51
|
Advani VM, Dinman JD. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 2015; 38:21-6. [PMID: 26661048 PMCID: PMC4749135 DOI: 10.1002/bies.201500131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reading frame maintenance is a critical property of ribosomes. However, a number of genetic elements have been described that can induce ribosomes to shift on mRNAs, the most well understood of which are a class that directs ribosomal slippage by one base in 5' (‐1) direction. This is referred to as programmed ‐1 ribosomal frameshifting (‐1 PRF). Recently, a new ‐1 PRF promoting element was serendipitously discovered in a study examining the effects of stretches of adenosines in the coding sequences of mRNAs. Here, we discuss this finding, recent studies describing how ‐1 PRF is used to control gene expression in eukaryotes, and how ‐1 PRF is itself regulated. The implications of dysregulation of ‐1 PRF on human health are examined, as are possible new areas in which novel ‐1 PRF promoting elements might be discovered. Also watch the https://youtu.be/1mPXIINCRcY.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
52
|
Cytoplasmic Control of Sense-Antisense mRNA Pairs. Cell Rep 2015; 12:1853-64. [PMID: 26344770 DOI: 10.1016/j.celrep.2015.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/11/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression.
Collapse
|
53
|
Yang F, Zhao R, Fang X, Huang H, Xuan Y, Ma Y, Chen H, Cai T, Qi Y, Xi R. The RNA surveillance complex Pelo-Hbs1 is required for transposon silencing in the Drosophila germline. EMBO Rep 2015; 16:965-74. [PMID: 26124316 DOI: 10.15252/embr.201540084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
Silencing of transposable elements (TEs) in the metazoan germline is critical for genome integrity and is primarily dependent on Piwi proteins and associated RNAs, which exert their function through both transcriptional and posttranscriptional mechanisms. Here, we report that the evolutionarily conserved Pelo (Dom34)-Hbs1 mRNA surveillance complex is required for transposon silencing in the Drosophila germline. In pelo mutant gonads, mRNAs and proteins of some selective TEs are up-regulated. Pelo is not required for piRNA biogenesis, and our studies suggest that Pelo may function at the translational level to silence TEs: This function requires interaction with Hbs1, and overexpression of RpS30a partially reverts TE-silencing defects in pelo mutants. Interestingly, TE silencing and spermatogenesis defects in pelo mutants can also effectively be rescued by expressing the mammalian ortholog of Pelo. We propose that the Pelo-Hbs1 surveillance complex provides another level of defense against the expression of TEs in the germline of Drosophila and possibly all metazoa.
Collapse
Affiliation(s)
- Fu Yang
- College of Life Sciences Beijing Normal University, Beijing, China National Institute of Biological Sciences, Beijing, China
| | - Rui Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Xiaofeng Fang
- Tsinghua-Peking Center for Life Sciences, Beijing, China Center for Plant Biology, School of Life Sciences Tsinghua University, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Yang Xuan
- National Institute of Biological Sciences, Beijing, China
| | - Yanting Ma
- National Institute of Biological Sciences, Beijing, China
| | - Hongyan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Yijun Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China Center for Plant Biology, School of Life Sciences Tsinghua University, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
54
|
Inefficient Codon Usage Impairs mRNA Accumulation: the Case of the v-FLIP Gene of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2015; 89:7097-107. [PMID: 25926644 DOI: 10.1128/jvi.03390-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/21/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Latent Kaposi's sarcoma-associated herpesvirus (KSHV) genomes encode a homolog of cellular FLICE-inhibitory proteins (termed v-FLIP) that activates NF-κB and can trigger important proinflammatory and antiapoptotic changes in latently infected cells. The protein is present at very low levels in infection and has generally been difficult to efficiently express in recombinant vectors. Here we show that codon usage in the v-FLIP gene is strikingly suboptimal. Optimization of codon use in expression vectors, as expected, restores efficient protein expression. Surprisingly, however, it also dramatically increases the steady-state level of v-FLIP mRNA, at least in part by increasing mRNA stability. When codon-optimized v-FLIP sequences are reintroduced into intact KSHV genomes, the resulting virus expresses readily detectable monocistronic v-FLIP mRNAs that are undetectable in wild-type (WT) infection by blot hybridization, suggesting that such RNAs are in fact transcribed in WT infection but fail to accumulate. The overexpression of v-FLIP by codon-optimized latent genomes results in a 5- to 7-fold decrement in virus production following lytic induction, indicating that maximizing NF-κB signaling is deleterious to induction. These studies provide a clear explanation for the evolution of inefficient codon usage in this gene and point to a strong connection between translational efficiency and RNA accumulation in mammalian cells. IMPORTANCE This study reports that inefficient codon usage in a herpesviral gene is strikingly correlated with the inability of its mRNA to accumulate in cells; correction of efficient translatability restores RNA abundance. A similar correlation has been reported in yeast species, but the mechanisms operating in mammalian cells appear substantially different.
Collapse
|
55
|
Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:4062-76. [PMID: 25154418 DOI: 10.1128/mcb.00799-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.
