51
|
Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2014; 111:E4458-67. [PMID: 25288734 DOI: 10.1073/pnas.1411199111] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS.
Collapse
|
52
|
Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem J 2014; 458:203-11. [PMID: 24328859 DOI: 10.1042/bj20131350] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increased catalytic activity of CBS (cystathionine β-synthase) was recently shown to mediate vasodilation of the cerebral microcirculation, which is initiated within minutes of the onset of acute hypoxia. To test whether chronic hypoxia was a stimulus for increased CBS expression, U87-MG human glioblastoma and PC12 rat phaeochromocytoma cells were exposed to 1% or 20% O2 for 24-72 h. CBS mRNA and protein expression were increased in hypoxic cells. Hypoxic induction of CBS expression was abrogated in cells transfected with vector encoding shRNA targeting HIF (hypoxia-inducible factor) 1α or 2α. Exposure of rats to hypobaric hypoxia (0.35 atm; 1 atm=101.325 kPa) for 3 days induced increased CBS mRNA, protein and catalytic activity in the cerebral cortex and cerebellum, which was blocked by administration of the HIF inhibitor digoxin. HIF-binding sites, located 0.8 and 1.2 kb 5' to the transcription start site of the human CBS and rat Cbs genes respectively, were identified by ChIP assays. A 49-bp human sequence, which encompassed an inverted repeat of the core HIF-binding site, functioned as a hypoxia-response element in luciferase reporter transcription assays. Thus HIFs mediate tissue-specific CBS expression, which may augment cerebral vasodilation as an adaptive response to chronic hypoxia.
Collapse
|
53
|
Vozdek R, Hnízda A, Krijt J, Será L, Kožich V. Biochemical properties of nematode O-acetylserine(thiol)lyase paralogs imply their distinct roles in hydrogen sulfide homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2691-701. [PMID: 24100226 DOI: 10.1016/j.bbapap.2013.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
Abstract
O-Acetylserine(thiol)lyases (OAS-TLs) play a pivotal role in a sulfur assimilation pathway incorporating sulfide into amino acids in microorganisms and plants, however, these enzymes have not been found in the animal kingdom. Interestingly, the genome of the roundworm Caenorhabditis elegans contains three expressed genes predicted to encode OAS-TL orthologs (cysl-1-cysl-3), and a related pseudogene (cysl-4); these genes play different roles in resistance to hypoxia, hydrogen sulfide and cyanide. To get an insight into the underlying molecular mechanisms we purified the three recombinant worm OAS-TL proteins, and we determined their enzymatic activities, substrate binding affinities, quaternary structures and the conformations of their active site shapes. We show that the nematode OAS-TL orthologs can bind O-acetylserine and catalyze the canonical reaction although this ligand may more likely serve as a competitive inhibitor to natural substrates instead of being a substrate for sulfur assimilation. In addition, we propose that S-sulfocysteine may be a novel endogenous substrate for these proteins. However, we observed that the three OAS-TL proteins are conformationally different and exhibit distinct substrate specificity. Based on the available evidences we propose the following model: CYSL-1 interacts with EGL-9 and activates HIF-1 that upregulates expression of genes detoxifying sulfide and cyanide, the CYSL-2 acts as a cyanoalanine synthase in the cyanide detoxification pathway and simultaneously produces hydrogen sulfide, while the role of CYSL-3 remains unclear although it exhibits sulfhydrylase activity in vitro. All these data indicate that C. elegans OAS-TL paralogs have distinct cellular functions and may play different roles in maintaining hydrogen sulfide homeostasis.
