells and disrupted c-Met trafficking. Importantly, an extension of c-Met retention time on the membrane by Ant-3S peptide significantly decreased phosphorylation-dependent c-Met signal transduction. Additionally, the peptide effectively inhibited HGF-induced cell growth, scattering and migration. The underlying molecular mechanism for these observations has been investigated and revealed that the dileucine motif interacts with endocytic machinery, including adaptin β and caveolin-1, for sustained and enhanced signal transduction. Finally, Ant-3S peptide specifically blocked internalization of interleukin-2 receptor α-subunit/3S chimeric protein, but not the other receptors, including Glut4, Glut8 and transferrin receptor. Such results indicate the presence of a selective endocytic assembly for c-Met. It also suggests a potential for c-Met-specific anti-cancer therapy using the identified endocytic motif in this study.
Collapse
|
92
|
|
93
|
Touz MC, Rivero MR, Miras SL, Bonifacino JS. Lysosomal protein trafficking in Giardia lamblia: common and distinct features. Front Biosci (Elite Ed) 2012; 4:1898-909. [PMID: 22202006 DOI: 10.2741/511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Giardia is a flagellated protozoan parasite that has to face different microenvironments during its life cycle in order to survive. All cells exchange materials with the extracellular medium through the reciprocal processes of endocytosis and secretion. Unlike more evolved cells, Giardia lacks a defined endosomal/lysosomal system, but instead possesses peripheral vacuoles that play roles in endocytosis, degradation, recycling, and secretion of proteins during growth and differentiation of the parasite. This review focuses on recent reports defining the role of different molecules involved in protein trafficking to the peripheral vacuoles, and discusses possible mechanisms of receptor recycling. Since Giardia is an early-branching protist, the study of this parasite may lead to a clearer understanding of the minimal machinery required for protein transport in eukaryotic cells.
Collapse
Affiliation(s)
- Maria C Touz
- Instituto de Investigacion Medica Mercedes y Martin Ferreyra, INIMEC - CONICET, Friuli 2434, Cordoba, Argentina.
| | | | | | | |
Collapse
|
94
|
Reider A, Wendland B. Endocytic adaptors--social networking at the plasma membrane. J Cell Sci 2011; 124:1613-22. [PMID: 21536832 DOI: 10.1242/jcs.073395] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors.
Collapse
Affiliation(s)
- Amanda Reider
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
95
|
Ma D, Taneja TK, Hagen BM, Kim BY, Ortega B, Lederer WJ, Welling PA. Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 2011; 145:1102-15. [PMID: 21703452 PMCID: PMC3139129 DOI: 10.1016/j.cell.2011.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/04/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Mechanisms that are responsible for sorting newly synthesized proteins for traffic to the cell surface from the Golgi are poorly understood. Here, we show that the potassium channel Kir2.1, mutations in which are associated with Andersen-Tawil syndrome, is selected as cargo into Golgi export carriers in an unusual signal-dependent manner. Unlike conventional trafficking signals, which are typically comprised of short linear peptide sequences, Golgi exit of Kir2.1 is dictated by residues that are embedded within the confluence of two separate domains. This signal patch forms a recognition site for interaction with the AP1 adaptor complex, thereby marking Kir2.1 for incorporation into clathrin-coated vesicles at the trans-Golgi. The identification of a trafficking signal in the tertiary structure of Kir2.1 reveals a quality control step that couples protein conformation to Golgi export and provides molecular insight into how mutations in Kir2.1 arrest the channels at the Golgi.
Collapse
Affiliation(s)
| | | | - Brian M. Hagen
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Bo-Young Kim
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Bernardo Ortega
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - W. Jonathan Lederer
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| | - Paul A. Welling
- Department of Physiology, University of Maryland School of Medicine Baltimore, MD 21201
| |
Collapse
|
96
|
Reales E, Sharma N, Low SH, Fölsch H, Weimbs T. Basolateral sorting of syntaxin 4 is dependent on its N-terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS One 2011; 6:e21181. [PMID: 21698262 PMCID: PMC3115984 DOI: 10.1371/journal.pone.0021181] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/22/2011] [Indexed: 12/14/2022] Open
Abstract
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24–29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.
Collapse
Affiliation(s)
- Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Heike Fölsch
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
97
|
HIV-1 Nef disrupts intracellular trafficking of major histocompatibility complex class I, CD4, CD8, and CD28 by distinct pathways that share common elements. J Virol 2011; 85:6867-81. [PMID: 21543478 DOI: 10.1128/jvi.00229-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Nef protein is an important HIV virulence factor that promotes the degradation of host proteins to augment virus production and facilitate immune evasion. The best-characterized targets of Nef are major histocompatibility complex class I (MHC-I) and CD4, but Nef also has been reported to target several other proteins, including CD8β, CD28, CD80, CD86, and CD1d. To compare and contrast the effects of Nef on each protein, we constructed a panel of chimeric proteins in which the extracellular and transmembrane regions of the MHC-I allele HLA-A2 were fused to the cytoplasmic tails of CD4, CD28, CD8β, CD80, CD86, and CD1d. We found that Nef coprecipitated with and disrupted the expression of molecules with cytoplasmic tails from MHC-I HLA-A2, CD4, CD8β, and CD28, but Nef did not bind to or alter the expression of molecules with cytoplasmic tails from CD80, CD86, and CD1d. In addition, we used short interfering RNA (siRNA) knockdown and coprecipitation experiments to implicate AP-1 as a cellular cofactor for Nef in the downmodulation of both CD28 and CD8β. The interaction with AP-1 required for CD28 and CD8β differed from the AP-1 interaction required for MHC-I downmodulation in that it was mediated through the dileucine motif within Nef (LL(164,165)AA) and did not require the tyrosine binding pocket of the AP-1 μ subunit. In addition, we demonstrate a requirement for β-COP as a cellular cofactor for Nef that was necessary for the degradation of targeted molecules HLA-A2, CD4, and CD8. These studies provide important new information on the similarities and differences with which Nef affects intracellular trafficking and help focus future research on the best potential pharmaceutical targets.