Collapse
|
56
|
Slevin MK, Meaux S, Welch JD, Bigler R, Miliani de Marval PL, Su W, Rhoads RE, Prins JF, Marzluff WF. Deep sequencing shows multiple oligouridylations are required for 3' to 5' degradation of histone mRNAs on polyribosomes. Mol Cell 2014; 53:1020-30. [PMID: 24656133 DOI: 10.1016/j.molcel.2014.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/23/2013] [Accepted: 02/10/2014] [Indexed: 12/27/2022]
Abstract
Histone mRNAs are rapidly degraded when DNA replication is inhibited during S phase with degradation initiating with oligouridylation of the stem loop at the 3' end. We developed a customized RNA sequencing strategy to identify the 3' termini of degradation intermediates of histone mRNAs. Using this strategy, we identified two types of oligouridylated degradation intermediates: RNAs ending at different sites of the 3' side of the stem loop that resulted from initial degradation by 3'hExo and intermediates near the stop codon and within the coding region. Sequencing of polyribosomal histone mRNAs revealed that degradation initiates and proceeds 3' to 5' on translating mRNA and that many intermediates are capped. Knockdown of the exosome-associated exonuclease PM/Scl-100, but not the Dis3L2 exonuclease, slows histone mRNA degradation consistent with 3' to 5' degradation by the exosome containing PM/Scl-100. Knockdown of No-go decay factors also slowed histone mRNA degradation, suggesting a role in removing ribosomes from partially degraded mRNAs.
Collapse
Affiliation(s)
- Michael K Slevin
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stacie Meaux
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua D Welch
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Bigler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paula L Miliani de Marval
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Su
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jan F Prins
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William F Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
57
|
Lykke-Andersen J, Bennett EJ. Protecting the proteome: Eukaryotic cotranslational quality control pathways. ACTA ACUST UNITED AC 2014; 204:467-76. [PMID: 24535822 PMCID: PMC3926952 DOI: 10.1083/jcb.201311103] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery.
Collapse
Affiliation(s)
- Jens Lykke-Andersen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | | |
Collapse
|
58
|
Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet 2013; 29:691-9. [PMID: 24091060 DOI: 10.1016/j.tig.2013.09.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
The decay rate of an mRNA and the efficiency with which it is translated are key determinants of eukaryotic gene expression. Although it was once thought that mRNA stability and translational efficiency were directly linked, the interrelationships between the two processes are considerably more complex. The decay of individual mRNAs can be triggered or antagonized by translational impairment, and alterations in the half-life of certain mRNAs can even alter translational fidelity. In this review we consider whether mRNA translation and turnover are distinct or overlapping phases of an mRNA life cycle, and then address some of the many ways in which the two processes influence each other in eukaryotic cells.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Microbiology and Physiological Systems, Albert Sherman Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
59
|
Kobayashi K, Ishitani R, Nureki O. Recent structural studies on Dom34/aPelota and Hbs1/aEF1α: important factors for solving general problems of ribosomal stall in translation. Biophysics (Nagoya-shi) 2013; 9:131-40. [PMID: 27493551 PMCID: PMC4629679 DOI: 10.2142/biophysics.9.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022] Open
Abstract
In the translation process, translating ribosomes usually move on an mRNA until they reach the stop codon. However, when ribosomes translate an aberrant mRNA, they stall. Then, ribosomes are rescued from the aberrant mRNA, and the aberrant mRNA is subsequently degraded. In eukaryotes, Pelota (Dom34 in yeast) and Hbs1 are responsible for solving general problems of ribosomal stall in translation. In archaea, aPelota and aEF1α, homologous to Pelota and Hbs1, respectively, are considered to be involved in that process. In recent years, great progress has been made in determining structures of Dom34/aPelota and Hbs1/aEF1α. In this review, we focus on the functional roles of Dom34/aPelota and Hbs1/aEF1α in ribosome rescue, based on recent structural studies of them. We will also present questions to be answered by future work.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ryuichiro Ishitani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
60
|
Shao S, von der Malsburg K, Hegde R. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol Cell 2013; 50:637-48. [PMID: 23685075 PMCID: PMC3719020 DOI: 10.1016/j.molcel.2013.04.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022]
Abstract
Quality control of defective mRNAs relies on their translation to detect the lesion. Aberrant proteins are therefore an obligate byproduct of mRNA surveillance and must be degraded to avoid disrupting protein homeostasis. These defective translation products are thought to be ubiquitinated at the ribosome, but the mechanism of ubiquitin ligase selectivity for these ribosomes is not clear. Here, we in vitro reconstitute ubiquitination of nascent proteins produced from aberrant mRNAs. Stalled 80S ribosome-nascent chain complexes are dissociated by the ribosome recycling factors Hbs1/Pelota/ABCE1 to a unique 60S-nascent chain-tRNA complex. The ubiquitin ligase Listerin preferentially recognizes 60S-nascent chains and triggers efficient nascent chain ubiquitination. Interfering with Hbs1 function stabilizes 80S complexes, precludes efficient Listerin recruitment, and reduces nascent chain ubiquitination. Thus, ribosome recycling factors control Listerin localization, explaining how translation products of mRNA surveillance are efficiently ubiquitinated while sparing translating ribosomes.