Collapse
Affiliation(s)
- Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08, Czech Republic
| | | | | | | | | |
Collapse
|
54
|
Bekpinar S, Develi-Is S, Unlucerci Y, Kusku-Kiraz Z, Uysal M, Gurdol F. Modulation of arginine and asymmetric dimethylarginine concentrations in liver and plasma by exogenous hydrogen sulfide in LPS-induced endotoxemia. Can J Physiol Pharmacol 2013; 91:1071-5. [PMID: 24289078 DOI: 10.1139/cjpp-2013-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plasma levels of asymmetric dimethylarginine (ADMA) are known to be elevated under pathological conditions, but reports on intracellular ADMA levels are scarce. In this study, we investigated whether lipopolysaccharide (LPS)-induced endotoxemia alters the intra- and extra-cellular partition of l-arginine and ADMA. The effect of H2S pretreatment was also researched. Wistar rats were given sodium hydrogen sulfide (NaHS, 1 mg·(kg body mass)(-1)) one hour before the LPS injections (20 mg·kg(-1)). Six hours after the LPS treatment, the animals were sacrificed. Myeloperoxidase (MPO) and dimethylarginine dimethylaminohydrolase (DDAH) activities and levels of hypoxia-inducible factor (HIF)-1α were measured in the liver. ADMA and arginine levels were determined using HPLC. LPS injection caused liver injury, as evidenced by the activities of alanine transaminase, aspartate transaminase, and arginase. LPS increased l-arginine content and decreased DDAH activity in the rat liver. MPO activity and HIF-1α levels indicated inflammation and hypoxia. Despite the accumulation of ADMA in the plasma, the level remained unchanged in the liver. NaHS pretreatment restored both the DDAH activity and intracellular l-arginine levels. It is concluded that increased H2S generation has a potency to restore hepatic l-arginine levels and ADMA handling in endotoxemia. Extra- and intra-cellular partitions of ADMA seem to depend on transport proteins as well as the DDAH activity.
Collapse
Affiliation(s)
- Seldag Bekpinar
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
55
|
Pan H, Chen D, Liu B, Xie X, Zhang J, Yang G. Effects of sodium hydrosulfide on intestinal mucosal injury in a rat model of cardiac arrest and cardiopulmonary resuscitation. Life Sci 2013; 93:24-29. [PMID: 23727354 DOI: 10.1016/j.lfs.2013.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/19/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022]
|
56
|
Wu B, Teng H, Yang G, Wu L, Wang R. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α. Br J Pharmacol 2013; 167:1492-505. [PMID: 22831549 DOI: 10.1111/j.1476-5381.2012.02113.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The accumulation of hypoxia-inducible factor-1α (HIF-1α) is under the influence of hydrogen sulfide (H(2) S), which regulates hypoxia responses. The regulation of HIF-1α accumulation by H(2) S has been shown, but the mechanisms for this effect are largely elusive and controversial. This study aimed at addressing the controversial mechanisms for and the functional importance of the interaction of H(2) S and HIF-1α protein. EXPERIMENTAL APPROACH HIF-1α protein levels and HIF-1α transcriptional activity were detected by Western blotting and luciferase assay. The mechanisms for H(2) S-regulated HIF-1α protein levels were determined using short interfering RNA transfection, co-immunoprecipitation and 7-methyl-GTP sepharose 4B pull-down assay. Angiogenic activity was evaluated using tube formation assay in EA.hy926 cells. KEY RESULTS The accumulation of HIF-1α protein under hypoxia (1% O(2) ) or hypoxia-mimetic conditions was reversed by sodium hydrosulfide (NaHS). This effect of NaHS was not altered after blocking the ubiquitin-proteasomal pathway for HIF-1α degradation; however, blockade of protein translation with cycloheximide abolished the effect of NaHS on the half-life of HIF-1α protein. Knockdown of eukaryotic translation initiation factor 2α (eIF2α) suppressed the effect of NaHS on HIF-1α protein accumulation under hypoxia. NaHS inhibited the expression of VEGF under hypoxia. It also decreased in vitro capillary tube formation and cell proliferation of EA.hy926 cells under hypoxia, but stimulated the tube formation under normoxia. CONCLUSIONS AND IMPLICATIONS H(2) S suppresses HIF-1α translation by enhancing eIF2α phosphorylation under hypoxia. The interaction of H(2) S and HIF-1α inhibits the angiogenic activity of vascular endothelial cells under hypoxia through the down-regulation of VEGF.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | | | | | | | | |
Collapse
|
57
|
Iranon NN, Miller DL. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front Genet 2012; 3:257. [PMID: 23233860 PMCID: PMC3516179 DOI: 10.3389/fgene.2012.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/04/2012] [Indexed: 12/19/2022] Open
Abstract
The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O(2) (hypoxia) to maintain O(2) homeostasis, and consider interactions between hypoxia responses, nutritional status, and H(2)S signaling. O(2) is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O(2) available. Animals must sense declining O(2) availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H(2)S) protects against cellular damage and death in hypoxia. These results suggest that H(2)S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H(2)S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals.
