51
|
Wang D, Yang L, Ning C, Liu JF, Zhao X. Breed-specific reference sequence optimized mapping accuracy of NGS analyses for pigs. BMC Genomics 2021; 22:736. [PMID: 34641784 PMCID: PMC8507312 DOI: 10.1186/s12864-021-08030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background Reference sequences play a vital role in next-generation sequencing (NGS), impacting mapping quality during genome analyses. However, reference genomes usually do not represent the full range of genetic diversity of a species as a result of geographical divergence and independent demographic events of different populations. For the mitochondrial genome (mitogenome), which occurs in high copy numbers in cells and is strictly maternally inherited, an optimal reference sequence has the potential to make mitogenome alignment both more accurate and more efficient. In this study, we used three different types of reference sequences for mitogenome mapping, i.e., the commonly used reference sequence (CU-ref), the breed-specific reference sequence (BS-ref) and the sample-specific reference sequence (SS-ref), respectively, and compared the accuracy of mitogenome alignment and SNP calling among them, for the purpose of proposing the optimal reference sequence for mitochondrial DNA (mtDNA) analyses of specific populations Results Four pigs, representing three different breeds, were high-throughput sequenced, subsequently mapping reads to the reference sequences mentioned above, resulting in a largest mapping ratio and a deepest coverage without increased running time when aligning reads to a BS-ref. Next, single nucleotide polymorphism (SNP) calling was carried out by 18 detection strategies with the three tools SAMtools, VarScan and GATK with different parameters, using the bam results mapping to BS-ref. The results showed that all eighteen strategies achieved the same high specificity and sensitivity, which suggested a high accuracy of mitogenome alignment by the BS-ref because of a low requirement for SNP calling tools and parameter choices. Conclusions This study showed that different reference sequences representing different genetic relationships to sample reads influenced mitogenome alignment, with the breed-specific reference sequences being optimal for mitogenome analyses, which provides a refined processing perspective for NGS data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08030-1.
Collapse
Affiliation(s)
- Dan Wang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Liu Yang
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingbo Zhao
- National Engineering Laboratory for Animal Breeding, Ministry of Agricultural Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
52
|
Wang C, Hao X, Wang Y, Shi M, Zhou ZG, Kai G. Genome-Wide Identification and Comparative Analysis of the Teosinte Branched 1/Cycloidea/Proliferating Cell Factors 1/2 Transcription Factors Related to Anti-cancer Drug Camptothecin Biosynthesis in Ophiorrhiza pumila. FRONTIERS IN PLANT SCIENCE 2021; 12:746648. [PMID: 34691124 PMCID: PMC8529195 DOI: 10.3389/fpls.2021.746648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/09/2021] [Indexed: 05/27/2023]
Abstract
Ophiorrhiza pumila (O. pumila; Op) is a medicinal herbaceous plant, which can accumulate camptothecin (CPT). CPT and its derivatives are widely used as chemotherapeutic drugs for treating malignant tumors. Its biosynthesis pathway has been attracted significant attention. Teosinte branched 1/cycloidea/proliferating cell factors 1/2 (TCP) transcription factors (TFs) regulate a variety of physiological processes, while TCP TFs are involved in the regulation of CPT biosynthesis remain unclear. In this study, a systematic analysis of the TCP TFs family in O. pumila was performed. A total of 16 O. pumila TCP (OpTCP) genes were identified and categorized into two subgroups based on their phylogenetic relationships with those in Arabidopsis thaliana. Tissue-specific expression patterns revealed that nine OpTCP genes showed the highest expression levels in leaves, while the other seven OpTCPs showed a higher expression level in the stems. Co-expression, phylogeny analysis, and dual-luciferase (Dual-LUC) assay revealed that OpTCP15 potentially plays important role in CPT and its precursor biosynthesis. In addition, the subcellular localization experiment of candidate OpTCP genes showed that they are all localized in the nucleus. Our study lays a foundation for further functional characterization of the candidate OpTCP genes involved in CPT biosynthesis regulation and provides new strategies for increasing CPT production.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Shi
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
53
|
Bruneaux M, Kronholm I, Ashrafi R, Ketola T. Roles of adenine methylation and genetic mutations in adaptation to different temperatures in Serratia marcescens. Epigenetics 2021; 17:861-881. [PMID: 34519613 DOI: 10.1080/15592294.2021.1966215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Epigenetic modifications can contribute to adaptation, but the relative contributions of genetic and epigenetic variation are unknown. Previous studies on the role of epigenetic changes in adaptation in eukaryotes have nearly exclusively focused on cytosine methylation (m5C), while prokaryotes exhibit a richer system of methyltransferases targetting adenines (m6A) or cytosines (m4C, m5C). DNA methylation in prokaryotes has many roles, but its potential role in adaptation still needs further investigation. We collected phenotypic, genetic, and epigenetic data using single molecule real-time sequencing of clones of the bacterium Serratia marcescens that had undergone experimental evolution in contrasting temperatures to investigate the relationship between environment and genetic, epigenetic, and phenotypic changes. The genomic distribution of GATC motifs, which were the main target for m6A methylation, and of variable m6A epiloci pointed to a potential link between m6A methylation and regulation of gene expression in S. marcescens. Evolved strains, while genetically homogeneous, exhibited many polymorphic m6A epiloci. There was no strong support for a genetic control of methylation changes in our experiment, and no clear evidence of parallel environmentally induced or environmentally selected methylation changes at specific epiloci was found. Both genetic and epigenetic variants were associated with some phenotypic traits. Overall, our results suggest that both genetic and adenine methylation changes have the potential to contribute to phenotypic adaptation in S. marcescens, but that any environmentally induced epigenetic change occurring in our experiment would probably have been quite labile.
Collapse
Affiliation(s)
- Matthieu Bruneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
54
|
Floridia-Yapur N, Rusman F, Diosque P, Tomasini N. Genome data vs MLST for exploring intraspecific evolutionary history in bacteria: Much is not always better. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104990. [PMID: 34224899 DOI: 10.1016/j.meegid.2021.104990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Genome-based phylogeny has been proposed to be more accurate than phylogeny based in a few genes as MLST-based phylogeny. However, much is not always better. Here we analyzed 368 complete genomes corresponding to 9 bacterial species in order to address intraspecific phylogeny. The studied species were: Burkholderia pseudomallei, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Klebsiella pneumoniae, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus and Streptococcus pyogenes. The intra-specific phylogenies were inferred using the complete genome sequences of different strains of these species and their MLST schemes. A supermatrix approach was used to infer maximum likelihood phylogenies in both cases. The phylogenetic incongruence between the supermatrix-based genome or MLST tree and individual trees (constructed from genome fragments or MLST genes, respectively) was analyzed. In supermatrix-based trees for genomes, most branches showed a high branch support; however, a high number of branches also showed high percentage of topologically incongruent individual trees. Interestingly, genome and MLST trees showed similar levels of incongruence in the phylogeny for each bacteria specie. Both genome and MLST approaches showed that C. trachomatis and S. aureus have a tree-like evolutionary history (low levels of internal incongruence). Instead, B. pseudomallei and S. pyogenes show high levels of incongruence (network-like evolutionary story) probably caused by HGT (horizontal gene transfer). Concluding, our analysis showed that: high branch supports obtained in genome phylogenies could be an artifact probably caused by data size; MLST is valid to address intraspecific phylogenetic structure; and, each species has its own evolutionary history, which could be affected by HGT to different extents.
Collapse
Affiliation(s)
- Noelia Floridia-Yapur
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina
| | - Fanny Rusman
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina
| | - Patricio Diosque
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina
| | - Nicolás Tomasini
- Instituto de Patología Experimental (IPE), UNSa-CONICET, Av. Bolivia 5150, Salta, Argentina.
| |
Collapse
|
55
|
Islam MT, Nasreen T, Kirchberger PC, Liang KYH, Orata FD, Johura FT, Hussain NAS, Im MS, Tarr CL, Alam M, Boucher YF. Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species ( Vibrio paracholerae sp. nov.) with a History of Association with Humans. Appl Environ Microbiol 2021; 87:e0042221. [PMID: 34132593 PMCID: PMC8357300 DOI: 10.1128/aem.00422-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Most efforts to understand the biology of Vibrio cholerae have focused on a single group, the pandemic-generating lineage harboring the strains responsible for all known cholera pandemics. Consequently, little is known about the diversity of this species in its native aquatic environment. To understand the differences in the V. cholerae populations inhabiting regions with a history of cholera cases and those lacking such a history, a comparative analysis of population composition was performed. Little overlap was found in lineage compositions between those in Dhaka, Bangladesh (where cholera is endemic), located in the Ganges Delta, and those in Falmouth, MA (no known history of cholera), a small coastal town on the United States east coast. The most striking difference was the presence of a group of related lineages at high abundance in Dhaka, which was completely absent from Falmouth. Phylogenomic analysis revealed that these lineages form a cluster at the base of the phylogeny for the V. cholerae species and were sufficiently differentiated genetically and phenotypically to form a novel species. A retrospective search revealed that strains from this species have been anecdotally found from around the world and were isolated as early as 1916 from a British soldier in Egypt suffering from choleraic diarrhea. In 1935, Gardner and Venkatraman unofficially referred to a member of this group as Vibrio paracholerae. In recognition of this earlier designation, we propose the name Vibrio paracholerae sp. nov. for this bacterium. Genomic analysis suggests a link with human populations for this novel species and substantial interaction with its better-known sister species. IMPORTANCE Cholera continues to remain a major public health threat around the globe. Understanding the ecology, evolution, and environmental adaptation of the causative agent (Vibrio cholerae) and tracking the emergence of novel lineages with pathogenic potential are essential to combat the problem. In this study, we investigated the population dynamics of Vibrio cholerae in an inland locality, which is known as endemic for cholera, and compared them with those of a cholera-free coastal location. We found the consistent presence of the pandemic-generating lineage of V. cholerae in Dhaka, where cholera is endemic, and an exclusive presence of a lineage phylogenetically distinct from other V. cholerae lineages. Our study suggests that this lineage represents a novel species that has pathogenic potential and a human link to its environmental abundance. The possible association with human populations and coexistence and interaction with toxigenic V. cholerae in the natural environment make this potential human pathogen an important subject for future studies.