Collapse
Affiliation(s)
- Sichen Shao
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Ramanujan S. Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
61
|
Saito S, Hosoda N, Hoshino SI. The Hbs1-Dom34 protein complex functions in non-stop mRNA decay in mammalian cells. J Biol Chem 2013; 288:17832-43. [PMID: 23667253 DOI: 10.1074/jbc.m112.448977] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, aberrant mRNAs lacking in-frame termination codons are recognized and degraded by the non-stop decay (NSD) pathway. The recognition of non-stop mRNAs involves a member of the eRF3 family of GTP-binding proteins, Ski7. Ski7 is thought to bind the ribosome stalled at the 3'-end of the mRNA poly(A) tail and recruit the exosome to degrade the aberrant message. However, Ski7 is not found in mammalian cells, and even the presence of the NSD mechanism itself has remained enigmatic. Here, we show that unstable non-stop mRNA is degraded in a translation-dependent manner in mammalian cells. The decay requires another eRF3 family member (Hbs1), its binding partner Dom34, and components of the exosome-Ski complex (Ski2/Mtr4 and Dis3). Hbs1-Dom34 binds to form a complex with the exosome-Ski complex. Also, the elimination of aberrant proteins produced from non-stop transcripts requires the RING finger protein listerin. These findings demonstrate that the NSD mechanism exists in mammalian cells and involves Hbs1, Dom34, and the exosome-Ski complex.
Collapse
Affiliation(s)
- Syuhei Saito
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
62
|
Cho CP, Lin SC, Chou MY, Hsu HT, Chang KY. Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins. PLoS One 2013; 8:e62283. [PMID: 23638024 PMCID: PMC3639245 DOI: 10.1371/journal.pone.0062283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 01/04/2023] Open
Abstract
RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3′ direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) −1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate−1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for−1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing−1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study’s findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.
Collapse
Affiliation(s)
- Che-Pei Cho
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Szu-Chieh Lin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Ming-Yuan Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
63
|
Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:634-42. [PMID: 23416749 DOI: 10.1016/j.bbagrm.2013.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 10/27/2022]
Abstract
RNA processing is an essential gene expression step and plays a crucial role to achieve diversity of gene products in eukaryotes. Various aberrant mRNAs transiently produced during RNA processing reactions are recognized and eliminated by specific quality control systems. It has been demonstrated that these mRNA quality control systems stimulate the degradation of aberrant mRNA to prevent the potentially harmful products derived from aberrant mRNAs. Recent studies on quality control systems induced by abnormal translation elongation and termination have revealed that both aberrant mRNAs and proteins are subjected to rapid degradation. In NonStop Decay (NSD) quality control system, a poly(A) tail of nonstop mRNA is translated and the synthesis of poly-lysine sequence results in translation arrest followed by co-translational degradation of aberrant nonstop protein. In No-Go Decay (NGD) quality control system, the specific amino acid sequences of the nascent polypeptide induce ribosome stalling, and the arrest products are ubiquitinated and rapidly degraded by the proteasome. In Nonfunctional rRNA Decay (NRD) quality control system, aberrant ribosomes composed of nonfunctional ribosomal RNAs are also eliminated when aberrant translation elongation complexes are formed on mRNA. I describe recent progresses on the mechanisms of quality control systems and the relationships between quality control systems. This article is part of a Special issue entitled: RNA Decay mechanisms.
Collapse
|
64
|
Franckenberg S, Becker T, Beckmann R. Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue. Curr Opin Struct Biol 2012; 22:786-96. [DOI: 10.1016/j.sbi.2012.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 07/26/2012] [Accepted: 08/05/2012] [Indexed: 11/29/2022]
|
65
|
Graille M, Séraphin B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 2012; 13:727-35. [DOI: 10.1038/nrm3457] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
66
|
Ribosome-associated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains. Mol Cell Biol 2012; 32:4769-79. [PMID: 23007158 DOI: 10.1128/mcb.00809-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
When a polyadenylated nonstop transcript is fully translated, a complex consisting of the ribosome, the nonstop mRNA, and the C-terminally polylysine-tagged protein is generated. In Saccharomyces cerevisiae, a 3-step quality control system prevents formation of such dead-end complexes. Nonstop mRNA is rapidly degraded, translation of nonstop mRNA is repressed, and finally, nonstop proteins are cotranslationally degraded. Nonstop mRNA degradation depends on Ski7 and the exosome; nonstop protein degradation depends on the ribosome-bound E3 ligase Ltn1 and the proteasome. However, components which mediate translational repression of nonstop mRNA have previously not been identified. Here we show that the ribosome-bound chaperone system consisting of the ribosome-associated complex (RAC) and the Hsp70 homolog Ssb is required to stabilize translationally repressed ribosome-polylysine protein complexes, without affecting the folding or the degradation of polylysine proteins. As a consequence, in the absence of RAC/Ssb, polylysine proteins escaped translational repression and subsequently folded into their native conformation. This active role of RAC/Ssb in the quality control of polylysine proteins significantly contributed to the low level of expression of nonstop transcripts in vivo.
