51
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
52
|
Dave RK, Naylor AJ, Young SP, Bayley R, Hardie DL, Haworth O, Rider DA, Cook AD, Buckley CD, Kellie S. Differential expression of CD148 on leukocyte subsets in inflammatory arthritis. Arthritis Res Ther 2014; 15:R108. [PMID: 24016860 PMCID: PMC3978474 DOI: 10.1186/ar4288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Monocytic cells play a central role in the aetiology of rheumatoid arthritis, and manipulation of the activation of these cells is an approach currently under investigation to discover new therapies for this and associated diseases. CD148 is a transmembrane tyrosine phosphatase that is highly expressed in monocytes and macrophages and, since this family of molecules plays an important role in the regulation of cell activity, CD148 is a potential target for the manipulation of macrophage activation. For any molecule to be considered a therapeutic target, it is important for it to be increased in activity or expression during disease. Methods We have investigated the expression of CD148 in two murine models of arthritis and in joints from rheumatoid arthritis (RA) patients using real-time PCR, immunohistochemistry, and studied the effects of proinflammatory stimuli on CD148 activity using biochemical assays. Results We report that CD148 mRNA is upregulated in diseased joints of mice with collagen-induced arthritis. Furthermore, we report that in mice CD148 protein is highly expressed in infiltrating monocytes of diseased joints, with a small fraction of T cells also expressing CD148. In human arthritic joints both T cells and monocytes expressed high levels of CD148, however, we show differential expression of CD148 in T cells and monocytes from normal human peripheral blood compared to peripheral blood from RA and both normal and RA synovial fluid. Finally, we show that synovial fluid from rheumatoid arthritis patients suppresses CD148 phosphatase activity. Conclusions CD148 is upregulated in macrophages and T cells in human RA samples, and its activity is enhanced by treatment with tumour necrosis factor alpha (TNFα), and reduced by synovial fluid or oxidising conditions. A greater understanding of the role of CD148 in chronic inflammation may lead to alternative therapeutic approaches to these diseases.
Collapse
|
53
|
Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochim Biophys Acta Gen Subj 2014; 1840:2482-90. [DOI: 10.1016/j.bbagen.2014.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
|
54
|
The PDZ-binding domain of syndecan-2 inhibits LFA-1 high-affinity conformation. Cell Signal 2014; 26:1489-99. [DOI: 10.1016/j.cellsig.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/16/2014] [Indexed: 01/13/2023]
|
55
|
Aya-Bonilla C, Camilleri E, Haupt LM, Lea R, Gandhi MK, Griffiths LR. In silico analyses reveal common cellular pathways affected by loss of heterozygosity (LOH) events in the lymphomagenesis of Non-Hodgkin's lymphoma (NHL). BMC Genomics 2014; 15:390. [PMID: 24885312 PMCID: PMC4041994 DOI: 10.1186/1471-2164-15-390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022] Open
Abstract
Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-390) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
56
|
Hu HT, Hsueh YP. Calcium influx and postsynaptic proteins coordinate the dendritic filopodium-spine transition. Dev Neurobiol 2014; 74:1011-29. [PMID: 24753440 DOI: 10.1002/dneu.22181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/14/2014] [Indexed: 12/16/2022]
Abstract
Dendritic spines are the major locations of excitatory synapses in the mammalian central nervous system. The transformation from dendritic filopodia to dendritic spines has been recognized as one type of spinogenesis. For instance, syndecan-2 (SDC2), a synaptic heparan sulfate proteoglycan, is highly concentrated at dendritic spines and required for spinogenesis. It induces dendritic filopodia formation, followed by spine formation. However, the molecular regulation of the filopodium-spine transition induced by SDC2 is still unclear. In this report, we show that calcium is an important signal downstream of SDC2 in regulation of filopodium-spine transition but not filopodia formation. SDC2 interacted with the postsynaptic proteins calmodulin-dependent serine kinase (CASK) and LIN7 and further recruited NMDAR to the tips of filopodia induced by SDC2. Calcium influx via NMDAR promoted spine maturation because addition of EGTA or AP5 to the culture medium effectively prevented morphological change from dendritic filopodia to dendritic spines. Our data also indicated that F-actin rearrangement regulated by calcium influx is involved in the morphological change, because the knockdown of gelsolin, a calcium-activated F-actin severing molecule, impaired the filopodium-spine transition induced by SDC2. In conclusion, our study demonstrates that postsynaptic proteins coordinate to trigger calcium signalling and cytoskeleton rearrangement and consequently control filopodium-spine transition.