Collapse
Affiliation(s)
| | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Kevin Y. H. Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D. Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatema-Tuz Johura
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Monica S. Im
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheryl L. Tarr
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
56
|
Uengwetwanit T, Pootakham W, Nookaew I, Sonthirod C, Angthong P, Sittikankaew K, Rungrassamee W, Arayamethakorn S, Wongsurawat T, Jenjaroenpun P, Sangsrakru D, Leelatanawit R, Khudet J, Koehorst JJ, Schaap PJ, Martins dos Santos V, Tangy F, Karoonuthaisiri N. A chromosome-level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of growth-associated genes. Mol Ecol Resour 2021; 21:1620-1640. [PMID: 33586292 PMCID: PMC8197738 DOI: 10.1111/1755-0998.13357] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
To salvage marine ecosystems from fishery overexploitation, sustainable and efficient aquaculture must be emphasized. The knowledge obtained from available genome sequence of marine organisms has accelerated marine aquaculture in many cases. The black tiger shrimp (Penaeus monodon) is one of the most prominent cultured penaeid shrimps (Crustacean) with an average annual global production of half a million tons in the last decade. However, its currently available genome assemblies lack the contiguity and completeness required for accurate genome annotation due to the highly repetitive nature of the genome and technical difficulty in extracting high-quality, high-molecular weight DNA. Here, we report the first chromosome-level whole-genome assembly of P. monodon. The combination of long-read Pacific Biosciences (PacBio) and long-range Chicago and Hi-C technologies enabled a successful assembly of this first high-quality genome sequence. The final assembly covered 2.39 Gb (92.3% of the estimated genome size) and contained 44 pseudomolecules, corresponding to the haploid chromosome number. Repetitive elements occupied a substantial portion of the assembly (62.5%), the highest of the figures reported among crustacean species. The availability of this high-quality genome assembly enabled the identification of genes associated with rapid growth in the black tiger shrimp through the comparison of hepatopancreas transcriptome of slow-growing and fast-growing shrimps. The results highlighted several growth-associated genes. Our high-quality genome assembly provides an invaluable resource for genetic improvement and breeding penaeid shrimp in aquaculture. The availability of P. monodon genome enables analyses of ecological impact, environment adaptation and evolution, as well as the role of the genome to protect the ecological resources by promoting sustainable shrimp farming.
Collapse
Affiliation(s)
- Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Wirulda Pootakham
- National Omics CenterNational Science and Technology Development AgencyPathum ThaniThailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Chutima Sonthirod
- National Omics CenterNational Science and Technology Development AgencyPathum ThaniThailand
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Kanchana Sittikankaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of Bioinformatics and Data Management for ResearchDepartment of Research and DevelopmentFaculty of MedicineSiriraj HospitalMahidol UniversityBangkokThailand
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of Bioinformatics and Data Management for ResearchDepartment of Research and DevelopmentFaculty of MedicineSiriraj HospitalMahidol UniversityBangkokThailand
| | - Duangjai Sangsrakru
- National Omics CenterNational Science and Technology Development AgencyPathum ThaniThailand
| | - Rungnapa Leelatanawit
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Jutatip Khudet
- Shrimp Genetic Improvement CenterIntegrative Aquaculture Biotechnology Research GroupSurat ThaniThailand
| | - Jasper J. Koehorst
- Laboratory of Systems and Synthetic BiologyDepartment of Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic BiologyDepartment of Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Vitor Martins dos Santos
- Laboratory of Systems and Synthetic BiologyDepartment of Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Frédéric Tangy
- Viral Genomics and Vaccination UnitUMR3569 CNRSVirology DepartmentInstitut PasteurParisFrance
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| |
Collapse
|
57
|
Dienstbier A, Amman F, Petráčková D, Štipl D, Čapek J, Zavadilová J, Fabiánová K, Držmíšek J, Kumar D, Wildung M, Pouchnik D, Večerek B. Comparative Omics Analysis of Historic and Recent Isolates of Bordetella pertussis and Effects of Genome Rearrangements on Evolution. Emerg Infect Dis 2021; 27:57-68. [PMID: 33350934 PMCID: PMC7774529 DOI: 10.3201/eid2701.191541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite high vaccination coverage, pertussis is increasing in many industrialized countries, including the Czech Republic. To better understand Bordetella pertussis resurgence, we analyzed historic strains and recent clinical isolates by using a comparative omics approach. Whole-genome sequencing showed that historic and recent isolates of B. pertussis have substantial variation in genome organization and form separate phylogenetic clusters. Subsequent RNA sequence analysis and liquid chromatography with mass tandem spectrometry analyses showed that these variations translated into discretely separated transcriptomic and proteomic profiles. When compared with historic strains, recent isolates showed increased expression of flagellar genes and genes involved in lipopolysaccharide biosynthesis and decreased expression of polysaccharide capsule genes. Compared with reference strain Tohama I, all strains had increased expression and production of the type III secretion system apparatus. We detected the potential link between observed effects and insertion sequence element–induced changes in gene context only for a few genes.
Collapse
|
58
|
Qin X, Wang H, Miao C, Yang X, Zhang Y, Feng J, Forsythe SJ, Man C, Jiang Y. Comparative genomics reveals environmental adaptation differences between Cronobacter species. Food Res Int 2021; 147:110541. [PMID: 34399518 DOI: 10.1016/j.foodres.2021.110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
The genus Cronobacter is an opportunistic food-borne pathogen which is able to adapt to diverse environments and shows considerable genetic diversity. Genomic analysis can be used to reveal the variation across the genus with respect to virulence, drug resistance and factors involved in horizontal gene transfer mechanisms, such as integrons, conjugative plasmids, and recombinases. In this study, whole-genome comparative analysis of 27 Cronobacter genomes (12 existing and 15 newly assembled genomes) was performed. A total of 110,010 protein-coding genes were grouped into 11,262 clusters, including 2637 core genes, 4814 strain-specific genes and 3811 dispensable genes. Clusters of Orthologous Groups (COG) analysis indicated that 97.35% of the core genes were for substrate transport and metabolism, and the antibiotic resistance genetic determinants were classified into 136 antibiotic resistance ontologies (AROs). A total of 80 genomic islands (GIs) were identified which contained several type VI secretion system gene clusters, and these were likely to have been acquired by horizontal gene transfer. This study has generated a comprehensive characterization of the genus Cronobacter, leading to a better understanding of the mechanisms and ecological functions among the genome features, speciation, and environmental adaptation strategies.
Collapse
Affiliation(s)
- Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yanming Zhang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing 100176, China
| | - Jing Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China
| | | | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
59
|
Guo J, Pang E, Song H, Lin K. A tri-tuple coordinate system derived for fast and accurate analysis of the colored de Bruijn graph-based pangenomes. BMC Bioinformatics 2021; 22:282. [PMID: 34044757 PMCID: PMC8161984 DOI: 10.1186/s12859-021-04149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022] Open
Abstract
Background With the rapid development of accurate sequencing and assembly technologies, an increasing number of high-quality chromosome-level and haplotype-resolved assemblies of genomic sequences have been derived, from which there will be great opportunities for computational pangenomics. Although genome graphs are among the most useful models for pangenome representation, their structural complexity makes it difficult to present genome information intuitively, such as the linear reference genome. Thus, efficiently and accurately analyzing the genome graph spatial structure and coordinating the information remains a substantial challenge. Results We developed a new method, a colored superbubble (cSupB), that can overcome the complexity of graphs and organize a set of species- or population-specific haplotype sequences of interest. Based on this model, we propose a tri-tuple coordinate system that combines an offset value, topological structure and sample information. Additionally, cSupB provides a novel method that utilizes complete topological information and efficiently detects small indels (< 50 bp) for highly similar samples, which can be validated by simulated datasets. Moreover, we demonstrated that cSupB can adapt to the complex cycle structure. Conclusions Although the solution is made suitable for increasingly complex genome graphs by relaxing the constraint, the directed acyclic graph, the motif cSupB and the cSupB method can be extended to any colored directed acyclic graph. We anticipate that our method will facilitate the analysis of individual haplotype variants and population genomic diversity. We have developed a C + + program for implementing our method that is available at https://github.com/eggleader/cSupB. Supplementary information The online version contains supplementary material available at 10.1186/s12859-021-04149-w.