Collapse
|
67
|
Jackson RJ, Hellen CUT, Pestova TV. Termination and post-termination events in eukaryotic translation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:45-93. [PMID: 22243581 DOI: 10.1016/b978-0-12-386497-0.00002-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation termination in eukaryotes occurs in response to a stop codon in the ribosomal A-site and requires two release factors (RFs), eRF1 and eRF3, which bind to the A-site as an eRF1/eRF3/GTP complex with eRF1 responsible for codon recognition. After GTP hydrolysis by eRF3, eRF1 triggers hydrolysis of the polypeptidyl-tRNA, releasing the completed protein product. This leaves an 80S ribosome still bound to the mRNA, with deacylated tRNA in its P-site and at least eRF1 in its A-site, which needs to be disassembled and released from the mRNA to allow further rounds of translation. The first step in recycling is dissociation of the 60S ribosomal subunit, leaving a 40S/deacylated tRNA complex bound to the mRNA. This is mediated by ABCE1, which is a somewhat unusual member of the ATP-binding cassette family of proteins with no membrane-spanning domain but two essential iron-sulfur clusters. Two distinct pathways have been identified for subsequent ejection of the deacylated tRNA followed by dissociation of the 40S subunit from the mRNA, one executed by a subset of the canonical initiation factors (which therefore starts the process of preparing the 40S subunit for the next round of translation) and the other by Ligatin or homologous proteins. However, although this is the normal sequence of events, there are exceptions where the termination reaction is followed by reinitiation on the same mRNA (usually) at a site downstream of the stop codon. The overwhelming majority of such reinitiation events occur when the 5'-proximal open reading frame (ORF) is short and can result in significant regulation of translation of the protein-coding ORF, but there are also rare examples, mainly bicistronic viral RNAs, of reinitiation after a long ORF. Here, we review our current understanding of the mechanisms of termination, ribosome recycling, and reinitiation after translation of short and long ORFs.
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
68
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
69
|
Abstract
There are three predominant forms of co-translational mRNA surveillance: nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD). Although discussion of these pathways often focuses on mRNA fate, there is growing consensus that there are other important outcomes of these processes that must be simultaneously considered. Here, we seek to highlight similarities between NMD, NGD and NSD and their probable origins on the ribosome during translation.
Collapse
|
70
|
Semlow DR, Staley JP. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci 2012; 37:263-73. [PMID: 22564363 DOI: 10.1016/j.tibs.2012.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/23/2012] [Accepted: 04/03/2012] [Indexed: 12/28/2022]
Abstract
The faithful expression of genes requires that cellular machinery select substrates with high specificity at each step in gene expression. High specificity is particularly important at the stage of nuclear pre-mRNA splicing, during which the spliceosome selects splice sites and excises intervening introns. With low specificity, the usage of alternative sites would yield insertions, deletions and frame shifts in mRNA. Recently, biochemical, genetic and genome-wide approaches have significantly advanced our understanding of splicing fidelity. In particular, we have learned that DExD/H-box ATPases play a general role in rejecting and discarding suboptimal substrates and that these factors serve as a paradigm for proofreading NTPases in other systems. Recent advances have also defined fundamental questions for future investigations.
Collapse
Affiliation(s)
- Daniel R Semlow
- Graduate Program in Cell and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
71
|
Peltier C, Klein E, Hleibieh K, D'Alonzo M, Hammann P, Bouzoubaa S, Ratti C, Gilmer D. Beet necrotic yellow vein virus subgenomic RNA3 is a cleavage product leading to stable non-coding RNA required for long-distance movement. J Gen Virol 2012; 93:1093-1102. [PMID: 22258860 DOI: 10.1099/vir.0.039685-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) is a multipartite RNA virus. BNYVV RNA3 does not accumulate in non-host transgenic Arabidopsis thaliana plants when expressed using a 35S promoter. However, a 3'-derivative species has been detected in transgenic plants and in transient expression assays conducted in Nicotiana benthamiana and Beta macrocarpa. The 3'-derivative species is similar to the previously reported subgenomic RNA3 produced during virus infection. 5' RACE revealed that the truncated forms had identical 5' ends. The 5' termini carried the coremin motif also present on BNYVV RNA5, beet soil-borne mosaic virus RNA3 and 4, and cucumber mosaic virus group 2 RNAs. This RNA3 species lacks a m(7)Gppp at the 5' end of the cleavage products, whether expressed transiently or virally. Mutagenesis revealed the importance of the coremin sequence for both long-distance movement and stabilization of the cleavage product in vivo and in vitro. The isolation of various RNA3 5'-end products suggests the existence of a cleavage between nt 212 and 1234 and subsequent exonucleolytic degradation, leading to the accumulation of a non-coding RNA. When RNA3 was incubated in wheatgerm extracts, truncated forms appeared rapidly and their appearance was protein- and divalent ion-dependent.
