51
|
Bhattacharya S, Roche R, Shuvo MH, Moussad B, Bhattacharya D. Contact-Assisted Threading in Low-Homology Protein Modeling. Methods Mol Biol 2023; 2627:41-59. [PMID: 36959441 DOI: 10.1007/978-1-0716-2974-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | | | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
52
|
Tian W, Lin M, Tang K, Barse M, Naveed H, Liang J. 3D-BMPP: 3D Beta-Barrel Membrane Protein Predictor. Methods Mol Biol 2023; 2627:321-328. [PMID: 36959455 PMCID: PMC10593542 DOI: 10.1007/978-1-0716-2974-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
β-barrel membrane proteins (βMPs), found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts, play important roles in membrane anchoring, pore formation, and enzyme activities. However, it is often difficult to determine their structures experimentally, and the knowledge of their structures is currently limited. We have developed a method to predict the 3D architectures of βMPs. We can accurately construct transmembrane domains of βMPs by predicting their strand registers, from which full 3D atomic structures are derived. Using 3D Beta-barrel Membrane Protein Predictor (3D-BMPP), we can further accurately model the extended beta barrels and loops in non-TM regions with overall greater structure prediction coverage. 3DBMPP is a general technique that can be applied to protein families with limited sequences as well as proteins with novel folds. Applications of 3DBMPP can be broadly applied to genome-wide βMPs structure prediction.
Collapse
Affiliation(s)
- Wei Tian
- Center for Bioinformatics and Quantitative Biology and Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Meishan Lin
- Center for Bioinformatics and Quantitative Biology and Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ke Tang
- Center for Bioinformatics and Quantitative Biology and Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Manisha Barse
- Center for Bioinformatics and Quantitative Biology and Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hammad Naveed
- Computational Biology Research Lab and Department of Computing, National University of Computer and Emerging Sciences, Islamabad, Pakistan.
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology and Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
53
|
Petti S, Bhattacharya N, Rao R, Dauparas J, Thomas N, Zhou J, Rush AM, Koo P, Ovchinnikov S. End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman. Bioinformatics 2023; 39:6820925. [PMID: 36355460 PMCID: PMC9805565 DOI: 10.1093/bioinformatics/btac724] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Multiple sequence alignments (MSAs) of homologous sequences contain information on structural and functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance from the application it will be used for. RESULTS Here, we implement a smooth and differentiable version of the Smith-Waterman pairwise alignment algorithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an alignment and the potential dangers of optimizing predictions of protein sequences with methods that are not fully understood. AVAILABILITY AND IMPLEMENTATION Our code and examples are available at: https://github.com/spetti/SMURF. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Samantha Petti
- NSF-Simons Center for the Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicholas Bhattacharya
- Department of Mathematics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Roshan Rao
- Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Justas Dauparas
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Neil Thomas
- Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Juannan Zhou
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alexander M Rush
- Department of Computer Science, Cornell Tech, New York, NY 10044, USA
| | - Peter Koo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
54
|
Bartuzi D, Kaczor AA, Matosiuk D. Illuminating the "Twilight Zone": Advances in Difficult Protein Modeling. Methods Mol Biol 2023; 2627:25-40. [PMID: 36959440 DOI: 10.1007/978-1-0716-2974-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Homology modeling was long considered a method of choice in tertiary protein structure prediction. However, it used to provide models of acceptable quality only when templates with appreciable sequence identity with a target could be found. The threshold value was long assumed to be around 20-30%. Below this level, obtained sequence identity was getting dangerously close to values that can be obtained by chance, after aligning any random, unrelated sequences. In these cases, other approaches, including ab initio folding simulations or fragment assembly, were usually employed. The most recent editions of the CASP and CAMEO community-wide modeling methods assessment have brought some surprising outcomes, proving that much more clues can be inferred from protein sequence analyses than previously thought. In this chapter, we focus on recent advances in the field of difficult protein modeling, pushing the threshold deep into the "twilight zone", with particular attention devoted to improvements in applications of machine learning and model evaluation.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Medical University of Lublin, Lublin, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Medical University of Lublin, Lublin, Poland
- University of Eastern Finland, School of Pharmacy, Kuopio, Finland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Laboratory, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
55
|
Adiyaman R, McGuffin LJ. Using Local Protein Model Quality Estimates to Guide a Molecular Dynamics-Based Refinement Strategy. Methods Mol Biol 2023; 2627:119-140. [PMID: 36959445 DOI: 10.1007/978-1-0716-2974-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The refinement of predicted 3D models aims to bring them closer to the native structure by fixing errors including unusual bonds and torsion angles and irregular hydrogen bonding patterns. Refinement approaches based on molecular dynamics (MD) simulations using different types of restraints have performed well since CASP10. ReFOLD, developed by the McGuffin group, was one of the many MD-based refinement approaches, which were tested in CASP 12. When the performance of the ReFOLD method in CASP12 was evaluated, it was observed that ReFOLD suffered from the absence of a reliable guidance mechanism to reach consistent improvement for the quality of predicted 3D models, particularly in the case of template-based modelling (TBM) targets. Therefore, here we propose to utilize the local quality assessment score produced by ModFOLD6 to guide the MD-based refinement approach to further increase the accuracy of the predicted 3D models. The relative performance of the new local quality assessment guided MD-based refinement protocol and the original MD-based protocol ReFOLD are compared utilizing many different official scoring methods. By using the per-residue accuracy (or local quality) score to guide the refinement process, we are able to prevent the refined models from undesired structural deviations, thereby leading to more consistent improvements. This chapter will include a detailed analysis of the performance of the local quality assessment guided MD-based protocol versus that deployed in the original ReFOLD method.