Collapse
Affiliation(s)
- Hsiao-Tang Hu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | | |
Collapse
|
57
|
Szarvas T, Reis H, Kramer G, Shariat SF, vom Dorp F, Tschirdewahn S, Schmid KW, Kovalszky I, Rübben H. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum Pathol 2014; 45:674-82. [DOI: 10.1016/j.humpath.2013.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/03/2013] [Accepted: 10/06/2013] [Indexed: 10/25/2022]
|
58
|
Abstract
Syndecan-3 is one of the four members of the syndecan family of heparan sulphate proteoglycans and has been shown to interact with numerous growth factors via its heparan sulphate chains. The extracellular core proteins of syndecan-1,-2 and -4 all possess adhesion regulatory motifs and we hypothesized that syndecan-3 may also possess such characteristics. Here we show that a bacterially expressed GST fusion protein consisting of the entire mature syndecan-3 ectodomain has anti-angiogenic properties and acts via modulating endothelial cell migration. This work identifies syndecan-3 as a possible therapeutic target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| | - James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1 6BQ, UK
| |
Collapse
|
59
|
Senis YA. Protein-tyrosine phosphatases: a new frontier in platelet signal transduction. J Thromb Haemost 2013; 11:1800-13. [PMID: 24015866 DOI: 10.1111/jth.12359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Indexed: 08/31/2023]
Abstract
Platelet activation must be tightly controlled in order to allow platelets to respond rapidly to vascular injury and prevent thrombosis from occurring. Protein-tyrosine phosphorylation is one of the main ways in which activation signals are transmitted in platelets. Although much is known about the protein-tyrosine kinases (PTKs) that initiate and propagate activation signals, relatively little is known about the protein-tyrosine phosphatases (PTPs) that modulate these signals in platelets. PTPs are a family of enzymes that dephosphorylate tyrosine residues in proteins and regulate signals transmitted within cells. PTPs have been implicated in a variety of pathological conditions, including cancer, diabetes and autoimmunity, but their functions in hemostasis and thrombosis remain largely undefined. Exciting new findings from a number of groups have revealed that PTPs are in fact critical regulators of platelet activation and thrombosis. The primary aim of this review is to highlight the unique and important functions of PTPs in regulating platelet activity. Establishing the functions of PTPs in platelets is essential to better understand the molecular basis of thrombosis and may lead to the development of improved antithrombotic therapies.
Collapse
Affiliation(s)
- Y A Senis
- Centre for Cardiovascular and Respiratory Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
60
|
Lee HKP, Cording A, Vielmetter J, Zinn K. Interactions between a receptor tyrosine phosphatase and a cell surface ligand regulate axon guidance and glial-neuronal communication. Neuron 2013; 78:813-26. [PMID: 23764287 DOI: 10.1016/j.neuron.2013.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
We developed a screening method for orphan receptor ligands, in which cell-surface proteins are expressed in Drosophila embryos from GAL4-dependent insertion lines and ligand candidates identified by the presence of ectopic staining with receptor fusion proteins. Stranded at second (Sas) binds to the receptor tyrosine phosphatase Ptp10D in embryos and in vitro. Sas and Ptp10D can interact in trans when expressed in cultured cells. Interactions between Sas and Ptp10D on longitudinal axons are required to prevent them from abnormally crossing the midline. Sas is expressed on both neurons and glia, whereas Ptp10D is restricted to CNS axons. We conducted epistasis experiments by overexpressing Sas in glia and examining how the resulting phenotypes are changed by removal of Ptp10D from neurons. We find that neuronal Ptp10D restrains signaling by overexpressed glial Sas, which would otherwise produce strong glial and axonal phenotypes.