Collapse
Affiliation(s)
- Nicole N Iranon
- Department of Biochemistry, University of Washington School of Medicine Seattle, WA, USA ; Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine Seattle, WA, USA
| | | |
Collapse
|
58
|
Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 2012; 1:e004093. [PMID: 23316304 PMCID: PMC3541625 DOI: 10.1161/jaha.112.004093] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/14/2012] [Indexed: 12/03/2022]
Abstract
Background Hydrogen sulfide (H2S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H2S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the effect of H2S on NO metabolism during chronic tissue ischemia and subsequent effects on ischemic vascular remodeling responses. Methods and Results The unilateral, permanent femoral artery ligation model of hind‐limb ischemia was performed in C57BL/6J wild‐type and endothelial NO synthase–knockout mice to evaluate exogenous H2S effects on NO bioavailability and ischemic revascularization. We found that H2S selectively restored chronic ischemic tissue function and viability by enhancing NO production involving both endothelial NO synthase and nitrite reduction mechanisms. Importantly, H2S increased ischemic tissue xanthine oxidase activity, hind‐limb blood flow, and angiogenesis, which were blunted by the xanthine oxidase inhibitor febuxostat. H2S treatment increased ischemic tissue and endothelial cell hypoxia‐inducible factor‐1α expression and activity and vascular endothelial growth factor protein expression and function in a NO‐dependent manner that was required for ischemic vascular remodeling. Conclusions These data demonstrate that H2S differentially regulates NO metabolism during chronic tissue ischemia, highlighting novel biochemical pathways to increase NO bioavailability for ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shyamal C Bir
- Departments of Pathology and Medicine, LSU Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1419] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
60
|
Abstract
SIGNIFICANCE An abundance of experimental evidence suggests that hydrogen sulfide (H(2)S) plays a prominent role in physiology and pathophysiology. Many targets exist for H(2)S therapy. The molecular targets of H(2)S include proteins, enzymes, transcription factors, and membrane ion channels. RECENT ADVANCES Novel H(2)S precursors are being synthesized and discovered that are capable of releasing H(2)S in a slow and sustained manner. This presents a novel and advantageous approach to H(2)S therapy for treatment of chronic conditions associated with a decline in endogenous H(2)S, such as diabetes and cardiovascular disease. CRITICAL ISSUES While H(2)S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H(2)S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H(2)S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H(2)S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. FUTURE DIRECTIONS H(2)S has become a molecule of great interest, and several slow-releasing H(2)S prodrugs are currently under development. We believe that additional agents regulating H(2)S bioavailability will be developed during the next 10 years.
Collapse
Affiliation(s)
- Benjamin Lee Predmore
- Department of Surgery-Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
61
|
Novel structural arrangement of nematode cystathionine β-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J 2012; 443:535-47. [PMID: 22240119 PMCID: PMC3316156 DOI: 10.1042/bj20111478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal 5 *-phosphate)-dependent proteins that maintain cellular homocysteine homoeostasis and produce cystathionine and hydrogen sulfide. In the present study, we describe a novel structural arrangement of the CBS enzyme encoded by the cbs-1 gene of the nematode Caenorhabditis elegans. The CBS-1 protein contains a unique tandem repeat of two evolutionarily conserved catalytic regions in a single polypeptide chain. These repeats include a catalytically active C-terminal module containing a PLP-binding site and a less conserved N-terminal module that is unable to bind the PLP cofactor and cannot catalyse CBS reactions, as demonstrated by analysis of truncated variants and active-site mutant proteins. In contrast with other metazoan enzymes, CBS-1 lacks the haem and regulatory Bateman domain essential for activation by AdoMet (S-adenosylmethionine) and only forms monomers. We determined the tissue and subcellular distribution of CBS-1 and showed that cbs-1 knockdown by RNA interference leads to delayed development and to an approximately 10-fold elevation of homocysteine concentrations in nematode extracts. The present study provides the first insight into the metabolism of sulfur amino acids and hydrogen sulfide in C. elegans and shows that nematode CBSs possess a structural feature that is unique among CBS proteins.
