51
|
Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease. Int J Mol Sci 2018; 19:ijms19113523. [PMID: 30423905 PMCID: PMC6274963 DOI: 10.3390/ijms19113523] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and is associated with an increased risk of metastasis and a poor prognosis. Recent imaging techniques revealed that bone marrow contains a quite hypoxic microenvironment. Low oxygen levels activate hypoxia signaling pathways such as hypoxia-inducible factors, which play critical roles in the key stages of metastatic dissemination including angiogenesis, epithelial-mesenchymal transition, invasion, maintenance of cancer stem cells, tumor cell dormancy, release of extracellular vesicles, and generation of pre-metastatic niches. Hypoxia also affects bone cells, such as osteoblasts and osteoclasts, and immune cells, which also act to support the development and progression of bone metastases. Paradoxically, hypoxia and related signaling molecules are recognized as high-priority therapeutic targets and many candidate drugs are currently under preclinical and clinical investigation. The present review focuses on our current knowledge of the potential roles of hypoxia in cancer metastasis to bone by considering the interaction between metastatic cancer cells and the bone microenvironment. Current therapeutic approaches targeting hypoxia are also described.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara-Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
52
|
Adjei IM, Temples MN, Brown SB, Sharma B. Targeted Nanomedicine to Treat Bone Metastasis. Pharmaceutics 2018; 10:E205. [PMID: 30366428 PMCID: PMC6320768 DOI: 10.3390/pharmaceutics10040205] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Bone metastases are common complications of solid tumors, particularly those of the prostate, breast, and lungs. Bone metastases can lead to painful and devastating skeletal-related events (SREs), such as pathological fractures and nerve compressions. Despite advances in treatment for cancers in general, options for bone metastases remain inadequate and generally palliative. Anticancer drugs (chemotherapy and radiopharmaceuticals) do not achieve therapeutic concentrations in the bone and are associated with dose-limiting side effects to healthy tissues. Nanomedicines, with their tunable characteristics, have the potential to improve drug targeting to bone metastases while decreasing side effects for their effective treatment. In this review, we present the current state of the art for nanomedicines to treat bone metastases. We also discuss new treatment modalities enhanced by nanomedicine and their effects on SREs and disease progression.
Collapse
Affiliation(s)
- Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Madison N Temples
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
53
|
Hevener K, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B 2018; 8:844-861. [PMID: 30505655 PMCID: PMC6251812 DOI: 10.1016/j.apsb.2018.07.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA topoisomerase enzymes are essential to cell function and are found ubiquitously in all domains of life. The various topoisomerase enzymes perform a wide range of functions related to the maintenance of DNA topology during DNA replication, and transcription are the targets of a wide range of antimicrobial and cancer chemotherapeutic agents. Natural product-derived agents, such as the camptothecin, anthracycline, and podophyllotoxin drugs, have seen broad use in the treatment of many types of cancer. Selective targeting of the topoisomerase enzymes for cancer treatment continues to be a highly active area of basic and clinical research. The focus of this review will be to summarize the current state of the art with respect to clinically used topoisomerase inhibitors for targeted cancer treatment and to discuss the pharmacology and chemistry of promising new topoisomerase inhibitors in clinical and pre-clinical development.
Collapse
Affiliation(s)
- KirkE. Hevener
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
54
|
Li J, Shang W, Li Y, Fu S, Tian J, Lu L. Advanced nanomaterials targeting hypoxia to enhance radiotherapy. Int J Nanomedicine 2018; 13:5925-5936. [PMID: 30319257 PMCID: PMC6171520 DOI: 10.2147/ijn.s173914] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia within solid tumors is often responsible for the failure of radiotherapy. The development of hypoxia-targeting nanomaterials - aimed at enhancing the effect of radiotherapy by electrical or heat effects and at modulating hypoxia in the tumor microenvironment - is a promising strategy to address this issue. We provide an overview of recently developed advanced materials that potentiate radiotherapy. First, we summarize novel materials for oxygen delivery or production to modify the tumor microenvironment, thus improving the effects of ionizing radiation. Second, we present new approaches for the design of high-Z element-based multifunctional nanoplatforms to enhance radiotherapy. Third, novel drug delivery systems for hypoxic regions and hypoxia-inducible factor-1-targeted therapies are discussed. Fourth, we establish the effectiveness of X-ray- or near-infrared-responsive nanoparticles for selectively triggering therapeutic effects under hypoxic conditions. Finally, this review emphasizes the importance of research in the field of nanomedicine focused on tumor hypoxia to improve clinical outcomes.
Collapse
Affiliation(s)
- Jia Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Yong Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
| | - Sirui Fu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
| |
Collapse
|
55
|
Abstract
The field of urology encompasses all benign and malignant disorders of the urinary tract and the male genital tract. Urological disorders convey a huge economic and patient quality-of-life burden. Hospital acquired urinary tract infections, in particular, are under scrutiny as a measure of hospital quality. Given the prevalence of these pathologies, there is much progress still to be made in available therapeutic options in order to minimize side effects and provide effective care. Current drug delivery mechanisms in urological malignancy and the benign urological conditions of overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS), and urinary tract infection (UTI) will be reviewed herein. Both systemic and local therapies will be discussed including sustained release formulations, nanocarriers, hydrogels and other reservoir systems, as well as gene and immunotherapy. The primary focus of this review is on agents which have passed the preclinical stages of development.
Collapse
Affiliation(s)
- Alice Crane
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation 9500 Euclid Ave , Cleveland , Ohio 44195 , United States
| | - Sudhir Isharwal
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation 9500 Euclid Ave , Cleveland , Ohio 44195 , United States
| | - Hui Zhu
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation 9500 Euclid Ave , Cleveland , Ohio 44195 , United States
| |
Collapse
|