Collapse
Affiliation(s)
- Recep Adiyaman
- School of Biological Sciences, University of Reading, Reading, UK
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
56
|
Mufassirin MMM, Newton MAH, Sattar A. Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
57
|
Kennedy EN, Foster CA, Barr SA, Bourret RB. General strategies for using amino acid sequence data to guide biochemical investigation of protein function. Biochem Soc Trans 2022; 50:1847-1858. [PMID: 36416676 PMCID: PMC10257402 DOI: 10.1042/bst20220849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
The rapid increase of '-omics' data warrants the reconsideration of experimental strategies to investigate general protein function. Studying individual members of a protein family is likely insufficient to provide a complete mechanistic understanding of family functions, especially for diverse families with thousands of known members. Strategies that exploit large amounts of available amino acid sequence data can inspire and guide biochemical experiments, generating broadly applicable insights into a given family. Here we review several methods that utilize abundant sequence data to focus experimental efforts and identify features truly representative of a protein family or domain. First, coevolutionary relationships between residues within primary sequences can be successfully exploited to identify structurally and/or functionally important positions for experimental investigation. Second, functionally important variable residue positions typically occupy a limited sequence space, a property useful for guiding biochemical characterization of the effects of the most physiologically and evolutionarily relevant amino acids. Third, amino acid sequence variation within domains shared between different protein families can be used to sort a particular domain into multiple subtypes, inspiring further experimental designs. Although generally applicable to any kind of protein domain because they depend solely on amino acid sequences, the second and third approaches are reviewed in detail because they appear to have been used infrequently and offer immediate opportunities for new advances. Finally, we speculate that future technologies capable of analyzing and manipulating conserved and variable aspects of the three-dimensional structures of a protein family could lead to broad insights not attainable by current methods.
Collapse
Affiliation(s)
- Emily N. Kennedy
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Clay A. Foster
- Department of Pediatrics, Section Hematology/Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sarah A. Barr
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Robert B. Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
58
|
Roney JP, Ovchinnikov S. State-of-the-Art Estimation of Protein Model Accuracy Using AlphaFold. PHYSICAL REVIEW LETTERS 2022; 129:238101. [PMID: 36563190 DOI: 10.1103/physrevlett.129.238101] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The problem of predicting a protein's 3D structure from its primary amino acid sequence is a longstanding challenge in structural biology. Recently, approaches like alphafold have achieved remarkable performance on this task by combining deep learning techniques with coevolutionary data from multiple sequence alignments of related protein sequences. The use of coevolutionary information is critical to these models' accuracy, and without it their predictive performance drops considerably. In living cells, however, the 3D structure of a protein is fully determined by its primary sequence and the biophysical laws that cause it to fold into a low-energy configuration. Thus, it should be possible to predict a protein's structure from only its primary sequence by learning an approximate biophysical energy function. We provide evidence that alphafold has learned such an energy function, and uses coevolution data to solve the global search problem of finding a low-energy conformation. We demonstrate that alphafold'slearned energy function can be used to rank the quality of candidate protein structures with state-of-the-art accuracy, without using any coevolution data. Finally, we explore several applications of this energy function, including the prediction of protein structures without multiple sequence alignments.