Collapse
|
62
|
Shi X, Shao M, Zhang L, Ma Y, Zhang Z. Screening of genes related to sulfide metabolism in Urechis unicinctus (Echiura, Urechidae) using suppression subtractive hybridization and cDNA microarray analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:254-9. [PMID: 22591583 DOI: 10.1016/j.cbd.2012.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 12/13/2022]
Abstract
Exogenous sulfide can generally induce metabolic injuries in most organisms and even cause death. However, organisms inhabiting intertidal zones, hydrothermal vents, and cold seeps, can tolerate, metabolize, and utilize sulfide. In this study, both suppression subtractive hybridization and cDNA microarray analysis were employed to screen sulfide metabolism-related genes from the body wall in echiuran worm Urechis unicinctus, a marine sediment species. A total of 3456 monoclones were isolated and 82 were identified as differentially expressed genes in worms exposed to 50 μM sulfide for 24 h, compared to controls. The identified genes encoded proteins with multiple processes, including metabolism, cellular process, biological regulation, response to stimulus, multicellular organismal process, localization, development, and cellular component organization. Eight genes, serase, vacuolar protein, src tyrosine kinase, sulfide oxidase-like oxidoreductase, aprataxin, SN-RNP, aminopeptidase, and predicted protein, were selected to verify expression in the worm using qRT-PCR. The agreement of gene expression evaluation was 62.5% between the results of microarray analysis and qRT-PCR. These new data will provide clues for further probing of the molecular mechanism of sulfide metabolism.
Collapse
Affiliation(s)
- Xiaoli Shi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
63
|
Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, Chen A, Wink DA. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 2012; 25:769-93. [PMID: 22263838 PMCID: PMC4061765 DOI: 10.1021/tx2005234] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H₂S (and the nonendogenously generated O₂), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, USA.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Szabó C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol 2012; 164:853-65. [PMID: 21198548 DOI: 10.1111/j.1476-5381.2010.01191.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vascular tissues, hydrogen sulphide (H(2)S) is mainly produced from L-cysteine by the cystathionine gamma-lyase (CSE) enzyme. Recent studies show that administration of H(2)S to endothelial cells in culture stimulates cell proliferation, migration and tube formation. In addition, administration of H(2)S to chicken chorioallantoic membranes stimulates blood vessel growth and branching. Furthermore, in vivo administration of H(2)S to mice stimulates angiogenesis, as demonstrated in the Matrigel plug assay. Pathways involved in the angiogenic response of H(2)S include the PI-3K/Akt pathway, the mitogen activated protein kinase pathway, as well as ATP-sensitive potassium channels. Indirect evidence also suggests that the recently demonstrated role of H(2)S as an inhibitor of phosphodiesterases may play an additional role in its pro-angiogenic effect. The endogenous role of H(2)S in the angiogenic response has been demonstrated in the chicken chorioallantoic membranes, in endothelial cells in vitro and ex vivo. Importantly, the pro-angiogenic effect of vascular endothelial growth factor (but not of fibroblast growth factor) involves the endogenous production of H(2)S. The pro-angiogenic effects of H(2)S are also apparent in vivo: in a model of hindlimb ischaemia-induced angiogenesis, H(2)S induces a marked pro-angiogenic response; similarly, in a model of coronary ischaemia, H(2)S exerts angiogenic effects. Angiogenesis is crucial in the early stage of wound healing. Accordingly, topical administration of H(2)S promotes wound healing, whereas genetic ablation of CSE attenuates it. Pharmacological modulation of H(2)S-mediated angiogenic pathways may open the door for novel therapeutic approaches.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, 77555-1102, USA.