Collapse
Affiliation(s)
- Hyung-Kook Peter Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
61
|
Ortuso F, Paduano F, Carotenuto A, Gomez-Monterrey I, Bilotta A, Gaudio E, Sala M, Artese A, Vernieri E, Dattilo V, Iuliano R, Brancaccio D, Bertamino A, Musella S, Alcaro S, Grieco P, Perrotti N, Croce CM, Novellino E, Fusco A, Campiglia P, Trapasso F. Discovery of PTPRJ agonist peptides that effectively inhibit in vitro cancer cell proliferation and tube formation. ACS Chem Biol 2013; 8:1497-506. [PMID: 23627474 DOI: 10.1021/cb3007192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PTPRJ is a receptor protein tyrosine phosphatase involved in both physiological and oncogenic pathways. We previously reported that its expression is strongly reduced in the majority of explored cancer cell lines and tumor samples; moreover, its restoration blocks in vitro cancer cell proliferation and in vivo tumor formation. By means of a phage display library screening, we recently identified two peptides able to bind and activate PTPRJ, resulting in cell growth inhibition and apoptosis of both cancer and endothelial cells. Here, on a previously discovered PTPRJ agonist peptide, PTPRJ-pep19, we synthesized and assayed a panel of nonapeptide analogues with the aim to identify specific amino acid residues responsible for peptide activity. These second-generation nonapeptides were tested on both cancer and primary endothelial cells (HeLa and HUVEC, respectively); interestingly, one of them (PTPRJ-19.4) was able to both dramatically reduce cell proliferation and effectively trigger apoptosis of both HeLa and HUVECs compared to its first-generation counterpart. Moreover, PTPRJ-pep19.4 significantly inhibited in vitro tube formation on Matrigel. Intriguingly, while ERK1/2 phosphorylation and cell proliferation were both inhibited by PTPRJ-pep19.4 in breast cancer cells (MCF-7 and SKBr3), no effects were observed on primary normal human mammary endothelial cells (HMEC). We further characterized these peptides by molecular modeling and NMR experiments reporting, for the most active peptide, the possibility of self-aggregation states and highlighting new hints of structure-activity relationship. Thus, our results indicate that this nonapeptide might represent a great potential lead for the development of novel targeted anticancer drugs.
Collapse
Affiliation(s)
| | | | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Isabel Gomez-Monterrey
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | | | - Eugenio Gaudio
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Marina Sala
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | | | | | | | | | - Diego Brancaccio
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Alessia Bertamino
- Dipartimento di
Farmacia, Università di Salerno,
84084 Fisciano, Italy
| | - Simona Musella
- Dipartimento di
Farmacia, Università di Salerno,
84084 Fisciano, Italy
| | | | - Paolo Grieco
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | | | - Carlo M. Croce
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Alfredo Fusco
- Dipartimento
di Biologia e Patologia Cellulare e Molecolare c/o Istituto di Endocrinologia
ed Oncologia Sperimentale del CNR, Università degli Studi di Napoli “Federico II”, 80131
Napoli, Italy
| | - Pietro Campiglia
- Dipartimento di
Farmacia, Università di Salerno,
84084 Fisciano, Italy
| | | |
Collapse
|
62
|
De Rossi G, Whiteford JR. Novel insight into the biological functions of syndecan ectodomain core proteins. Biofactors 2013; 39:374-82. [PMID: 23559542 DOI: 10.1002/biof.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/18/2013] [Indexed: 01/02/2023]
Abstract
Syndecans are a four member family of multifunctional transmembrane heparan sulphate bearing cell surface receptors. Each family member has common molecular architecture but a distinct expression profile. Numerous molecular interactions between syndecan heparan sulphate chains, growth factors, cytokines, and extracellular matrix molecules have been reported and syndecans are intimately associated with cell adhesion and migration. Here, we describe the important emerging concept that contained within syndecan extracellular core proteins are "adhesion regulatory domains." Cell adhesion is driven by the integrins and syndecan ectodomain adhesion regulatory domains can alter integrin driven cellular responses. Cell adhesion and migration is central to numerous pathologies and an understanding of how syndecan ectodomains influence integrins will lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6B, UK
| | | |
Collapse
|
63
|
Cordoba SP, Choudhuri K, Zhang H, Bridge M, Basat AB, Dustin ML, van der Merwe PA. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 2013; 121:4295-302. [PMID: 23580664 PMCID: PMC3663424 DOI: 10.1182/blood-2012-07-442251] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 03/25/2013] [Indexed: 11/20/2022] Open
Abstract
T-cell receptor (TCR) triggering results in a cascade of intracellular tyrosine phosphorylation events that ultimately leads to T-cell activation. It is dependent on changes in the relative activities of membrane-associated tyrosine kinases and phosphatases near the engaged TCR. CD45 and CD148 are transmembrane tyrosine phosphatases with large ectodomains that have activatory and inhibitory effects on TCR triggering. This study investigates whether and how the ectodomains of CD45 and CD148 modulate their inhibitory effect on TCR signaling. Expression in T cells of forms of these phosphatases with truncated ectodomains inhibited TCR triggering. In contrast, when these phosphatases were expressed with large ectodomains, they had no inhibitory effect. Imaging studies revealed that truncation of the ectodomains enhanced colocalization of these phosphatases with ligated TCR at the immunological synapse. Our results suggest that the large ectodomains of CD45 and CD148 modulate their inhibitory effect by enabling their passive, size-based segregation from ligated TCR, supporting the kinetic-segregation model of TCR triggering.