Collapse
Affiliation(s)
- Jindan Guo
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Erli Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hongtao Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
60
|
Hussain NAS, Kirchberger PC, Case RJ, Boucher YF. Modular Molecular Weaponry Plays a Key Role in Competition Within an Environmental Vibrio cholerae Population. Front Microbiol 2021; 12:671092. [PMID: 34122386 PMCID: PMC8189183 DOI: 10.3389/fmicb.2021.671092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) operons of Vibrio cholerae contain extraordinarily diverse arrays of toxic effector and cognate immunity genes, which are thought to play an important role in the environmental lifestyle and adaptation of this human pathogen. Through the T6SS, proteinaceous "spears" tipped with antibacterial effectors are injected into adjacent cells, killing those not possessing immunity proteins to these effectors. Here, we investigate the T6SS-mediated dynamics of bacterial competition within a single environmental population of V. cholerae. We show that numerous members of a North American V. cholerae population possess strain-specific repertoires of cytotoxic T6SS effector and immunity genes. Using pairwise competition assays, we demonstrate that the vast majority of T6SS-mediated duels end in stalemates between strains with different T6SS repertoires. However, horizontally acquired effector and immunity genes can significantly alter the outcome of these competitions. Frequently observed horizontal gene transfer events can both increase or reduce competition between distantly related strains by homogenizing or diversifying the T6SS repertoire. Our results also suggest temperature-dependent outcomes in T6SS competition, with environmental isolates faring better against a pathogenic strain under native conditions than under those resembling a host-associated environment. Taken altogether, these interactions produce density-dependent fitness effects and a constant T6SS-mediated arms race in individual V. cholerae populations, which could ultimately preserve intraspecies diversity. Since T6SSs are widespread, we expect within-population diversity in T6SS repertoires and the resulting competitive dynamics to be a common theme in bacterial species harboring this machinery.
Collapse
Affiliation(s)
- Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Rebecca J. Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
61
|
Sequence Comparison Without Alignment: The SpaM Approaches. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2231:121-134. [PMID: 33289890 DOI: 10.1007/978-1-0716-1036-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sequence alignment is at the heart of DNA and protein sequence analysis. For the data volumes that are nowadays produced by massively parallel sequencing technologies, however, pairwise and multiple alignment methods are often too slow. Therefore, fast alignment-free approaches to sequence comparison have become popular in recent years. Most of these approaches are based on word frequencies, for words of a fixed length, or on word-matching statistics. Other approaches are using the length of maximal word matches. While these methods are very fast, most of them rely on ad hoc measures of sequences similarity or dissimilarity that are hard to interpret. In this chapter, I describe a number of alignment-free methods that we developed in recent years. Our approaches are based on spaced-word matches ("SpaM"), i.e. on inexact word matches, that are allowed to contain mismatches at certain pre-defined positions. Unlike most previous alignment-free approaches, our approaches are able to accurately estimate phylogenetic distances between DNA or protein sequences using a stochastic model of molecular evolution.
Collapse
|
62
|
Abstract
We studied the grape sex-determining region (SDR) in 12 Vitis genomes and demonstrated its conservation across 556 genotypes including 193 accessions from 47 world-wide wild grapevine species and 363 accessions of cultivated grapevine. Although the grape SDR is recombination free in all wild species, we found two distinct hermaphrodite (H) haplotypes (H1 and H2) among the cultivated grapevines, both chimeras of male (M) and female (f) haplotypes. The two independent recombinations carry different genetic signatures which long predate the domestication of grapevine, suggesting independent evolutions of this trait in wild European grapevine gene pools prior to human domestication. Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine (Vitis vinifera L. ssp. vinifera). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.
Collapse
|
63
|
Gilroy R, Ravi A, Getino M, Pursley I, Horton DL, Alikhan NF, Baker D, Gharbi K, Hall N, Watson M, Adriaenssens EM, Foster-Nyarko E, Jarju S, Secka A, Antonio M, Oren A, Chaudhuri RR, La Ragione R, Hildebrand F, Pallen MJ. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941. [PMID: 33868800 PMCID: PMC8035907 DOI: 10.7717/peerj.10941] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. RESULTS We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii. CONCLUSIONS Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.
Collapse
Affiliation(s)
| | | | - Maria Getino
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isabella Pursley
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Dave Baker
- Quadram Institute Bioscience, Norwich, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Mick Watson
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Sheikh Jarju
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia
| | - Arss Secka
- West Africa Livestock Innovation Centre, Banjul, The Gambia
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roy R. Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
64
|
Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data. J Microbiol 2021; 59:270-280. [DOI: 10.1007/s12275-021-0652-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
|
65
|
Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. PLoS Pathog 2021; 17:e1009304. [PMID: 33544760 PMCID: PMC7891712 DOI: 10.1371/journal.ppat.1009304] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/18/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
S. epidermidis is a substantial component of the human skin microbiota, but also one of the major causes of nosocomial infection in the context of implanted medical devices. We here aimed to advance the understanding of S. epidermidis genotypes and phenotypes conducive to infection establishment. Furthermore, we investigate the adaptation of individual clonal lines to the infection lifestyle based on the detailed analysis of individual S. epidermidis populations of 23 patients suffering from prosthetic joint infection. Analysis of invasive and colonizing S. epidermidis provided evidence that invasive S. epidermidis are characterized by infection-supporting phenotypes (e.g. increased biofilm formation, growth in nutrient poor media and antibiotic resistance), as well as specific genetic traits. The discriminating gene loci were almost exclusively assigned to the mobilome. Here, in addition to IS256 and SCCmec, chromosomally integrated phages was identified for the first time. These phenotypic and genotypic features were more likely present in isolates belonging to sequence type (ST) 2. By comparing seven patient-matched nasal and invasive S. epidermidis isolates belonging to identical genetic lineages, infection-associated phenotypic and genotypic changes were documented. Besides increased biofilm production, the invasive isolates were characterized by better growth in nutrient-poor media and reduced hemolysis. By examining several colonies grown in parallel from each infection, evidence for genetic within-host population heterogeneity was obtained. Importantly, subpopulations carrying IS insertions in agrC, mutations in the acetate kinase (AckA) and deletions in the SCCmec element emerged in several infections. In summary, these results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival in hostile infection environments. S. epidermidis is a substantial component of the human skin microbiota, but also a major cause of nosocomial infections related to implanted medical devices. While phenotypic and genotypic determinants supporting invasion were identified, none appears to be necessary. By analysis of S. epidermidis from prosthetic joint infections, we here show that adaptive events are of importance during the transition from commensalism to infection. Adaptation to the infectious lifestyle is characterised by the development of intra-clonal heterogeneity, increased biofilm formation and enhanced growth in iron-free and nutrient-poor media, as well as reduced production of hemolysins. Importantly, during infection subpopulations emerge that carry mutations in a number of genes, most importantly the acetate kinase (ackA) and the β-subunit of the RNA polymerase (rpoB), have deleted larger chromosomal fragments (e.g. within the SCCmec element) or IS insertions in AgrC, a component of the master quorum sensing system in S. epidermidis. These results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival under hostile infection conditions. While mobilome associated factors are important for S. epidermidis invasive potential, the species possesses a multi-layered and complex ability for adaptation to hostile environments, supporting the progression to chronic implant-associated infections.
Collapse
|
66
|
Scossa F, Alseekh S, Fernie AR. Integrating multi-omics data for crop improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153352. [PMID: 33360148 DOI: 10.1016/j.jplph.2020.153352] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
Our agricultural systems are now in urgent need to secure food for a growing world population. To meet this challenge, we need a better characterization of plant genetic and phenotypic diversity. The combination of genomics, transcriptomics and metabolomics enables a deeper understanding of the mechanisms underlying the complex architecture of many phenotypic traits of agricultural relevance. We review the recent advances in plant genomics to see how these can be integrated with broad molecular profiling approaches to improve our understanding of plant phenotypic variation and inform crop breeding strategies.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), 00178, Rome, Italy.