| | | |
Collapse
|
65
|
Ma DK, Vozdek R, Bhatla N, Horvitz HR. CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron 2012; 73:925-40. [PMID: 22405203 PMCID: PMC3305813 DOI: 10.1016/j.neuron.2011.12.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2011] [Indexed: 12/17/2022]
Abstract
The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Dengke K. Ma
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
66
|
Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S, Takenaga K, Fukuda K, Hirota K. Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 2012; 16:203-16. [PMID: 22004513 PMCID: PMC3234659 DOI: 10.1089/ars.2011.3882] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AIMS In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H(2)S) is an endogenously synthesized gaseous molecule that acts as an important signaling molecule in the living body. Transcription factor hypoxia-inducible factor 1 (HIF-1) is known to respond to intracellular reduced oxygen (O(2)) availability, which is regulated by an elaborate balance between O(2) supply and demand. However, the effect of H(2)S on HIF-1 activity under hypoxic conditions is largely unknown in mammalian cells. In this study, we tried to elucidate the effect of H(2)S on hypoxia-induced HIF-1 activation adopting cultured cells and mice. RESULTS The H(2)S donors sodium hydrosulfide and sodium sulfide in pharmacological concentrations reversibly reduced cellular O(2) consumption and inhibited hypoxia- but not anoxia-induced HIF-1α protein accumulation and expression of genes downstream of HIF-1 in established cell lines. H(2)S did not affect HIF-1 activation induced by the HIF-α hydroxylases inhibitors desferrioxamine or CoCl(2). Experimental evidence adopting von Hippel-Lindau (VHL)- or mitochondria-deficient cells indicated that H(2)S did not affect neosynthesis of HIF-1α protein but destabilized HIF-1α in a VHL- and mitochondria-dependent manner. We also demonstrate that exogenously administered H(2)S inhibited HIF-1-dependent gene expression in mice. INNOVATION For the first time, we show that H(2)S modulates intracellular O(2) homeostasis and regulates activation of HIF-1 and the subsequent gene expression induced by hypoxia by using an in vitro system with established cell lines and an in vivo system in mice. CONCLUSIONS We demonstrate that H(2)S inhibits hypoxia-induced HIF-1 activation in a VHL- and mitochondria-dependent manner.
Collapse
Affiliation(s)
- Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Jia X, He W, Murchie AIH, Chen D. The global transcriptional response of fission yeast to hydrogen sulfide. PLoS One 2011; 6:e28275. [PMID: 22164259 PMCID: PMC3229568 DOI: 10.1371/journal.pone.0028275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/04/2011] [Indexed: 11/23/2022] Open
Abstract
Background Hydrogen sulfide (H2S) is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H2S activity is not completely understood, it is known to be involved in a number of cellular processes; H2S can affect ion channels, transcription factors and protein kinases in mammals. Methodology/Principal Findings In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H2S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H2S. Through the functional classification of genes whose expression profile changed in response to H2S, we found that H2S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H2S and the stress response. We identified that the target genes of the MAPK pathway respond to H2S; we also identified that a number of transporters respond to H2S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H2S treatment and that H2S can reduce mitochondrial oxygen consumption. Conclusion/Significance This study identifies potential molecular targets of the signaling molecule H2S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H2S in human diseases.
Collapse
Affiliation(s)
- Xu Jia
- Institute of Biomedical Science, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Pudong, Shanghai, China
| | - Weizhi He
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Alastair I. H. Murchie
- Institute of Biomedical Science, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Pudong, Shanghai, China
- * E-mail: (DC); (AIHM)
| | - Dongrong Chen
- Institute of Biomedical Science, Fudan University, Shanghai, China
- School of Pharmacy, Fudan University, Pudong, Shanghai, China
- * E-mail: (DC); (AIHM)
| |
Collapse
|
68
|
Sulfurous gases as biological messengers and toxins: comparative genetics of their metabolism in model organisms. J Toxicol 2011; 2011:394970. [PMID: 22131987 PMCID: PMC3216388 DOI: 10.1155/2011/394970] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 01/31/2023] Open
Abstract
Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions.