Collapse
Affiliation(s)
- Shaun-Paul Cordoba
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
64
|
Katsumoto TR, Kudo M, Chen C, Sundaram A, Callahan EC, Zhu JW, Lin J, Rosen CE, Manz BN, Lee JW, Matthay MA, Huang X, Sheppard D, Weiss A. The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases. J Clin Invest 2013; 123:2037-48. [PMID: 23543053 DOI: 10.1172/jci66397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/07/2013] [Indexed: 01/10/2023] Open
Abstract
Increased airway smooth muscle (ASM) contractility and the development of airway hyperresponsiveness (AHR) are cardinal features of asthma, but the signaling pathways that promote these changes are poorly understood. Tyrosine phosphorylation is tightly regulated by the opposing actions of protein tyrosine kinases and phosphatases, but little is known about whether tyrosine phosphatases influence AHR. Here, we demonstrate that genetic inactivation of receptor-like protein tyrosine phosphatase J (Ptprj), which encodes CD148, protected mice from the development of increased AHR in two different asthma models. Surprisingly, CD148 deficiency minimally affected the inflammatory response to allergen, but significantly altered baseline pulmonary resistance. Mice specifically lacking CD148 in smooth muscle had decreased AHR, and the frequency of calcium oscillations in CD148-deficient ASM was substantially attenuated, suggesting that signaling pathway alterations may underlie ASM contractility. Biochemical analysis of CD148-deficient ASM revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SRC family kinases (SFKs), implicating CD148 as a critical positive regulator of SFK signaling in ASM. The effect of CD148 deficiency on ASM contractility could be mimicked by treatment of both mouse trachea and human bronchi with specific SFK inhibitors. Our studies identify CD148 and the SFKs it regulates in ASM as potential targets for the treatment of AHR.
Collapse
Affiliation(s)
- Tamiko R Katsumoto
- Division of Rheumatology and Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco (UCSF), San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Manon-Jensen T, Multhaupt HAB, Couchman JR. Mapping of matrix metalloproteinase cleavage sites on syndecan-1 and syndecan-4 ectodomains. FEBS J 2013; 280:2320-31. [PMID: 23384311 DOI: 10.1111/febs.12174] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 12/18/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans with roles in cell proliferation, differentiation, adhesion, and migration. They have been associated with multiple functions in tumour progression, through their ability to interact with a wide range of ligands as well as other receptors, which makes them key effectors in the pericellular microenvironment. Extracellular shedding of syndecans by tumour-associated matrix metalloproteinases (MMPs) may have an important role in tumour progression. Such ectodomain shedding generates soluble ectodomains that may function as paracrine or autocrine effectors, or as competitive inhibitors of the intact proteoglycan. Tumour-associated MMPs are shown here to cleave the ectodomains of human syndecan-1 and syndecan-4. Two membrane proximal regions of both syndecan-1 and syndecan-4 are favoured MMP cleavage sites, six and 15 residues from the transmembrane domain. Other sites are 35-40 residues C-terminal from the heparan sulfate chain substitution sites in both syndecans. The MT1-MMP cleavage sites in syndecan-1 and syndecan-4 were confirmed by site-directed mutagenesis. These findings provide insights into the characteristics of syndecan shedding.