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Golm, Germany; Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.
| |
Collapse
|
67
|
Pan J, Williams E, Sung W, Lynch M, Long H. The insect-killing bacterium Photorhabdus luminescens has the lowest mutation rate among bacteria. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:20-27. [PMID: 33791681 PMCID: PMC8009600 DOI: 10.1007/s42995-020-00060-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mutation is a primary source of genetic variation that is used to power evolution. Many studies, however, have shown that most mutations are deleterious and, as a result, extremely low mutation rates might be beneficial for survival. Using a mutation accumulation experiment, an unbiased method for mutation study, we found an extremely low base-substitution mutation rate of 5.94 × 10-11 per nucleotide site per cell division (95% Poisson confidence intervals: 4.65 × 10-11, 7.48 × 10-11) and indel mutation rate of 8.25 × 10-12 per site per cell division (95% confidence intervals: 3.96 × 10-12, 1.52 × 10-11) in the bacterium Photorhabdus luminescens ATCC29999. The mutations are strongly A/T-biased with a mutation bias of 10.28 in the A/T direction. It has been hypothesized that the ability for selection to lower mutation rates is inversely proportional to the effective population size (drift-barrier hypothesis) and we found that the effective population size of this bacterium is significantly greater than most other bacteria. This finding further decreases the lower-bounds of bacterial mutation rates and provides evidence that extreme levels of replication fidelity can evolve within organisms that maintain large effective population sizes.
Collapse
Affiliation(s)
- Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Emily Williams
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85281 USA
| | - Way Sung
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223 USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
68
|
Eschenbrenner CJ, Feurtey A, Stukenbrock EH. Population Genomics of Fungal Plant Pathogens and the Analyses of Rapidly Evolving Genome Compartments. Methods Mol Biol 2021; 2090:337-355. [PMID: 31975174 DOI: 10.1007/978-1-0716-0199-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genome sequencing of fungal pathogens have documented extensive variation in genome structure and composition between species and in many cases between individuals of the same species. This type of genomic variation can be adaptive for pathogens to rapidly evolve new virulence phenotypes. Analyses of genome-wide variation in fungal pathogen genomes rely on high quality assemblies and methods to detect and quantify structural variation. Population genomic studies in fungi have addressed the underlying mechanisms whereby structural variation can be rapidly generated. Transposable elements, high mutation and recombination rates as well as incorrect chromosome segregation during mitosis and meiosis contribute to extensive variation observed in many species. We here summarize key findings in the field of fungal pathogen genomics and we discuss methods to detect and characterize structural variants including an alignment-based pipeline to study variation in population genomic data.
Collapse
Affiliation(s)
- Christoph J Eschenbrenner
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alice Feurtey
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
69
|
Bendixsen DP, Gettle N, Gilchrist C, Zhang Z, Stelkens R. Genomic Evidence of an Ancient East Asian Divergence Event in Wild Saccharomyces cerevisiae. Genome Biol Evol 2021; 13:6081032. [PMID: 33432360 PMCID: PMC7874999 DOI: 10.1093/gbe/evab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Comparative genome analyses have suggested East Asia to be the cradle of the domesticated microbe Brewer's yeast (Saccharomyces cerevisiae), used in the food and biotechnology industry worldwide. Here, we provide seven new, high-quality long-read genomes of nondomesticated yeast strains isolated from primeval forests and other natural environments in China and Taiwan. In a comprehensive analysis of our new genome assemblies, along with other long-read Saccharomycetes genomes available, we show that the newly sequenced East Asian strains are among the closest living relatives of the ancestors of the global diversity of Brewer's yeast, confirming predictions made from short-read genomic data. Three of these strains (termed the East Asian Clade IX Complex here) share a recent ancestry and evolutionary history suggesting an early divergence from other S. cerevisiae strains before the larger radiation of the species, and prior to its domestication. Our genomic analyses reveal that the wild East Asian strains contain elevated levels of structural variations. The new genomic resources provided here contribute to our understanding of the natural diversity of S. cerevisiae, expand the intraspecific genetic variation found in this heavily domesticated microbe, and provide a foundation for understanding its origin and global colonization history.
Collapse
|
70
|
Lin M, Xiong Q, Chung M, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis. BMC Genomics 2021; 22:11. [PMID: 33407096 PMCID: PMC7789307 DOI: 10.1186/s12864-020-07309-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| | - Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
71
|
Minkin I, Medvedev P. Scalable multiple whole-genome alignment and locally collinear block construction with SibeliaZ. Nat Commun 2020; 11:6327. [PMID: 33303762 PMCID: PMC7728760 DOI: 10.1038/s41467-020-19777-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/29/2020] [Indexed: 11/29/2022] Open
Abstract
Multiple whole-genome alignment is a challenging problem in bioinformatics. Despite many successes, current methods are not able to keep up with the growing number, length, and complexity of assembled genomes, especially when computational resources are limited. Approaches based on compacted de Bruijn graphs to identify and extend anchors into locally collinear blocks have potential for scalability, but current methods do not scale to mammalian genomes. We present an algorithm, SibeliaZ-LCB, for identifying collinear blocks in closely related genomes based on analysis of the de Bruijn graph. We further incorporate this into a multiple whole-genome alignment pipeline called SibeliaZ. SibeliaZ shows run-time improvements over other methods while maintaining accuracy. On sixteen recently-assembled strains of mice, SibeliaZ runs in under 16 hours on a single machine, while other tools did not run to completion for eight mice within a week. SibeliaZ makes a significant step towards improving scalability of multiple whole-genome alignment and collinear block reconstruction algorithms on a single machine.
Collapse
Affiliation(s)
- Ilia Minkin
- Department of Computer Science and Engineering, The Pennsylvania State University, 506 Wartik Lab University Park, University Park, PA, 16802, USA.
| | - Paul Medvedev
- Department of Computer Science and Engineering, The Pennsylvania State University, 506 Wartik Lab University Park, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 506 Wartik Lab University Park, University Park, PA, 16802, USA
- Center for Computational Biology and Bioinformatics, The Pennsylvania State University, 506 Wartik Lab University Park, University Park, PA, 16802, USA
| |
Collapse
|
72
|
Sullivan MJ, van Bakel H. Chromatiblock: scalable whole-genome visualization of structural differences in prokaryotes. JOURNAL OF OPEN SOURCE SOFTWARE 2020; 5:2451. [PMID: 34308098 PMCID: PMC8297681 DOI: 10.21105/joss.02451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chromatiblock is a Python application for visualizing the presence, absence and arrangement of syntenic blocks across large numbers of complete bacterial genomes. Chromatiblock is freely available under a GPL license, for macOS, GNU/Linux and Microsoft Windows from https://github.com/mjsull/chromatiblock/.
Collapse
Affiliation(s)
- Mitchell John Sullivan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| |
Collapse
|
73
|
Carroll LM, Cheng RA, Kovac J. No Assembly Required: Using BTyper3 to Assess the Congruency of a Proposed Taxonomic Framework for the Bacillus cereus Group With Historical Typing Methods. Front Microbiol 2020; 11:580691. [PMID: 33072050 PMCID: PMC7536271 DOI: 10.3389/fmicb.2020.580691] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex comprising numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is essential for facilitating communication between and among microbiologists, clinicians, public health officials, and industry professionals, but is not always straightforward. A recently proposed genomospecies-subspecies-biovar taxonomic framework aims to provide a standardized nomenclature for this species complex but relies heavily on whole-genome sequencing (WGS). It thus is unclear whether popular, low-cost typing methods (e.g., single- and multi-locus sequence typing) remain congruent with the proposed taxonomy. Here, we characterize 2,231 B. cereus s.l. genomes using a combination of in silico (i) average-nucleotide identity (ANI)-based genomospecies assignment, (ii) ANI-based subspecies assignment, (iii) seven-gene multi-locus sequence typing (MLST), (iv) single-locus panC group assignment, (v) rpoB allelic typing, and (vi) virulence factor detection. We show that sequence types (STs) assigned using MLST can be used for genomospecies assignment, and we provide a comprehensive list of ST/genomospecies associations. For panC group assignment, we show that an adjusted, eight-group framework is largely, albeit not perfectly, congruent with the proposed eight-genomospecies taxonomy, as panC alone may not distinguish (i) B. luti from Group II B. mosaicus and (ii) B. paramycoides from Group VI B. mycoides. We additionally provide a list of loci that capture the topology of the whole-genome B. cereus s.l. phylogeny that may be used in future sequence typing efforts. For researchers with access to WGS, MLST, and/or panC data, we showcase how our recently released software, BTyper3 (https://github.com/lmc297/BTyper3), can be used to assign B. cereus s.l. isolates to taxonomic units within this proposed framework with little-to-no user intervention or domain-specific knowledge of B. cereus s.l. taxonomy. We additionally outline a novel method for assigning B. cereus s.l. genomes to pseudo-gene flow units within proposed genomospecies. The results presented here highlight the backward-compatibility and accessibility of the recently proposed genomospecies-subspecies-biovar taxonomic framework and illustrate that WGS is not a necessity for microbiologists who want to use the proposed nomenclature effectively.