Collapse
Affiliation(s)
- Claire Peltier
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Elodie Klein
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Kamal Hleibieh
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Massimiliano D'Alonzo
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Area Patologia Vegetale, Viale G. Fanin 40, II piano, 40127 Bologna, Italy
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire, Laboratoire Propre du CNRS conventionné avec l'Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Salah Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Claudio Ratti
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Area Patologia Vegetale, Viale G. Fanin 40, II piano, 40127 Bologna, Italy
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) conventionné avec l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
72
|
Dom34:Hbs1 Plays a General Role in Quality-Control Systems by Dissociation of a Stalled Ribosome at the 3′ End of Aberrant mRNA. Mol Cell 2012; 46:518-29. [DOI: 10.1016/j.molcel.2012.03.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/14/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022]
|
73
|
Mühlemann O, Jensen TH. mRNP quality control goes regulatory. Trends Genet 2012; 28:70-7. [DOI: 10.1016/j.tig.2011.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 01/19/2023]
|
74
|
Becker T, Armache JP, Jarasch A, Anger AM, Villa E, Sieber H, Motaal BA, Mielke T, Berninghausen O, Beckmann R. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat Struct Mol Biol 2011; 18:715-20. [PMID: 21623367 DOI: 10.1038/nsmb.2057] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/15/2011] [Indexed: 11/09/2022]
Abstract
No-go decay (NGD) is a mRNA quality-control mechanism in eukaryotic cells that leads to degradation of mRNAs stalled during translational elongation. The key factors triggering NGD are Dom34 and Hbs1. We used cryo-EM to visualize NGD intermediates resulting from binding of the Dom34-Hbs1 complex to stalled ribosomes. At subnanometer resolution, all domains of Dom34 and Hbs1 were identified, allowing the docking of crystal structures and homology models. Moreover, the close structural similarity of Dom34 and Hbs1 to eukaryotic release factors (eRFs) enabled us to propose a model for the ribosome-bound eRF1-eRF3 complex. Collectively, our data provide structural insights into how stalled mRNA is recognized on the ribosome and how the eRF complex can simultaneously recognize stop codons and catalyze peptide release.
Collapse
Affiliation(s)
- Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Nakamura Y, Ito K. tRNA mimicry in translation termination and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:647-68. [DOI: 10.1002/wrna.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
76
|
Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J 2011; 30:1804-17. [PMID: 21448132 DOI: 10.1038/emboj.2011.93] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/02/2011] [Indexed: 02/05/2023] Open
Abstract
No-go decay (NGD) and non-stop decay (NSD) are eukaryotic surveillance mechanisms that target mRNAs on which elongation complexes (ECs) are stalled by, for example, stable secondary structures (NGD) or due to the absence of a stop codon (NSD). Two interacting proteins Dom34(yeast)/Pelota(mammals) and Hbs1, which are paralogues of eRF1 and eRF3, are implicated in these processes. Dom34/Hbs1 were shown to promote dissociation of stalled ECs and release of intact peptidyl-tRNA. Using an in vitro reconstitution approach, we investigated the activities of mammalian Pelota/Hbs1 and report that Pelota/Hbs1 also induced dissociation of ECs and release of peptidyl-tRNA, but only in the presence of ABCE1. Whereas Pelota and ABCE1 were essential, Hbs1 had a stimulatory effect. Importantly, ABCE1/Pelota/Hbs1 dissociated ECs containing only a limited number of mRNA nucleotides downstream of the P-site, which suggests that ABCE1/Pelota/Hbs1 would disassemble NSD complexes stalled at the 3'-end, but not pre-cleavage NGD complexes stalled in the middle of mRNA. ABCE1/Pelota/Hbs1 also dissociated vacant 80S ribosomes, which stimulated 48S complex formation, suggesting that Pelota/Hbs1 have an additional role outside of NGD.
Collapse
|
77
|
Schoenberg DR. Mechanisms of endonuclease-mediated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:582-600. [PMID: 21957046 DOI: 10.1002/wrna.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endonuclease cleavage was one of the first identified mechanisms of mRNA decay but until recently it was thought to play a minor role to the better-known processes of deadenylation, decapping, and exonuclease-catalyzed decay. Most of the early examples of endonuclease decay came from studies of a particular mRNA whose turnover changed in response to hormone, cytokine, developmental, or nutritional stimuli. Only a few of these examples of endonuclease-mediated mRNA decay progressed to the point where the enzyme responsible for the initiating event was identified and studied in detail. The discovery of microRNAs and RISC-catalyzed endonuclease cleavage followed by the identification of PIN (pilT N-terminal) domains that impart endonuclease activity to a number of the proteins involved in mRNA decay has led to a resurgence of interest in endonuclease-mediated mRNA decay. PIN domains show no substrate selectivity and their involvement in a number of decay pathways highlights a recurring theme that the context in which an endonuclease function is a primary factor in determining whether any given mRNA will be targeted for decay by this or the default exonuclease-mediated decay processes.