Collapse
Affiliation(s)
- Tina Manon-Jensen
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
66
|
Choi S, Kang DH, Oh ES. Targeting syndecans: a promising strategy for the treatment of cancer. Expert Opin Ther Targets 2013; 17:695-705. [DOI: 10.1517/14728222.2013.773313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
67
|
Aya-Bonilla C, Green MR, Camilleri E, Benton M, Keane C, Marlton P, Lea R, Gandhi MK, Griffiths LR. High-resolution loss of heterozygosity screening implicatesPTPRJas a potential tumor suppressor gene that affects susceptibility to non-hodgkin's lymphoma. Genes Chromosomes Cancer 2013; 52:467-79. [DOI: 10.1002/gcc.22044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/16/2012] [Indexed: 01/04/2023] Open
|
68
|
Mytilinaiou M, Bano A, Nikitovic D, Berdiaki A, Voudouri K, Kalogeraki A, Karamanos NK, Tzanakakis GN. Syndecan-2 is a key regulator of transforming growth factor beta 2/smad2-mediated adhesion in fibrosarcoma cells. IUBMB Life 2013; 65:134-43. [DOI: 10.1002/iub.1112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/09/2012] [Indexed: 12/29/2022]
|
69
|
Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 2013; 280:413-31. [PMID: 22682070 DOI: 10.1111/j.1742-4658.2012.08655.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation on tyrosine residues is tightly controlled by protein tyrosine phosphatases (PTPs) at multiple levels: spatio-temporal expression, subcellular localization and post-translational modification. Structural and functional analysis of the PTP domains has provided insight into catalysis and regulatory mechanisms that control the enzymatic activity. Understanding the molecular basis of PTP regulation is of fundamental importance to dissect the pleiotropic effect of these enzymes in both health and disease. Here, we review recent insights into the regulation of receptor-like PTPs by extracellular ligands and into regulation by reversible oxidation that impairs catalysis directly. The physiological roles of PTPs are essential in homeostasis in eukaryotic cells and pertubation of their functional attributes causes different disease states. As an example, we discuss recent findings indicating how inappropriate oxidation of PTPs in cancer cells may contribute to cell transformation. On the other hand, PTPs from many pathogens are key virulence factors and manipulate signalling pathways in the host cells to promote invasion and survival of the microorganisms. This research area has received relatively little attention but has advanced remarkably. We review the structural features of pathogenic PTPs, their similarities and differences with eukaryotic PTPs, and the possible exploitation of this knowledge for therapeutic intervention.
Collapse
Affiliation(s)
- Frank Böhmer
- Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|
70
|
Paduano F, Ortuso F, Campiglia P, Raso C, Iaccino E, Gaspari M, Gaudio E, Mangone G, Carotenuto A, Bilotta A, Narciso D, Palmieri C, Agosti V, Artese A, Gomez-Monterrey I, Sala M, Cuda G, Iuliano R, Perrotti N, Scala G, Viglietto G, Alcaro S, Croce CM, Novellino E, Fusco A, Trapasso F. Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity. ACS Chem Biol 2012; 7:1666-76. [PMID: 22759068 DOI: 10.1021/cb300281t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PTPRJ is a receptor-type protein tyrosine phosphatase whose expression is strongly reduced in the majority of investigated cancer cell lines and tumor specimens. PTPRJ negatively interferes with mitogenic signals originating from several oncogenic receptor tyrosine kinases, including HGFR, PDGFR, RET, and VEGFR-2. Here we report the isolation and characterization of peptides from a random peptide phage display library that bind and activate PTPRJ. These agonist peptides, which are able to both circularize and form dimers in acqueous solution, were assayed for their biochemical and biological activity on both human cancer cells and primary endothelial cells (HeLa and HUVEC, respectively). Our results demonstrate that binding of PTPRJ-interacting peptides to cell cultures dramatically reduces the extent of both MAPK phosphorylation and total phosphotyrosine levels; conversely, they induce a significant increase of the cell cycle inhibitor p27(Kip1). Moreover, PTPRJ agonist peptides both reduce proliferation and trigger apoptosis of treated cells. Our data indicate that peptide agonists of PTPRJ positively modulate the PTPRJ activity and may lead to novel targeted anticancer therapies.