Collapse
Affiliation(s)
- Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rachel A. Cheng
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Jasna Kovac
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
74
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
75
|
Klötzl F, Haubold B. Phylonium: fast estimation of evolutionary distances from large samples of similar genomes. Bioinformatics 2020; 36:2040-2046. [PMID: 31790149 PMCID: PMC7141870 DOI: 10.1093/bioinformatics/btz903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/28/2019] [Indexed: 11/13/2022] Open
Abstract
Motivation Tracking disease outbreaks by whole-genome sequencing leads to the collection of large samples of closely related sequences. Five years ago, we published a method to accurately compute all pairwise distances for such samples by indexing each sequence. Since indexing is slow, we now ask whether it is possible to achieve similar accuracy when indexing only a single sequence. Results We have implemented this idea in the program phylonium and show that it is as accurate as its predecessor and roughly 100 times faster when applied to all 2678 Escherichia coli genomes contained in ENSEMBL. One of the best published programs for rapidly computing pairwise distances, mash, analyzes the same dataset four times faster but, with default settings, it is less accurate than phylonium. Availability and implementation Phylonium runs under the UNIX command line; its C++ sources and documentation are available from github.com/evolbioinf/phylonium. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fabian Klötzl
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Bernhard Haubold
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
76
|
Cohen P, Privman E. The social supergene dates back to the speciation time of two Solenopsis fire ant species. Sci Rep 2020; 10:11538. [PMID: 32665692 PMCID: PMC7360596 DOI: 10.1038/s41598-020-67999-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Colony social organization of multiple Solenopsis fire ant species is determined by a supergene with two haplotypes SB and Sb, which are similar to X/Y sex chromosomes. The ancestral monogyne (single-queen) social form has been associated with homozygous SB/SB queens, while queens in colonies with the derived polygyne (multi-queen) social structure are heterozygous SB/Sb. By comparing 14 Solenopsis invicta genomes and the outgroup S. fugax, we dated the formation of the supergene to 1.1 (0.7-1.6) million years ago, much older than previous estimates, and close to the estimated time of speciation of the two socially polymorphic species S. invicta and S. richteri. We also used 12 S. invicta and S. richteri genomes to compare the evolutionary distances between these species and the distances between the social haplotypes, and found them to be similar. A phylogenetic analysis suggested that the monophyletic Sb clade is more closely related to S. richteri SB haplotypes than to S. invicta SB haplotypes. We conclude that the formation of the supergene occurred concomitantly with the process of speciation of the Solenopsis socially-polymorphic clade, and hypothesize that the Sb variant first arouse in one incipiently-speciating population and then introgressed into the other populations or species.
Collapse
Affiliation(s)
- Pnina Cohen
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
77
|
Tang L, Huang J, She J, Zhao K, Zhou Y. Co-Occurrence of the bla KPC-2 and Mcr-3.3 Gene in Aeromonas caviae SCAc2001 Isolated from Patients with Diarrheal Disease. Infect Drug Resist 2020; 13:1527-1536. [PMID: 32547122 PMCID: PMC7259443 DOI: 10.2147/idr.s245553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/23/2020] [Indexed: 01/24/2023] Open
Abstract
Purpose To characterize the genetic feature of a multi-drug-resistant Aeromonas caviae strain isolated from the diarrhea sample of a 45-year-old male patient with acute diarrhea. Materials and Methods Whole-genome of the A. caviae strain SCAc2001 was sequenced via the Illumina system, followed by a series of bioinformatic analyses to describe the genetic feature. Results The genome sequence of A. caviae SCAc2001 was assembled into 340 scaffolds (305 of them were > 1000 bp in length and 4,487,370 bp in total) with an average G+C content of 61.09%. Phylogenetic analysis showed that the A. caviae SCAc2001 strain was highly similar to the A. caviae strain R25-2 and T25-39. Resistome analysis identified that A. caviae SCAc2001 carried 13 antimicrobial resistance genes, including β-lactams (blaKPC, blaCTX-M-14, blaTEM-1, blaOXA-10, blaOXA-427, blaVEB-3 and blaMOX-6), aminoglycosides (aadA1), fluoroquinolones (aac(6ʹ)-Ib-cr), phenicol resistance (catB3), sulfonamide (sul1), trimethoprim (dfrA5) and colistin resistance (mcr-3.3).And also, A. caviae ScAc2001 carried 54 putative virulence genes including the type IV pilus, fimbria, flagellarthe, and hemolysin A encoding genes, and 12 pathogen–host interactions (PHI) genes. There were also four genomic islands and eight prophages in the genome of A. caviae ScAc2001. In addition, A. caviae SCAc2001 also carried three secondary metabolism products coding clusters including nonribosomal peptide synthetases (nrps), hserlactone and bacteriocin. Conclusion A. caviae ScAc2001 carries many resistance genes, a variety of virulence factors, PHI genes and four genomic islands and eight prophages, which poses a severe threat to infectious diseases control strategies, diagnosis methods and clinical treatment.
Collapse
Affiliation(s)
- Lingtong Tang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China.,Department of Clinical Laboratory, People's Hospital of Gao County, Yibing 644000, Sichuan, People's Republic of China
| | - Jianglian Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiaman 361600, People's Republic of China
| | - Junping She
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, Sichuan, People's Republic of China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| |
Collapse
|
78
|
Petro CD, Duncan JK, Seldina YI, Allué-Guardia A, Eppinger M, Riddle MS, Tribble DR, Johnson RC, Dalgard CL, Sukumar G, Connor P, Boisen N, Melton-Celsa AR. Genetic and Virulence Profiles of Enteroaggregative Escherichia coli (EAEC) Isolated From Deployed Military Personnel (DMP) With Travelers' Diarrhea. Front Cell Infect Microbiol 2020; 10:200. [PMID: 32509590 PMCID: PMC7251025 DOI: 10.3389/fcimb.2020.00200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/16/2020] [Indexed: 02/01/2023] Open
Abstract
To discern if there was a particular genotype associated with clinical enteroaggregative Escherichia coli (EAEC) strains isolated from deployed military personnel (DMP) with travelers' diarrhea (TD), we characterized a collection of EAEC from DMP deployed to Afghanistan, Djibouti, Kenya, or Honduras. Although we did not identify a specific EAEC genotype associated with TD in DMP, we found that EAEC isolated at the first clinic visit were more likely to encode the dispersin gene aap than EAEC collected at follow-up visits. A majority of the EAEC isolates were typical EAEC that adhered to HEp-2 cells, formed biofilms, and harbored genes for aggregative adherence fimbriae (AAF), AggR, and serine protease autotransporters of Enterobacteriaceae (SPATEs). A separate subset of the EAEC had aggR and genes for SPATEs but encoded a gene highly homologous to that for CS22, a fimbriae more commonly found in enterotoxigenic E. coli. None of these CS22-encoding EAEC formed biofilms in vitro or adhered to HEp-2 cells. Whole genome sequence and single nucleotide polymorphism analyses demonstrated that most of the strains were genetically diverse, but that a few were closely related. Isolation of these related strains occurred within days to more than a year apart, a finding that suggests a persistent source and genomic stability. In an ampicillin-treated mouse model we found that an agg4A+ aar- isolate formed a biofilm in the intestine and caused reduced weight gain in mice, whereas a strain that did not form an in vivo biofilm caused no morbidity. Our diverse strain collection from DMP displays the heterogeneity of EAEC strains isolated from human patients, and our mouse model of infection indicated the genotype agg4A+ aar– and/or capacity to form biofilm in vivo may correlate to disease severity.
Collapse
Affiliation(s)
- Courtney D Petro
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey K Duncan
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yuliya I Seldina
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Mark S Riddle
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R Tribble
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ryan C Johnson
- Department of Preventative Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gauthaman Sukumar
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Collaborative Health Initiative Research Program, Henry Jackson Foundation, Bethesda, MD, United States
| | - Patrick Connor
- Military Enteric Disease Group, Academic Department of Military Medicine, Birmingham, United Kingdom
| | - Nadia Boisen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunolgy, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
79
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
80
|
Dench J, Hinz A, Aris‐Brosou S, Kassen R. Identifying the drivers of computationally detected correlated evolution among sites under antibiotic selection. Evol Appl 2020; 13:781-793. [PMID: 32211067 PMCID: PMC7086105 DOI: 10.1111/eva.12900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022] Open
Abstract
The ultimate causes of correlated evolution among sites in a genome remain difficult to tease apart. To address this problem directly, we performed a high-throughput search for correlated evolution among sites associated with resistance to a fluoroquinolone antibiotic using whole-genome data from clinical strains of Pseudomonas aeruginosa, before validating our computational predictions experimentally. We show that for at least two sites, this correlation is underlain by epistasis. Our analysis also revealed eight additional pairs of synonymous substitutions displaying correlated evolution underlain by physical linkage, rather than selection associated with antibiotic resistance. Our results provide direct evidence that both epistasis and physical linkage among sites can drive the correlated evolution identified by high-throughput computational tools. In other words, the observation of correlated evolution is not by itself sufficient evidence to guarantee that the sites in question are epistatic; such a claim requires additional evidence, ideally coming from direct estimates of epistasis, based on experimental evidence.