Collapse
Affiliation(s)
- Daniel R Schoenberg
- Center for RNA Biology and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
78
|
Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs. Proc Natl Acad Sci U S A 2011; 108:2366-71. [PMID: 21262801 DOI: 10.1073/pnas.1013180108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two general pathways of mRNA decay have been characterized in yeast. In one pathway, the mRNA is degraded by the cytoplasmic form of the exosome. The exosome has both 3' to 5' exoribonuclease and endoribonuclease activity, and the available evidence suggests that the exonuclease activity is required for the degradation of mRNAs. We confirm here that this is true for normal mRNAs, but that aberrant mRNAs that lack a stop codon can be efficiently degraded in the absence of the exonuclease activity of the exosome. Specifically, we show that the endo- and exonuclease activities of the exosome are both capable of rapidly degrading nonstop mRNAs and ribozyme-cleaved mRNAs. Additionally, the endonuclease activity of the exosome is not required for endonucleolytic cleavage in no-go decay. In vitro, the endonuclease domain of the exosome is active only under nonphysiological conditions, but our findings show that the in vivo activity is sufficient for the rapid degradation of nonstop mRNAs. Thus, whereas normal mRNAs are degraded by two exonucleases (Xrn1p and Rrp44p), several endonucleases contribute to the decay of many aberrant mRNAs, including transcripts subject to nonstop and no-go decay. Our findings suggest that the nuclease requirements for general and nonstop mRNA decay are different, and describe a molecular function of the core exosome that is not disrupted by inactivating its exonuclease activity.
Collapse
|
79
|
Dissection of Dom34-Hbs1 reveals independent functions in two RNA quality control pathways. Nat Struct Mol Biol 2010; 17:1446-52. [PMID: 21102444 DOI: 10.1038/nsmb.1963] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 10/29/2010] [Indexed: 11/08/2022]
Abstract
Eukaryotic cells have several quality control pathways that rely on translation to detect and degrade defective RNAs. Dom34 and Hbs1 are two proteins that are related to translation termination factors and are involved in no-go decay (NGD) and nonfunctional 18S ribosomal RNA (rRNA) decay (18S NRD) pathways that eliminate RNAs that cause strong ribosomal stalls. Here we present the structure of Hbs1 with and without GDP and a low-resolution model of the Dom34-Hbs1 complex. This complex mimics complexes of the elongation factor and transfer RNA or of the translation termination factors eRF1 and eRF3, supporting the idea that it binds to the ribosomal A-site. We show that nucleotide binding by Hbs1 is essential for NGD and 18S NRD. Mutations in Hbs1 that disrupted the interaction between Dom34 and Hbs1 strongly impaired NGD but had almost no effect on 18S NRD. Hence, NGD and 18S NRD could be genetically uncoupled, suggesting that mRNA and rRNA in a stalled translation complex may not always be degraded simultaneously.
Collapse
|
80
|
Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep 2010; 11:956-61. [PMID: 21072063 DOI: 10.1038/embor.2010.169] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/26/2010] [Accepted: 10/05/2010] [Indexed: 11/08/2022] Open
Abstract
Nascent peptide-dependent translation arrest is crucial for the quality control of eukaryotic gene expression. Here we show that the receptor for activated C kinase 1 (RACK1) participates in nascent peptide-dependent translation arrest, and that its binding to the 40S subunit is crucial for this. Translation arrest by a nascent peptide results in Dom34/Hbs1-independent endonucleolytic cleavage of mRNA, and this is stimulated by RACK1. We propose that RACK1 stimulates the translation arrest that is induced by basic amino-acid sequences that leads to endonucleolytic cleavage of the mRNA, as well as to co-translational protein degradation.
Collapse
|
81
|
Shoemaker CJ, Eyler DE, Green R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 2010; 330:369-72. [PMID: 20947765 DOI: 10.1126/science.1192430] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
No-go decay (NGD) is one of several messenger RNA (mRNA) surveillance systems dedicated to the removal of defective mRNAs from the available pool. Two interacting factors, Dom34 and Hbs1, are genetically implicated in NGD in yeast. Using a reconstituted yeast translation system, we show that Dom34:Hbs1 interacts with the ribosome to promote subunit dissociation and peptidyl-tRNA drop-off. Our data further indicate that these recycling activities are shared by the homologous translation termination factor complex eRF1:eRF3, suggesting a common ancestral function. Because Dom34:Hbs1 activity exhibits no dependence on either peptide length or A-site codon identity, we propose that this quality-control system functions broadly to recycle ribosomes throughout the translation cycle whenever stalls occur.