Collapse
Affiliation(s)
- Francesco Paduano
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Francesco Ortuso
- Laboratorio
di Chimica Farmaceutica
Computazionale, Dipartimento di Scienze Farmacobiologiche, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Pietro Campiglia
- Dipartimento di Scienze Farmaceutiche
e Biomediche, Sezione Chimico-Tecnologica, Università di Salerno, 84084 Fisciano (Salerno), Italy
| | - Cinzia Raso
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Enrico Iaccino
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Eugenio Gaudio
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Graziella Mangone
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Alfonso Carotenuto
- Dipartimento di
Chimica Farmaceutica
e Tossicologica, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Anna Bilotta
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Domenico Narciso
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Camillo Palmieri
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Valter Agosti
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Anna Artese
- Laboratorio
di Chimica Farmaceutica
Computazionale, Dipartimento di Scienze Farmacobiologiche, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Isabel Gomez-Monterrey
- Dipartimento di
Chimica Farmaceutica
e Tossicologica, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Marina Sala
- Dipartimento di Scienze Farmaceutiche
e Biomediche, Sezione Chimico-Tecnologica, Università di Salerno, 84084 Fisciano (Salerno), Italy
| | - Giovanni Cuda
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Giuseppe Scala
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Stefano Alcaro
- Laboratorio
di Chimica Farmaceutica
Computazionale, Dipartimento di Scienze Farmacobiologiche, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Carlo M. Croce
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Ettore Novellino
- Dipartimento di
Chimica Farmaceutica
e Tossicologica, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia
Cellulare e Molecolare c/o Istituto di Endocrinologia ed Oncologia
Sperimentale del CNR, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| |
Collapse
|
71
|
Phillips JJ. Novel therapeutic targets in the brain tumor microenvironment. Oncotarget 2012; 3:568-75. [PMID: 22643827 DOI: 10.18632/oncotarget.493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM), a highly malignant brain tumor of adults and children, diffusely invades within the non-neoplastic brain. Despite aggressive current therapeutic interventions, improved therapeutic strategies are greatly needed. Interactions between the tumor and constituents of its microenvironment are known to regulate malignancy, and heparan sulfate proteoglycans (HSPGs) are important as they bind diverse extracellular proteins, including growth factors and cell adhesion molecules, regulating the activity of several ligand-mediated signaling pathways. Recent work from our group described a mechanism by which GBM regulates PDGFR-alpha signaling via enzymatic alteration of heparan sulfate proteoglycans (HSPGs) in the extracellular microenvironment. Blocking tumor-induced alterations of HSPGs, which can be achieved by pharmacological strategies, would potentially inhibit multiple oncogenic signaling pathways in tumor cells and disrupt critical tumormicroenvironment interactions. Here we examine HSPGs and the enzymes that modify them in GBM. We compare their expression across tumor subtypes, their potential roles in oncogenesis, and their potential as novel therapeutic targets in GBM.
Collapse
Affiliation(s)
- Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, USA.
| |
Collapse
|
72
|
Péterfia B, Füle T, Baghy K, Szabadkai K, Fullár A, Dobos K, Zong F, Dobra K, Hollósi P, Jeney A, Paku S, Kovalszky I. Syndecan-1 enhances proliferation, migration and metastasis of HT-1080 cells in cooperation with syndecan-2. PLoS One 2012; 7:e39474. [PMID: 22745764 PMCID: PMC3383727 DOI: 10.1371/journal.pone.0039474] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Syndecans are transmembrane heparan sulphate proteoglycans. Their role in the development of the malignant phenotype is ambiguous and depends upon the particular type of cancer. Nevertheless, syndecans are promising targets in cancer therapy, and it is important to elucidate the mechanisms controlling their various cellular effects. According to earlier studies, both syndecan-1 and syndecan-2 promote malignancy of HT-1080 human fibrosarcoma cells, by increasing the proliferation rate and the metastatic potential and migratory ability, respectively. To better understand their tumour promoter role in this cell line, syndecan expression levels were modulated in HT-1080 cells and the growth rate, chemotaxis and invasion capacity were studied. For in vivo testing, syndecan-1 overexpressing cells were also inoculated into mice. Overexpression of full length or truncated syndecan-1 lacking the entire ectodomain but containing the four juxtamembrane amino acids promoted proliferation and chemotaxis. These effects were accompanied by a marked increase in syndecan-2 protein expression. The pro-migratory and pro-proliferative effects of truncated syndecan-1 were not observable when syndecan-2 was silenced. Antisense silencing of syndecan-2, but not that of syndecan-1, inhibited cell migration. In vivo, both full length and truncated syndecan-1 increased tumour growth and metastatic rate. Based on our in vitro results, we conclude that the tumour promoter role of syndecan-1 observed in HT-1080 cells is independent of its ectodomain; however, in vivo the presence of the ectodomain further increases tumour proliferation. The enhanced migratory ability induced by syndecan-1 overexpression is mediated by syndecan-2. Overexpression of syndecan-1 also leads to activation of IGF1R and increased expression of Ets-1. These changes were not evident when syndecan-2 was overexpressed. These findings suggest the involvement of IGF1R and Ets-1 in the induction of syndecan-2 synthesis and stimulation of proliferation by syndecan-1. This is the first report demonstrating that syndecan-1 enhances malignancy of a mesenchymal tumour cell line, via induction of syndecan-2 expression.