Collapse
Affiliation(s)
- Jonathan Dench
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Aaron Hinz
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Stéphane Aris‐Brosou
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Department of Mathematics and StatisticsUniversity of OttawaOttawaOntarioCanada
| | - Rees Kassen
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
81
|
Li FW, Nishiyama T, Waller M, Frangedakis E, Keller J, Li Z, Fernandez-Pozo N, Barker MS, Bennett T, Blázquez MA, Cheng S, Cuming AC, de Vries J, de Vries S, Delaux PM, Diop IS, Harrison CJ, Hauser D, Hernández-García J, Kirbis A, Meeks JC, Monte I, Mutte SK, Neubauer A, Quandt D, Robison T, Shimamura M, Rensing SA, Villarreal JC, Weijers D, Wicke S, Wong GKS, Sakakibara K, Szövényi P. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. NATURE PLANTS 2020; 6:259-272. [PMID: 32170292 PMCID: PMC8075897 DOI: 10.1038/s41477-020-0618-2] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/11/2020] [Indexed: 05/12/2023]
Abstract
Hornworts comprise a bryophyte lineage that diverged from other extant land plants >400 million years ago and bears unique biological features, including a distinct sporophyte architecture, cyanobacterial symbiosis and a pyrenoid-based carbon-concentrating mechanism (CCM). Here, we provide three high-quality genomes of Anthoceros hornworts. Phylogenomic analyses place hornworts as a sister clade to liverworts plus mosses with high support. The Anthoceros genomes lack repeat-dense centromeres as well as whole-genome duplication, and contain a limited transcription factor repertoire. Several genes involved in angiosperm meristem and stomatal function are conserved in Anthoceros and upregulated during sporophyte development, suggesting possible homologies at the genetic level. We identified candidate genes involved in cyanobacterial symbiosis and found that LCIB, a Chlamydomonas CCM gene, is present in hornworts but absent in other plant lineages, implying a possible conserved role in CCM function. We anticipate that these hornwort genomes will serve as essential references for future hornwort research and comparative studies across land plants.
Collapse
Affiliation(s)
- Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Ishikawa, Japan
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS Castanet-Tolosan, Toulouse, France
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Tom Bennett
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jan de Vries
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Georg-August University Göttingen, Göttingen, Germany
| | - Sophie de Vries
- Institute of Population Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS Castanet-Tolosan, Toulouse, France
| | - Issa S Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Alexander Kirbis
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Isabel Monte
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Tanner Robison
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Stefan A Rensing
- Faculty of Biology, Philipps University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg, Germany
| | - Juan Carlos Villarreal
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Smithsonian Tropical Research Institute, Balboa, Panamá
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Münster, Germany
| | - Gane K-S Wong
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- BGI-Shenzhen, Shenzhen, China
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
- Zurich-Basel Plant Science Center, Zurich, Switzerland.
| |
Collapse
|
82
|
Dencker T, Leimeister CA, Gerth M, Bleidorn C, Snir S, Morgenstern B. 'Multi-SpaM': a maximum-likelihood approach to phylogeny reconstruction using multiple spaced-word matches and quartet trees. NAR Genom Bioinform 2020; 2:lqz013. [PMID: 33575565 PMCID: PMC7671388 DOI: 10.1093/nargab/lqz013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/31/2019] [Accepted: 10/13/2019] [Indexed: 02/03/2023] Open
Abstract
Word-based or 'alignment-free' methods for phylogeny inference have become popular in recent years. These methods are much faster than traditional, alignment-based approaches, but they are generally less accurate. Most alignment-free methods calculate 'pairwise' distances between nucleic-acid or protein sequences; these distance values can then be used as input for tree-reconstruction programs such as neighbor-joining. In this paper, we propose the first word-based phylogeny approach that is based on 'multiple' sequence comparison and 'maximum likelihood'. Our algorithm first samples small, gap-free alignments involving four taxa each. For each of these alignments, it then calculates a quartet tree and, finally, the program 'Quartet MaxCut' is used to infer a super tree for the full set of input taxa from the calculated quartet trees. Experimental results show that trees produced with our approach are of high quality.
Collapse
Affiliation(s)
- Thomas Dencker
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Chris-André Leimeister
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
| | - Michael Gerth
- Institute for Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK
| | - Christoph Bleidorn
- Department of Animal Evolution and Biodiversity, Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Sagi Snir
- Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, Israel
| | - Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
83
|
Lin HN, Hsu WL. GSAlign: an efficient sequence alignment tool for intra-species genomes. BMC Genomics 2020; 21:182. [PMID: 32093618 PMCID: PMC7041101 DOI: 10.1186/s12864-020-6569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Personal genomics and comparative genomics are becoming more important in clinical practice and genome research. Both fields require sequence alignment to discover sequence conservation and variation. Though many methods have been developed, some are designed for small genome comparison while some are not efficient for large genome comparison. Moreover, most existing genome comparison tools have not been evaluated the correctness of sequence alignments systematically. A wrong sequence alignment would produce false sequence variants. RESULTS In this study, we present GSAlign that handles large genome sequence alignment efficiently and identifies sequence variants from the alignment result. GSAlign is an efficient sequence alignment tool for intra-species genomes. It identifies sequence variations from the sequence alignments. We estimate performance by measuring the correctness of predicted sequence variations. The experiment results demonstrated that GSAlign is not only faster than most existing state-of-the-art methods, but also identifies sequence variants with high accuracy. CONCLUSIONS As more genome sequences become available, the demand for genome comparison is increasing. Therefore an efficient and robust algorithm is most desirable. We believe GSAlign can be a useful tool. It exhibits the abilities of ultra-fast alignment as well as high accuracy and sensitivity for detecting sequence variations.
Collapse
Affiliation(s)
- Hsin-Nan Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
84
|
Diarrhoeal events can trigger long-term Clostridium difficile colonization with recurrent blooms. Nat Microbiol 2020; 5:642-650. [PMID: 32042128 DOI: 10.1038/s41564-020-0668-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022]
Abstract
Although Clostridium difficile is widely considered an antibiotic- and hospital-associated pathogen, recent evidence indicates that this is an insufficient depiction of the risks and reservoirs. A common thread that links all major risk factors of infection is their association with gastrointestinal disturbances, but this relationship to C. difficile colonization has never been tested directly. Here, we show that disturbances caused by diarrhoeal events trigger susceptibility to C. difficile colonization. Using survey data of the human gut microbiome, we detected C. difficile colonization and blooms in people recovering from food poisoning and Vibrio cholerae infections. Carriers remained colonized for year-long time scales and experienced highly variable patterns of C. difficile abundance, where increased shedding over short periods of 1-2 d interrupted week-long periods in which C. difficile was undetectable. Given that short shedding events were often linked to gastrointestinal disturbances, our results help explain why C. difficile is frequently detected as a co-infecting pathogen in patients with diarrhoea. To directly test the impact of diarrhoea on susceptibility to colonization, we developed a mouse model of variable disturbance intensity, which allowed us to monitor colonization in the absence of disease. As mice exposed to avirulent C. difficile spores ingested increasing quantities of laxatives, more individuals experienced C. difficile blooms. Our results indicate that the likelihood of colonization is highest in the days immediately following acute disturbances, suggesting that this could be an important window during which transmission could be interrupted and the incidence of infection lowered.
Collapse
|
85
|
Abstract
As the number of available genome sequences from both closely related species and individuals within species increased, theoretical and methodological convergences between the fields of phylogenomics and population genomics emerged. Population genomics typically focuses on the analysis of variants, while phylogenomics heavily relies on genome alignments. However, these are playing an increasingly important role in studies at the population level. Multiple genome alignments of individuals are used when structural variation is of primary interest and when genome architecture permits to assemble de novo genome sequences. Here I describe MafFilter, a command-line-driven program allowing to process genome alignments in the Multiple Alignment Format (MAF). Using concrete examples based on publicly available datasets, I demonstrate how MafFilter can be used to develop efficient and reproducible pipelines with quality assurance for downstream analyses. I further show how MafFilter can be used to perform both basic and advanced population genomic analyses in order to infer the patterns of nucleotide diversity along genomes.
Collapse
|
86
|
Zhu Z, Meng G. ASFVdb: an integrative resource for genomic and proteomic analyses of African swine fever virus. Database (Oxford) 2020; 2020:baaa023. [PMID: 32294195 PMCID: PMC7159030 DOI: 10.1093/database/baaa023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
The recent outbreaks of African swine fever (ASF) in China and Europe have threatened the swine industry globally. To control the transmission of ASF virus (ASFV), we developed the African swine fever virus database (ASFVdb), an online data visualization and analysis platform for comparative genomics and proteomics. On the basis of known ASFV genes, ASFVdb reannotates the genomes of every strain and newly annotates 5352 possible open reading frames (ORFs) of 45 strains. Moreover, ASFVdb performs a thorough analysis of the population genetics of all the published genomes of ASFV strains and performs functional and structural predictions for all genes. Users can obtain not only basic information for each gene but also its distribution in strains and conserved or high mutation regions, possible subcellular location and topology. In the genome browser, ASFVdb provides a sliding window for results of population genetic analysis, which facilitates genetic and evolutionary analyses at the genomic level. The web interface was constructed based on SWAV 1.0. ASFVdb is freely accessible at http://asfvdb.popgenetics.net.