Collapse
|
98
|
Torres J, Funk HM, Zegers MMP, ter Beest MBA. The syntaxin 4 N terminus regulates its basolateral targeting by munc18c-dependent and -independent mechanisms. J Biol Chem 2011; 286:10834-46. [PMID: 21278252 PMCID: PMC3060534 DOI: 10.1074/jbc.m110.186668] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/14/2011] [Indexed: 01/22/2023] Open
Abstract
To generate and maintain epithelial cell polarity, specific sorting of proteins into vesicles destined for the apical and basolateral domain is required. Syntaxin 3 and 4 are apical and basolateral SNARE proteins important for the specificity of vesicle fusion at the apical and basolateral plasma membrane domains, respectively, but how these proteins are specifically targeted to these domains themselves is unclear. Munc18/SM proteins are potential regulators of this process. Like syntaxins, they are crucial for exocytosis and vesicle fusion. However, how munc18c and syntaxin 4 regulate the function of each other is unclear. Here, we investigated the requirement of syntaxin 4 in the delivery of basolateral membrane and secretory proteins, the basolateral targeting of syntaxin 4, and the role of munc18c in this targeting. Depletion of syntaxin 4 resulted in significant reduction of basolateral targeting, suggesting no compensation by other syntaxin forms. Mutational analysis identified amino acids Leu-25 and to a lesser extent Val-26 as essential for correct localization of syntaxin 4. Recently, it was shown that the N-terminal peptide of syntaxin 4 is involved in binding to munc18c. A mutation in this region that affects munc18c binding shows that munc18c binding is required for stabilization of syntaxin 4 at the plasma membrane but not for its correct targeting. We conclude that the N terminus serves two functions in membrane targeting. First, it harbors the sorting motif, which targets syntaxin 4 basolaterally in a munc18c-independent manner and second, it allows for munc18c binding, which stabilizes the protein in a munc18c-dependent manner.
Collapse
Affiliation(s)
- Jacqueline Torres
- From the Department of Surgery, The University of Chicago, Chicago, Illinois 60637
| | - Holly M. Funk
- From the Department of Surgery, The University of Chicago, Chicago, Illinois 60637
| | - Mirjam M. P. Zegers
- From the Department of Surgery, The University of Chicago, Chicago, Illinois 60637
| | | |
Collapse
|
99
|
Pandey KN. Small peptide recognition sequence for intracellular sorting. Curr Opin Biotechnol 2011; 21:611-20. [PMID: 20817434 DOI: 10.1016/j.copbio.2010.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicate that complex arrays of short signals and recognition peptide sequence ensure accurate trafficking and distribution of transmembrane receptors and/or proteins and their ligands into intracellular compartments. Internalization and subsequent trafficking of cell-surface receptors into the cell interior is mediated by specific short-sequence peptide signals within the cytoplasmic domains of these receptor proteins. The short signals usually consist of small linear amino acid sequences, which are recognized by adaptor coat proteins along the endocytic and sorting pathways. In recent years, much has been learned about the function and mechanisms of endocytic pathways responsible for the trafficking and molecular sorting of membrane receptors and their ligands into intracellular compartments, however, the significance and scope of the short-sequence motifs in these cellular events is not well understood. Here a particular emphasis has been given to the functions of short-sequence signal motifs responsible for the itinerary and destination of membrane receptors and proteins moving into subcellular compartments.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
100
|
Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS. Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J Biol Chem 2011; 286:2022-30. [PMID: 21097499 PMCID: PMC3023499 DOI: 10.1074/jbc.m110.197178] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/22/2022] Open
Abstract
The clathrin-associated, heterotetrameric adaptor protein (AP) complexes, AP-1, AP-2, and AP-3, recognize signals in the cytosolic domains of transmembrane proteins, leading to their sorting to endosomes, lysosomes, lysosome-related organelles, and/or the basolateral membrane of polarized epithelial cells. One type of signal, referred to as "dileucine-based," fits the consensus motif (D/E)XXXL(L/I). Previous biochemical analyses showed that (D/E)XXXL(L/I) signals bind to a combination of two subunits of each AP complex, namely the AP-1 γ-σ1, AP-2 α-σ2, and AP-3 δ-σ3 hemicomplexes, and structural studies revealed that an imperfect variant of this motif lacking the (D/E) residue binds to a site straddling the interface of α and σ2. Herein, we report mutational and binding analyses showing that canonical (D/E)XXXL(L/I) signals bind to this same site on AP-2, and to similar sites on AP-1 and AP-3. The strength and amino acid requirements of different interactions depend on the specific signals and AP complexes involved. We also demonstrate the occurrence of diverse AP-1 heterotetramers by combinatorial assembly of various γ and σ1 subunit isoforms encoded by different genes. These AP-1 variants bind (D/E)XXXL(L/I) signals with marked preferences for certain sequences, implying that they are not functionally equivalent. Our results thus demonstrate that different AP complexes share a conserved binding site for (D/E)XXXL(L/I) signals. However, the characteristics of the binding site on each complex vary, providing for the specific recognition of a diverse repertoire of (D/E)XXXL(L/I) signals.
Collapse
Affiliation(s)
- Rafael Mattera
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Markus Boehm
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Rittik Chaudhuri
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Yogikala Prabhu
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Juan S. Bonifacino
- From the Cell Biology and Metabolism Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|