Collapse
Affiliation(s)
- Bálint Péterfia
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tibor Füle
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Krisztina Szabadkai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dobos
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Fang Zong
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Katalin Dobra
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
73
|
Phillips JJ. Novel therapeutic targets in the brain tumor microenvironment. Oncotarget 2012; 3:568-575. [PMID: 22643827 PMCID: PMC3388186 DOI: 10.18632/oncotarget.526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/23/2012] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM), a highly malignant brain tumor of adults and children, diffusely invades within the non-neoplastic brain. Despite aggressive current therapeutic interventions, improved therapeutic strategies are greatly needed. Interactions between the tumor and constituents of its microenvironment are known to regulate malignancy, and heparan sulfate proteoglycans (HSPGs) are important as they bind diverse extracellular proteins, including growth factors and cell adhesion molecules, regulating the activity of several ligand-mediated signaling pathways. Recent work from our group described a mechanism by which GBM regulates PDGFR-alpha signaling via enzymatic alteration of heparan sulfate proteoglycans (HSPGs) in the extracellular microenvironment. Blocking tumor-induced alterations of HSPGs, which can be achieved by pharmacological strategies, would potentially inhibit multiple oncogenic signaling pathways in tumor cells and disrupt critical tumormicroenvironment interactions. Here we examine HSPGs and the enzymes that modify them in GBM. We compare their expression across tumor subtypes, their potential roles in oncogenesis, and their potential as novel therapeutic targets in GBM.
Collapse
Affiliation(s)
- Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco
- Department of Pathology, Division of Neuropathology, University of California San Francisco
| |
Collapse
|
74
|
Abstract
CD148 is a receptor-type protein tyrosine phosphatase that is expressed in several cell types, including vascular endothelial cells and duct epithelial cells. Growing evidence demonstrates a prominent role for CD148 in negative regulation of growth factor signals, suppressing cell proliferation and transformation. However, its extracellular ligand(s) remain unknown. To identify the ligand(s) of CD148, we introduced HA-tagged CD148 into cultured endothelial cells and then isolated its interacting extracellular protein(s) by biotin surface labeling and subsequent affinity purifications. The binding proteins were identified by mass spectrometry. Here we report that soluble thrombospondin-1 (TSP1) binds to the extracellular part of CD148 with high affinity and specificity, and its binding increases CD148 catalytic activity, leading to dephosphorylation of the substrate proteins. Consistent with these findings, introduction of CD148 conferred TSP1-mediated inhibition of cell growth to cells which lack CD148 and TSP1 inhibition of growth. Further, we demonstrate that TSP1-mediated inhibition of endothelial cell growth is antagonized by soluble CD148 ectodomain as well as by CD148 gene silencing. These findings provide evidence that CD148 functions as a receptor for TSP1 and mediates its inhibition of cell growth.
Collapse
|
75
|
O'Connell MP, Weeraratna AT. A spoonful of sugar makes the melanoma go: the role of heparan sulfate proteoglycans in melanoma metastasis. Pigment Cell Melanoma Res 2011; 24:1133-47. [PMID: 21978367 DOI: 10.1111/j.1755-148x.2011.00918.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) have been shown to regulate signaling in many systems and are of increasing interest in cancer. While these are not the only sugars to drive melanoma metastasis, HSPGs play important roles in driving metastatic signaling cascades in melanoma. The ability of these proteins to modulate ligand-receptor interactions in melanoma has been quite understudied. Recent data from several groups indicate the importance of these ligands in modulating key signaling pathways including Wnt and fibroblast growth factor (FGF) signaling. In this review, we summarize the current knowledge regarding the structure and function of these proteoglycans and their role in melanoma. Understanding how HSPGs modulate signaling in melanoma could lead to new therapeutic approaches via the dampening or heightening of key signaling pathways.
Collapse
Affiliation(s)
- M P O'Connell
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
| | | |
Collapse
|