Collapse
Affiliation(s)
- Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Geng Meng
- Laboratory of Biomedical Research and College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
87
|
Gao H, Liu Y, Wang R, Wang Q, Jin L, Wang H. The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine 2020; 51:102599. [PMID: 31911273 PMCID: PMC6948161 DOI: 10.1016/j.ebiom.2019.102599] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Emergence of KPC-2 and NDM-1-coproducing carbapenem-resistant Klebsiella pneumoniae (KPC-2-NDM-1-CRKP) has escalated threat of CRKP to healthcare. Currently, only 4 isolates had been reported sporadically. It remains unclear how KPC-2-NDM-1-CRKPs emerged, and whether they are stable and have transmission capacity. METHODS PCR and Sanger sequencing was used to screen carbapenemase genes for 2057 CRKP isolates, to identify KPC-2-NDM-1-CRKPs. The clinical information of the patients was collected from medical records. Antimicrobial susceptibility, plasmid stability, plasmid conjugation and growth curve were measured. The whole genomes were sequenced on PacBio and Illumina platforms. Similar plasmids were searched against public database. Phylogenetic tree was built based on related genomes which carried similar plasmids, to infer the evolutionary history of KPC-2-NDM-1-CRKP. FINDINGS We identified to date the largest cohort of 7 KPC-2-NDM-1-CRKPs. An increased incidence rate was observed. Plasmid transferability assay and phylogenic analysis suggested an evolutionary pathway that KPC-2-NDM-1-CRKP emerged from a KPC-2-CRKP progenitor which acquired another highly transferable blaNDM-1 plasmid later. Further, demographics and stability test revealed that these isolates were stable and had the potential for transmission among patients. INTERPRETATION Our study extends our concern on KPC-2-NDM-1-CRKP about its high stability and non-inferior fitness, sheds light on the evolution of KPC-2-NDM-1-CRKP, strengthens the importance of continued surveillance on these isolates, and would improve clinical treatment and management. FUNDING This work was supported by National Natural Science Foundation for Distinguished Young Scholars of China (81625014) and NSFC-RCUK-MRC (81661138006).
Collapse
Affiliation(s)
- Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China.
| |
Collapse
|
88
|
Comparative Genomic Analysis of Rhodococcus equi: An Insight into Genomic Diversity and Genome Evolution. Int J Genomics 2019; 2019:8987436. [PMID: 31950028 PMCID: PMC6948317 DOI: 10.1155/2019/8987436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/24/2019] [Accepted: 08/11/2019] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus equi, a member of the Rhodococcus genus, is a gram-positive pathogenic bacterium. Rhodococcus possesses an open pan-genome that constitutes the basis of its high genomic diversity and allows for adaptation to specific niche conditions and the changing host environments. Our analysis further showed that the core genome of R. equi contributes to the pathogenicity and niche adaptation of R. equi. Comparative genomic analysis revealed that the genomes of R. equi shared identical collinearity relationship, and heterogeneity was mainly acquired by means of genomic islands and prophages. Moreover, genomic islands in R. equi were always involved in virulence, resistance, or niche adaptation and possibly working with prophages to cause the majority of genome expansion. These findings provide an insight into the genomic diversity, evolution, and structural variation of R. equi and a valuable resource for functional genomic studies.
Collapse
|
89
|
Akarsu H, Aguilar-Bultet L, Falquet L. deltaRpkm: an R package for a rapid detection of differential gene presence between related bacterial genomes. BMC Bioinformatics 2019; 20:621. [PMID: 31791245 PMCID: PMC6889214 DOI: 10.1186/s12859-019-3234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/14/2019] [Indexed: 11/25/2022] Open
Abstract
Background Comparative genomics has seen the development of many software performing the clustering, polymorphism and gene content analysis of genomes at different phylogenetic levels (isolates, species). These tools rely on de novo assembly and/or multiple alignments that can be computationally intensive for large datasets. With a large number of similar genomes in particular, e.g., in surveillance and outbreak detection, assembling each genome can become a redundant and expensive step in the identification of genes potentially involved in a given clinical feature. Results We have developed deltaRpkm, an R package that performs a rapid differential gene presence evaluation between two large groups of closely related genomes. Starting from a standard gene count table, deltaRpkm computes the RPKM per gene per sample, then the inter-group δRPKM values, the corresponding median δRPKM (m) for each gene and the global standard deviation value of m (sm). Genes with m > = 2 ∗ sm (standard deviation s of all the m values) are considered as “differentially present” in the reference genome group. Our simple yet effective method of differential RPKM has been successfully applied in a recent study published by our group (N = 225 genomes of Listeria monocytogenes) (Aguilar-Bultet et al. Front Cell Infect Microbiol 8:20, 2018). Conclusions To our knowledge, deltaRpkm is the first tool to propose a straightforward inter-group differential gene presence analysis with large datasets of related genomes, including non-coding genes, and to output directly a list of genes potentially involved in a phenotype.
Collapse
Affiliation(s)
- Hatice Akarsu
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, BUGFri group, Fribourg, Switzerland
| | - Lisandra Aguilar-Bultet
- Swiss Institute of Bioinformatics, BUGFri group, Fribourg, Switzerland.,Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Currently at the Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland. .,Swiss Institute of Bioinformatics, BUGFri group, Fribourg, Switzerland.
| |
Collapse
|
90
|
Jorge S, Miotto BA, Kremer FS, Cagliari R, de Oliveira NR, Heinemann MB, da Silva Pinto L, Hagiwara MK, Campos VF, Dellagostin OA. Complete genome sequence and in silico analysis of L. interrogans Canicola strain DU114: A virulent Brazilian isolate phylogenetically related to serovar Linhai. Genomics 2019; 111:1651-1656. [DOI: 10.1016/j.ygeno.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
|
91
|
Lucek K, Gompert Z, Nosil P. The role of structural genomic variants in population differentiation and ecotype formation in Timema cristinae walking sticks. Mol Ecol 2019; 28:1224-1237. [PMID: 30636326 DOI: 10.1111/mec.15016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Theory predicts that structural genomic variants such as inversions can promote adaptive diversification and speciation. Despite increasing empirical evidence that adaptive divergence can be triggered by one or a few large inversions, the degree to which widespread genomic regions under divergent selection are associated with structural variants remains unclear. Here we test for an association between structural variants and genomic regions that underlie parallel host-plant-associated ecotype formation in Timema cristinae stick insects. Using mate-pair resequencing of 20 new whole genomes we find that moderately sized structural variants such as inversions, deletions and duplications are widespread across the genome, being retained as standing variation within and among populations. Using 160 previously published, standard-orientation whole genome sequences we find little to no evidence that the DNA sequences within inversions exhibit accentuated differentiation between ecotypes. In contrast, a formerly described large region of reduced recombination that harbours genes controlling colour-pattern exhibits evidence for accentuated differentiation between ecotypes, which is consistent with differences in the frequency of colour-pattern morphs between host-associated ecotypes. Our results suggest that some types of structural variants (e.g., large inversions) are more likely to underlie adaptive divergence than others, and that structural variants are not required for subtle yet genome-wide genetic differentiation with gene flow.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Biology, Utah State University, Logan, Utah
| |
Collapse
|
92
|
de Fátima Rauber Würfel S, Jorge S, de Oliveira NR, Kremer FS, Sanchez CD, Campos VF, da Silva Pinto L, da Silva WP, Dellagostin OA. Campylobacter jejuni isolated from poultry meat in Brazil: in silico analysis and genomic features of two strains with different phenotypes of antimicrobial susceptibility. Mol Biol Rep 2019; 47:671-681. [PMID: 31749118 DOI: 10.1007/s11033-019-05174-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022]
Abstract
Campylobacter jejuni is the most common bacterial cause of foodborne diarrheal disease worldwide and is among the antimicrobial resistant "priority pathogens" that pose greatest threat to public health. The genomes of two C. jejuni isolated from poultry meat sold on the retail market in Southern Brazil phenotypically characterized as multidrug-resistant (CJ100) and susceptible (CJ104) were sequenced and analyzed by bioinformatic tools. The isolates CJ100 and CJ104 showed distinct multilocus sequence types (MLST). Comparative genomic analysis revealed a large number of single nucleotide polymorphisms, rearrangements, and inversions in both genomes, in addition to virulence factors, genomic islands, prophage sequences, and insertion sequences. A circular 103-kilobase megaplasmid carrying virulence factors was identified in the genome of CJ100, in addition to resistance mechanisms to aminoglycosides, beta-lactams, macrolides, quinolones, and tetracyclines. The molecular characterization of distinct phenotypes of foodborne C. jejuni and the discovery of a novel virulence megaplasmid provide useful data for pan-genome and large-scale studies to monitor the virulent C. jejuni in poultry meat is warranted.