Collapse
Affiliation(s)
- Christopher J Shoemaker
- Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
82
|
Chen L, Muhlrad D, Hauryliuk V, Cheng Z, Lim MK, Shyp V, Parker R, Song H. Structure of the Dom34-Hbs1 complex and implications for no-go decay. Nat Struct Mol Biol 2010; 17:1233-40. [PMID: 20890290 DOI: 10.1038/nsmb.1922] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/02/2010] [Indexed: 11/09/2022]
Abstract
No-go decay (NGD) targets mRNAs with stalls in translation elongation for endonucleolytic cleavage in a process involving the Dom34 and Hbs1 proteins. The crystal structure of a Schizosaccharomyces pombe Dom34-Hbs1 complex reveals an overall shape similar to that of eRF1-eRF3-GTP and EF-Tu-tRNA-GDPNP. Similarly to eRF1 and GTP binding to eRF3, Dom34 and GTP bind to Hbs1 with strong cooperativity, and Dom34 acts as a GTP-dissociation inhibitor (GDI). A marked conformational change in Dom34 occurs upon binding to Hbs1, leading Dom34 to resemble a portion of a tRNA and to position a conserved basic region in a position expected to be near the peptidyl transferase center. These results support the idea that the Dom34-Hbs1 complex functions to terminate translation and thereby commit mRNAs to NGD. Consistent with this role, NGD at runs of arginine codons, which cause a strong block to elongation, is independent of the Dom34-Hbs1 complex.
Collapse
Affiliation(s)
- Liming Chen
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Proc Natl Acad Sci U S A 2010; 107:17575-9. [PMID: 20876129 DOI: 10.1073/pnas.1009598107] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
No-go decay and nonstop decay are mRNA surveillance pathways that detect translational stalling and degrade the underlying mRNA, allowing the correct translation of the genetic code. In eukaryotes, the protein complex of Pelota (yeast Dom34) and Hbs1 translational GTPase recognizes the stalled ribosome containing the defective mRNA. Recently, we found that archaeal Pelota (aPelota) associates with archaeal elongation factor 1α (aEF1α) to act in the mRNA surveillance pathway, which accounts for the lack of an Hbs1 ortholog in archaea. Here we present the complex structure of aPelota and GTP-bound aEF1α determined at 2.3-Å resolution. The structure reveals how GTP-bound aEF1α recognizes aPelota and how aPelota in turn stabilizes the GTP form of aEF1α. Combined with the functional analysis in yeast, the present results provide structural insights into the molecular interaction between eukaryotic Pelota and Hbs1. Strikingly, the aPelota·aEF1α complex structurally resembles the tRNA·EF-Tu complex bound to the ribosome. Our findings suggest that the molecular mimicry of tRNA in the distorted "A/T state" conformation by Pelota enables the complex to efficiently detect and enter the empty A site of the stalled ribosome.
Collapse
|
84
|
Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis. Mol Cell Biol 2010; 30:5562-71. [PMID: 20876302 DOI: 10.1128/mcb.00618-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A set of genome-wide screens for proteins whose absence exacerbates growth defects due to pseudo-haploinsufficiency of ribosomal proteins in Saccharomyces cerevisiae identified Dom34 as being particularly important for cell growth when there is a deficit of 40S ribosomal subunits. In contrast, strains with a deficit of 60S ribosomal proteins were largely insensitive to the loss of Dom34. The slow growth of cells lacking Dom34 and haploinsufficient for a protein of the 40S subunit is caused by a severe shortage of 40S subunits available for translation initiation due to a combination of three effects: (i) the natural deficiency of 40S subunits due to defective synthesis, (ii) the sequestration of 40S subunits due to the large accumulation of free 60S subunits, and (iii) the accumulation of ribosomes "stuck" in a distinct 80S form, insensitive to the Mg(2+) concentration, and at least temporarily unavailable for further translation. Our data suggest that these stuck ribosomes have neither mRNA nor tRNA. We postulate, based on our results and on previously published work, that the stuck ribosomes arise because of the lack of Dom34, which normally resolves a ribosome stalled due to insufficient tRNAs, to structural problems with its mRNA, or to a defect in the ribosome itself.
Collapse
|
85
|
Tomecki R, Dziembowski A. Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. RNA (NEW YORK, N.Y.) 2010; 16:1692-1724. [PMID: 20675404 PMCID: PMC2924532 DOI: 10.1261/rna.2237610] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For a long time it has been assumed that the decay of RNA in eukaryotes is mainly carried out by exoribonucleases, which is in contrast to bacteria, where endoribonucleases are well documented to initiate RNA degradation. In recent years, several as yet unknown endonucleases have been described, which has changed our view on eukaryotic RNA metabolism. Most importantly, it was shown that the primary eukaryotic 3' --> 5' exonuclease, the exosome complex has the ability to endonucleolytically cleave its physiological RNA substrates, and novel endonucleases involved in both nuclear and cytoplasmic RNA surveillance pathways were discovered concurrently. In addition, endoribonucleases responsible for long-known processing steps in the maturation pathways of various RNA classes were recently identified. Moreover, one of the most intensely studied RNA decay pathways--RNAi--is controlled and stimulated by the action of different endonucleases. Furthermore, endoribonucleolytic cleavages executed by various enzymes are also the hallmark of RNA degradation and processing in plant chloroplasts. Finally, multiple context-specific endoribonucleases control qualitative and/or quantitative changes of selected transcripts under particular conditions in different eukaryotic organisms. The aim of this review is to discuss the impact of all of these discoveries on our current understanding of eukaryotic RNA metabolism.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, University of Warsaw, 02-106 Warsaw, Poland
| | | |
Collapse
|
86
|
Belasco JG. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 2010; 11:467-78. [PMID: 20520623 PMCID: PMC3145457 DOI: 10.1038/nrm2917] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its universal importance for controlling gene expression, mRNA degradation was initially thought to occur by disparate mechanisms in eukaryotes and bacteria. This conclusion was based on differences in the structures used by these organisms to protect mRNA termini and in the RNases and modifying enzymes originally implicated in mRNA decay. Subsequent discoveries have identified several striking parallels between the cellular factors and molecular events that govern mRNA degradation in these two kingdoms of life. Nevertheless, some key distinctions remain, the most fundamental of which may be related to the different mechanisms by which eukaryotes and bacteria control translation initiation.