Collapse
|
69
|
HIF-1 and SKN-1 coordinate the transcriptional response to hydrogen sulfide in Caenorhabditis elegans. PLoS One 2011; 6:e25476. [PMID: 21980473 PMCID: PMC3183046 DOI: 10.1371/journal.pone.0025476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/05/2011] [Indexed: 01/12/2023] Open
Abstract
Hydrogen sulfide (H2S) has dramatic physiological effects on animals that are associated with improved survival. C. elegans grown in H2S are long-lived and thermotolerant. To identify mechanisms by which adaptation to H2S effects physiological functions, we have measured transcriptional responses to H2S exposure. Using microarray analysis we observe rapid changes in the abundance of specific mRNAs. The number and magnitude of transcriptional changes increased with the duration of H2S exposure. Functional annotation suggests that genes associated with protein homeostasis are upregulated upon prolonged exposure to H2S. Previous work has shown that the hypoxia-inducible transcription factor, HIF-1, is required for survival in H2S. In fact, we show that hif-1 is required for most, if not all, early transcriptional changes in H2S. Moreover, our data demonstrate that SKN-1, the C. elegans homologue of NRF2, also contributes to H2S-dependent changes in transcription. We show that these results are functionally important, as skn-1 is essential to survive exposure to H2S. Our results suggest a model in which HIF-1 and SKN-1 coordinate a broad transcriptional response to H2S that culminates in a global reorganization of protein homeostasis networks.
Collapse
|
70
|
Abstract
Hydrogen sulfide (H2S), an endogenously produced small molecule, protects animals from various stresses. Recent studies demonstrate that animals exposed to H2S are long lived, resistant to hypoxia, and resistant to ischemia–reperfusion injury. We performed a forward genetic screen to gain insights into the molecular mechanisms Caenorhabditis elegans uses to appropriately respond to H2S. At least two distinct pathways appear to be important for this response, including the H2S-oxidation pathway and the hydrogen cyanide (HCN)-assimilation pathway. The H2S-oxidation pathway requires two distinct enzymes important for the oxidation of H2S: the sulfide:quinone reductase sqrd-1 and the dioxygenase ethe-1. The HCN-assimilation pathway requires the cysteine synthase homologs cysl-1 and cysl-2. A low dose of either H2S or HCN can activate hypoxia-inducible factor 1 (HIF-1), which is required for C. elegans to respond to either gas. sqrd-1 and cysl-2 represent the entry points in the H2S-oxidation and HCN-assimilation pathways, respectively, and expression of both of these enzymes is highly induced by HIF-1 in response to both H2S and HCN. In addition to their role in appropriately responding to H2S and HCN, we found that cysl-1 and cysl-2 are both essential mediators of innate immunity against fast paralytic killing by Pseudomonas. Furthermore, in agreement with these data, we showed that growing worms in the presence of H2S is sufficient to confer resistance to Pseudomonas fast paralytic killing. Our results suggest the hypoxia-independent hif-1 response in C. elegans evolved to respond to the naturally occurring small molecules H2S and HCN.
Collapse
|
71
|
Abstract
Hydrogen sulfide (H₂S) is a gaseous mediator synthesized from cysteine by cystathionine γ lyase (CSE) and other naturally occurring enzymes. Pharmacological experiments using H₂S donors and genetic experiments using CSE knockout mice suggest important roles for this vasodilator gas in the regulation of blood vessel caliber, cardiac response to ischemia/reperfusion injury, and inflammation. That H₂S inhibits cytochrome c oxidase and reduces cell energy production has been known for many decades, but more recently, a number of additional pharmacological targets for this gas have been identified. H₂S activates K(ATP) and transient receptor potential (TRP) channels but usually inhibits big conductance Ca²(+)-sensitive K(+) (BK(Ca)) channels, T-type calcium channels, and M-type calcium channels. H₂S may inhibit or activate NF-κB nuclear translocation while affecting the activity of numerous kinases including p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt. These disparate effects may be secondary to the well-known reducing activity of H₂S and/or its ability to promote sulfhydration of protein cysteine moieties within the cell.