Collapse
Affiliation(s)
| | - Sérgio Jorge
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Natasha Rodrigues de Oliveira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Frederico Schmitt Kremer
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Christian Domingues Sanchez
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinícius Farias Campos
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir Antônio Dellagostin
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
93
|
Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH. Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Front Microbiol 2019; 10:2575. [PMID: 31781071 PMCID: PMC6851232 DOI: 10.3389/fmicb.2019.02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Magnaporthe oryzae infects rice, wheat, and many grass species in the Poaceae family by secreting protein effectors. Here, we analyzed the distribution, sequence variation, and genomic context of effector candidate (EFC) genes in 31 isolates that represent five pathotypes of M. oryzae, three isolates of M. grisea, a sister species of M. oryzae, and one strain each for eight species in the family Magnaporthaceae to investigate how the host range expansion of M. oryzae has likely affected the evolution of effectors. We used the EFC genes of M. oryzae strain 70-15, whose genome has served as a reference for many comparative genomics analyses, to identify their homologs in these strains. We also analyzed the previously characterized avirulence (AVR) genes and single-copy orthologous (SCO) genes in these strains, which showed that the EFC and AVR genes evolved faster than the SCO genes. The EFC and AVR repertoires among M. oryzae pathotypes varied widely probably because adaptation to individual hosts exerted different types of selection pressure. Repetitive DNA elements appeared to have caused the variation of some EFC genes. Lastly, we analyzed expression patterns of the AVR and EFC genes to test the hypothesis that such genes are preferentially expressed during host infection. This comprehensive dataset serves as a foundation for future studies on the genetic basis of the evolution and host specialization in M. oryzae.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA, United States
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
94
|
Leimeister CA, Dencker T, Morgenstern B. Accurate multiple alignment of distantly related genome sequences using filtered spaced word matches as anchor points. Bioinformatics 2019; 35:211-218. [PMID: 29992260 PMCID: PMC6330006 DOI: 10.1093/bioinformatics/bty592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/09/2018] [Indexed: 01/30/2023] Open
Abstract
Motivation Most methods for pairwise and multiple genome alignment use fast local homology search tools to identify anchor points, i.e. high-scoring local alignments of the input sequences. Sequence segments between those anchor points are then aligned with slower, more sensitive methods. Finding suitable anchor points is therefore crucial for genome sequence comparison; speed and sensitivity of genome alignment depend on the underlying anchoring methods. Results In this article, we use filtered spaced word matches to generate anchor points for genome alignment. For a given binary pattern representing match and don't-care positions, we first search for spaced-word matches, i.e. ungapped local pairwise alignments with matching nucleotides at the match positions of the pattern and possible mismatches at the don't-care positions. Those spaced-word matches that have similarity scores above some threshold value are then extended using a standard X-drop algorithm; the resulting local alignments are used as anchor points. To evaluate this approach, we used the popular multiple-genome-alignment pipeline Mugsy and replaced the exact word matches that Mugsy uses as anchor points with our spaced-word-based anchor points. For closely related genome sequences, the two anchoring procedures lead to multiple alignments of similar quality. For distantly related genomes, however, alignments calculated with our filtered-spaced-word matches are superior to alignments produced with the original Mugsy program where exact word matches are used to find anchor points. Availability and implementation http://spacedanchor.gobics.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Thomas Dencker
- Department of Bioinformatics, Institute of Microbiology and Genetics
| | - Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics.,Center for Computational Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
95
|
Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R, Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hutzler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat Ecol Evol 2019; 3:1562-1575. [PMID: 31636425 DOI: 10.1038/s41559-019-0997-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Stijn Mertens
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Jonathan L Gordon
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Ruben Wauters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Francesca Bellinazzo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | | | | | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | - Franz Meußdoerffer
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | | | | | | | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium. .,Leuven Institute for Beer Research, Leuven, Belgium.
| |
Collapse
|
96
|
Identification of Virulence-Associated Properties by Comparative Genome Analysis of Streptococcus pneumoniae, S. pseudopneumoniae, S. mitis, Three S. oralis Subspecies, and S. infantis. mBio 2019; 10:mBio.01985-19. [PMID: 31481387 PMCID: PMC6722419 DOI: 10.1128/mbio.01985-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms. From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis. Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.
Collapse
|
97
|
Mulugeta TD, Nome T, To TH, Gundappa MK, Macqueen DJ, Våge DI, Sandve SR, Hvidsten TR. SalMotifDB: a tool for analyzing putative transcription factor binding sites in salmonid genomes. BMC Genomics 2019; 20:694. [PMID: 31477007 PMCID: PMC6720087 DOI: 10.1186/s12864-019-6051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background Recently developed genome resources in Salmonid fish provides tools for studying the genomics underlying a wide range of properties including life history trait variation in the wild, economically important traits in aquaculture and the evolutionary consequences of whole genome duplications. Although genome assemblies now exist for a number of salmonid species, the lack of regulatory annotations are holding back our mechanistic understanding of how genetic variation in non-coding regulatory regions affect gene expression and the downstream phenotypic effects. Results We present SalMotifDB, a database and associated web and R interface for the analysis of transcription factors (TFs) and their cis-regulatory binding sites in five salmonid genomes. SalMotifDB integrates TF-binding site information for 3072 non-redundant DNA patterns (motifs) assembled from a large number of metazoan motif databases. Through motif matching and TF prediction, we have used these multi-species databases to construct putative regulatory networks in salmonid species. The utility of SalMotifDB is demonstrated by showing that key lipid metabolism regulators are predicted to regulate a set of genes affected by different lipid and fatty acid content in the feed, and by showing that our motif database explains a significant proportion of gene expression divergence in gene duplicates originating from the salmonid specific whole genome duplication. Conclusions SalMotifDB is an effective tool for analyzing transcription factors, their binding sites and the resulting gene regulatory networks in salmonid species, and will be an important tool for gaining a better mechanistic understanding of gene regulation and the associated phenotypes in salmonids. SalMotifDB is available at https://salmobase.org/apps/SalMotifDB. Electronic supplementary material The online version of this article (10.1186/s12864-019-6051-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teshome Dagne Mulugeta
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Thu-Hien To
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
98
|
Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms. J Ind Microbiol Biotechnol 2019; 46:1251-1263. [PMID: 31392469 DOI: 10.1007/s10295-019-02222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
The genus Caldicellulosiruptor is comprised of extremely thermophilic, heterotrophic anaerobes that degrade plant biomass using modular, multifunctional enzymes. Prior pangenome analyses determined that this genus is genetically diverse, with the current pangenome remaining open, meaning that new genes are expected with each additional genome sequence added. Given the high biodiversity observed among the genus Caldicellulosiruptor, we have sequenced and added a 14th species, Caldicellulosiruptor changbaiensis, to the pangenome. The pangenome now includes 3791 ortholog clusters, 120 of which are unique to C. changbaiensis and may be involved in plant biomass degradation. Comparisons between C. changbaiensis and Caldicellulosiruptor bescii on the basis of growth kinetics, cellulose solubilization and cell attachment to polysaccharides highlighted physiological differences between the two species which are supported by their respective gene inventories. Most significantly, these comparisons indicated that C. changbaiensis possesses uncommon cellulose attachment mechanisms not observed among the other strongly cellulolytic members of the genus Caldicellulosiruptor.
Collapse
|
99
|
A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations. Cell 2019; 178:820-834.e14. [DOI: 10.1016/j.cell.2019.06.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023]
|
100
|
Pérez-Carrascal OM, Terrat Y, Giani A, Fortin N, Greer CW, Tromas N, Shapiro BJ. Coherence of Microcystis species revealed through population genomics. ISME JOURNAL 2019; 13:2887-2900. [PMID: 31363173 DOI: 10.1038/s41396-019-0481-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022]
Abstract
Microcystis is a genus of freshwater cyanobacteria, which causes harmful blooms in ecosystems worldwide. Some Microcystis strains produce harmful toxins such as microcystin, impacting drinking water quality. Microcystis colony morphology, rather than genetic similarity, is often used to classify Microcystis into morphospecies. Yet colony morphology is a plastic trait, which can change depending on environmental and laboratory culture conditions, and is thus an inadequate criterion for species delineation. Furthermore, Microcystis populations are thought to disperse globally and constitute a homogeneous gene pool. However, this assertion is based on relatively incomplete characterization of Microcystis genomic diversity. To better understand these issues, we performed a population genomic analysis of 33 newly sequenced genomes mainly from Canada and Brazil. We identified 17 Microcystis clusters of genomic similarity, five of which correspond to monophyletic clades containing at least three newly sequenced genomes. Four out of these five clades match to named morphospecies. Notably, M. aeruginosa is paraphyletic, distributed across 12 genomic clusters, suggesting it is not a coherent species. A few clades of closely related isolates are specific to a unique geographic location, suggesting biogeographic structure over relatively short evolutionary time scales. Higher homologous recombination rates within than between clades further suggest that monophyletic groups might adhere to a Biological Species-like concept, in which barriers to gene flow maintain species distinctness. However, certain genes-including some involved in microcystin and micropeptin biosynthesis-are recombined between monophyletic groups in the same geographic location, suggesting local adaptation.
Collapse
Affiliation(s)
| | - Yves Terrat
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Alessandra Giani
- Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nicolas Tromas
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada.
| | - B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|