Collapse
Affiliation(s)
- Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, 10016, USA.
| |
Collapse
|
87
|
Harigaya Y, Parker R. No-go decay: a quality control mechanism for RNA in translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:132-41. [PMID: 21956910 DOI: 10.1002/wrna.17] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells have evolved multiple quality control mechanisms that recognize and eliminate defective mRNA during the process of translation. One mechanism, referred to as No-go decay (NGD), targets mRNAs with elongation stalls for degradation initiated by endonucleolytic cleavage in the vicinity of the stalled ribosome. NGD is promoted by the evolutionarily conserved Dom34 and Hbs1 proteins, which are related to the translation termination factors eRF1 and eRF3, respectively. NGD is likely to occur by Dom34/Hbs1 interacting with the A site in the ribosome leading to release of the peptide or peptidyl-tRNA. The process of NGD and/or the function of Dom34/Hbs1 appear to be important in several different biological contexts.
Collapse
Affiliation(s)
- Yuriko Harigaya
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
88
|
Burnicka-Turek O, Kata A, Buyandelger B, Ebermann L, Kramann N, Burfeind P, Hoyer-Fender S, Engel W, Adham IM. Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton. BMC Cell Biol 2010; 11:28. [PMID: 20406461 PMCID: PMC2867792 DOI: 10.1186/1471-2121-11-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/20/2010] [Indexed: 02/05/2023] Open
Abstract
Background Pelota (PELO) is an evolutionary conserved protein, which has been reported to be involved in the regulation of cell proliferation and stem cell self-renewal. Recent studies revealed the essential role of PELO in the No-Go mRNA decay, by which mRNA with translational stall are endonucleotically cleaved and degraded. Further, PELO-deficient mice die early during gastrulation due to defects in cell proliferation and/or differentiation. Results We show here that PELO is associated with actin microfilaments of mammalian cells. Overexpression of human PELO in Hep2G cells had prominent effect on cell growth, cytoskeleton organization and cell spreading. To find proteins interacting with PELO, full-length human PELO cDNA was used as a bait in a yeast two-hybrid screening assay. Partial sequences of HAX1, EIF3G and SRPX protein were identified as PELO-interacting partners from the screening. The interactions between PELO and HAX1, EIF3G and SRPX were confirmed in vitro by GST pull-down assays and in vivo by co-immunoprecipitation. Furthermore, the PELO interaction domain was mapped to residues 268-385 containing the c-terminal and acidic tail domain. By bimolecular fluorescence complementation assay (BiFC), we found that protein complexes resulting from the interactions between PELO and either HAX1, EIF3G or SRPX were mainly localized to cytoskeletal filaments. Conclusion We could show that PELO is subcellularly localized at the actin cytoskeleton, interacts with HAX1, EIF3G and SRPX proteins and that this interaction occurs at the cytoskeleton. Binding of PELO to cytoskeleton-associated proteins may facilitate PELO to detect and degrade aberrant mRNAs, at which the ribosome is stalled during translation.
Collapse
|
89
|
Leporé N, Lafontaine DLJ. [<< Catch me if you can >>: how the structural and functional integrity of eukaryotic RNA molecules is monitored by surveillance mechanisms]. Med Sci (Paris) 2010; 26:259-66. [PMID: 20346275 DOI: 10.1051/medsci/2010263259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular RNAs are invariably organized in ribonucleoprotein particles, or RNPs, regardless of their size, structure or function. RNPs are monitored by active surveillance mechanisms for their structural and functional integrity at every single step of their "life". A limited number of key endoRNase and/or exoRNase activities are recruited to multiple metabolic pathways by specific adaptors. These trans-acting factors are often endowed with synthesis activities in the formation of mature RNA termini, as well as degradation and surveillance activities. Quality control mechanisms are robust because they are partially redundant. The actual mechanisms that discriminate aberrant RNAs from normal RNAs are still loosely defined. Surveillance is essential to cellular homeostasis and has been linked to several human diseases.
Collapse
Affiliation(s)
- Nathalie Leporé
- Fonds de la recherche scientifique (FRS-FNRS), Métabolisme de l'ARN, Institut de biologie et de médecine moléculaires (IBMM), Université Libre de Bruxelles (ULB), avenue des Professeurs Jeener et Brachet, 12, B-6041 Gosselies, Belgique
| | | |
Collapse
|