Collapse
Affiliation(s)
- Ling Li
- Imperial College London, United Kingdom
| | | | | |
Collapse
|
72
|
Leiser SF, Kaeberlein M. The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol Chem 2011; 391:1131-7. [PMID: 20707608 DOI: 10.1515/bc.2010.123] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the past year and a half, five studies have independently established a direct connection between the hypoxic response transcription factor, HIF-1, and aging in Caenorhabditis elegans. These studies demonstrated that HIF-1 can both promote and limit longevity via pathways that are mechanistically distinct. Here, we review the current state of knowledge regarding modulation of aging by HIF-1 and speculate on potential aspects of HIF-1 function that could be relevant for mammalian longevity and healthspan.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
73
|
Environmental and genetic preconditioning for long-term anoxia responses requires AMPK in Caenorhabditis elegans. PLoS One 2011; 6:e16790. [PMID: 21304820 PMCID: PMC3033420 DOI: 10.1371/journal.pone.0016790] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/14/2011] [Indexed: 01/04/2023] Open
Abstract
Background Preconditioning environments or therapeutics, to suppress the cellular damage associated with severe oxygen deprivation, is of interest to our understanding of diseases associated with oxygen deprivation. Wildtype C. elegans exposed to anoxia enter into a state of suspended animation in which energy-requiring processes reversibly arrest. C. elegans at all developmental stages survive 24-hours of anoxia exposure however, the ability of adult hermaphrodites to survive three days of anoxia significantly decreases. Mutations in the insulin-like signaling receptor (daf-2) and LIN-12/Notch (glp-1) lead to an enhanced long-term anoxia survival phenotype. Methodology/Principal Findings In this study we show that the combined growth environment of 25°C and a diet of HT115 E. coli will precondition adult hermaphrodites to survive long-term anoxia; many of these survivors have normal movement after anoxia treatment. Animals fed the drug metformin, which induces a dietary-restriction like state in animals and activates AMPK in mammalian cell culture, have a higher survival rate when exposed to long-term anoxia. Mutations in genes encoding components of AMPK (aak-2, aakb-1, aakb-2, aakg-2) suppress the environmentally and genetically induced long-term anoxia survival phenotype. We further determine that there is a correlation between the animals that survive long-term anoxia and increased levels of carminic acid staining, which is a fluorescent dye that incorporates in with carbohydrates such as glycogen. Conclusions/Significance We conclude that small changes in growth conditions such as increased temperature and food source can influence the physiology of the animal thus affecting the responses to stress such as anoxia. Furthermore, this supports the idea that metformin should be further investigated as a therapeutic tool for treatment of oxygen-deprived tissues. Finally, the capacity for an animal to survive long bouts of severe oxygen deprivation is likely dependent on specific subunits of the heterotrimeric protein AMPK and energy stores such as carbohydrates.
Collapse
|
74
|
Bryan S, Yang G, Wang R, Khaper N. Cystathionine gamma-lyase-deficient smooth muscle cells exhibit redox imbalance and apoptosis under hypoxic stress conditions. Exp Clin Cardiol 2011; 16:e36-e41. [PMID: 22131857 PMCID: PMC3206107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hydrogen sulphide (H(2)S) has recently emerged as a novel and important gasotransmitter in the cardiovascular system, where it is generated mainly by cystathionine gamma-lyase (CSE). Abnormal metabolism and functions of the CSE/H(2)S pathway have been linked to various cardiovascular diseases including atherosclerosis and hypertension. An important role for H(2)S in regulating the balance between cellular growth and death has been demonstrated whereby inhibition of the endogenous CSE/H(2)S pathway results in greater apoptosis of vascular smooth muscle cells (SMCs). H(2)S is increasingly recognized as a critical regulator of vascular integrity, but its role in SMCs during hypoxia has not been explored in a model of CSE deficiency. METHODS Cell viability, apoptosis, redox status and mitochondrial activity in hypoxia-exposed (12 h at 1% O(2)) SMCs derived from the mesenteric artery of CSE-knockout (CSE-KO) mice were analyzed. These were compared with those from CSE-wild-type (CSE-WT) mice. RESULTS CSE-KO cells exhibited redox imbalance and aberrant mitochondrial activity versus CSE-WT cells, indicating an essential regulatory role for the endogenous CSE/H(2)S pathway on SMC function. CSE-KO cells were also more susceptible to hypoxia-induced cell death, indicating a critical contribution of endogenous CSE/H(2)S pathway to the protective hypoxia stress response. CONCLUSION These findings support the concept that H(2)S is a crucial regulator of vascular homeostasis, the deficiency of which is associated with various pathologies, and provide further evidence that H(2)S is a potent vasculoprotectant.
Collapse
Affiliation(s)
| | | | | | - Neelam Khaper
- Department of Biology
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario
| |
Collapse
|
75
|
Zhong JF, Wang SP, Shi XQ, Mu LL, Li GQ. Hydrogen sulfide exposure increases desiccation tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1777-1782. [PMID: 20670629 DOI: 10.1016/j.jinsphys.2010.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 05/29/2023]
Abstract
Hydrogen sulfide (H(2)S) has been shown to effect physiological alterations in several animals, frequently leading to an improvement in survival in otherwise lethal conditions. In the present paper, a volatility bioassay system was developed to evaluate the survivorship of Drosophila melanogaster adults exposed to H(2)S gas that emanated from a K(2)S donor. Using this bioassay system, we found that H(2)S exposure significantly increased the survival of flies under arid and food-free conditions, but not under humid and food-free conditions. This suggests that H(2)S plays a role in desiccation tolerance but not in nutritional stress alleviation. To further confirm the suggestion, the mRNA levels of two desiccation tolerance-related genes Frost and Desat2, and a starvation-related gene Smp-30, from the control and treated flies were measured by quantitative real-time PCR. These genes were up-regulated within 2h when the flies transferred to the arid and food-free bioassay system. Addition of H(2)S further increased Frost and Desat2 mRNA levels, in contrast to Smp-30. Thus, our molecular results were consistent with our bioassay findings. Because of the molecular and genetic tools available for Drosophila, the fly will be a useful system for determining how H(2)S regulates various physiological alterations.
Collapse
Affiliation(s)
- Jian-Feng Zhong
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
76
|
Shao Z, Zhang Y, Ye Q, Saldanha JN, Powell-Coffman JA. C. elegans SWAN-1 Binds to EGL-9 and regulates HIF-1-mediated resistance to the bacterial pathogen Pseudomonas aeruginosa PAO1. PLoS Pathog 2010; 6:e1001075. [PMID: 20865124 PMCID: PMC2928816 DOI: 10.1371/journal.ppat.1001075] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/27/2010] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing. Pseudomonas aeruginosa is a common bacterial pathogen that can infect a wide range of animals. In some conditions, P. aeruginosa produces cyanide, a toxin that limits cellular capacity to metabolize oxygen and produce energy. The nematode Caenorhabditis elegans is a powerful genetic model system for understanding the mechanisms of stress response and pathogen resistance. Here, we show that HIF-1, a DNA-binding transcription factor that mediates cellular responses to low oxygen, can protect C. elegans from P. aeruginosa fast killing. Additionally, we identify swan-1 as a gene that functions to inhibit HIF-1 activity and suppress P. aeruginosa resistance. The SWAN-1 protein binds directly to the oxygen-sensing EGL-9 enzyme that controls HIF-1 stability and activity. This study advances understanding of HIF-1 regulatory networks, defines connections between hypoxia response and P. aeruginosa fast killing, and provides new insights into mechanisms by which animals can resist this bacterial pathogen.
Collapse
Affiliation(s)
- Zhiyong Shao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yi Zhang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Qi Ye
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jenifer Neeta Saldanha
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
77
|
Powell-Coffman JA. Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab 2010; 21:435-40. [PMID: 20335046 DOI: 10.1016/j.tem.2010.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/14/2010] [Accepted: 02/18/2010] [Indexed: 11/20/2022]
Abstract
In normal development and homeostasis and in many disease states, cells and tissues must overcome the challenge of oxygen deprivation (hypoxia). The nematode C. elegans is emerging as an increasingly powerful system in which to understand how animals adapt to moderate hypoxia and survive extreme hypoxic insults. This review provides an overview of C. elegans responses to hypoxia, ranging from adaptation and arrest to death, and highlights some of the recent studies that have provided important insights into hypoxia signaling and resistance. Many of the key genes and pathways are evolutionarily conserved, and C. elegans hypoxia research promises to inform our understanding of oxygen-sensitive signaling and survival in mammalian development and disease.
Collapse
Affiliation(s)
- Jo Anne Powell-Coffman
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|