Collapse
Affiliation(s)
- James P Roney
- Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
59
|
Roche R, Bhattacharya S, Shuvo MH, Bhattacharya D. rrQNet: Protein contact map quality estimation by deep evolutionary reconciliation. Proteins 2022; 90:2023-2034. [PMID: 35751651 PMCID: PMC9633355 DOI: 10.1002/prot.26394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Protein contact maps have proven to be a valuable tool in the deep learning revolution of protein structure prediction, ushering in the recent breakthrough by AlphaFold2. However, self-assessment of the quality of predicted structures are typically performed at the granularity of three-dimensional coordinates as opposed to directly exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps. Here, we present rrQNet, a deep learning method for self-assessment in 2D by contact map quality estimation. Our approach is based on the intuition that for a contact map to be of high quality, the residue pairs predicted to be in contact should be mutually consistent with the evolutionary context of the protein. The deep neural network architecture of rrQNet implements this intuition by cascading two deep modules-one encoding the evolutionary context and the other performing evolutionary reconciliation. The penultimate stage of rrQNet estimates the quality scores at the interacting residue-pair level, which are then aggregated for estimating the quality of a contact map. This design choice offers versatility at varied resolutions from individual residue pairs to full-fledged contact maps. Trained on multiple complementary sources of contact predictors, rrQNet facilitates generalizability across various contact maps. By rigorously testing using publicly available datasets and comparing against several in-house baseline approaches, we show that rrQNet accurately reproduces the true quality score of a predicted contact map and successfully distinguishes between accurate and inaccurate contact maps predicted by a wide variety of contact predictors. The open-source rrQNet software package is freely available at https://github.com/Bhattacharya-Lab/rrQNet.
Collapse
Affiliation(s)
- Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
60
|
rMSA: a sequence search and alignment algorithm to improve RNA structure modeling. J Mol Biol 2022. [DOI: 10.1016/j.jmb.2022.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
61
|
Rademaker DT, Xue LC, ‘t Hoen PAC, Vriend G. Entropy and Variability: A Second Opinion by Deep Learning. Biomolecules 2022; 12:biom12121740. [PMID: 36551168 PMCID: PMC9775329 DOI: 10.3390/biom12121740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Analysis of the distribution of amino acid types found at equivalent positions in multiple sequence alignments has found applications in human genetics, protein engineering, drug design, protein structure prediction, and many other fields. These analyses tend to revolve around measures of the distribution of the twenty amino acid types found at evolutionary equivalent positions: the columns in multiple sequence alignments. Commonly used measures are variability, average hydrophobicity, or Shannon entropy. One of these techniques, called entropy-variability analysis, as the name already suggests, reduces the distribution of observed residue types in one column to two numbers: the Shannon entropy and the variability as defined by the number of residue types observed. RESULTS We applied a deep learning, unsupervised feature extraction method to analyse the multiple sequence alignments of all human proteins. An auto-encoder neural architecture was trained on 27,835 multiple sequence alignments for human proteins to obtain the two features that best describe the seven million variability patterns. These two unsupervised learned features strongly resemble entropy and variability, indicating that these are the projections that retain most information when reducing the dimensionality of the information hidden in columns in multiple sequence alignments.
Collapse
Affiliation(s)
- Daniel T. Rademaker
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 260 Nijmegen, The Netherlands
| | - Li C. Xue
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 260 Nijmegen, The Netherlands
| | - Peter A. C. ‘t Hoen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 260 Nijmegen, The Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboudumc, 260 Nijmegen, The Netherlands
- Baco Institute for Protein Science (BIPS), Mindoro 5201, Philippines
- Correspondence:
| |
Collapse
|
62
|
Jiang T, Chen Y, Guan S, Hu Z, Lu W, Fu Q, Ding Y, Li H, Wu H. G Protein-Coupled Receptor Interaction Prediction Based on Deep Transfer Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3126-3134. [PMID: 34780331 DOI: 10.1109/tcbb.2021.3128172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
G protein-coupled receptors (GPCRs) account for about 40% to 50% of drug targets. Many human diseases are related to G protein coupled receptors. Accurate prediction of GPCR interaction is not only essential to understand its structural role, but also helps design more effective drugs. At present, the prediction of GPCR interaction mainly uses machine learning methods. Machine learning methods generally require a large number of independent and identically distributed samples to achieve good results. However, the number of available GPCR samples that have been marked is scarce. Transfer learning has a strong advantage in dealing with such small sample problems. Therefore, this paper proposes a transfer learning method based on sample similarity, using XGBoost as a weak classifier and using the TrAdaBoost algorithm based on JS divergence for data weight initialization to transfer samples to construct a data set. After that, the deep neural network based on the attention mechanism is used for model training. The existing GPCR is used for prediction. In short-distance contact prediction, the accuracy of our method is 0.26 higher than similar methods.
Collapse
|
63
|
Barger J, Adhikari B. New Labeling Methods for Deep Learning Real-Valued Inter-Residue Distance Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3586-3594. [PMID: 34559660 DOI: 10.1109/tcbb.2021.3115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction-a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions to reflect inter-residue distances in nature. Despite these promises, the accurate prediction of real-valued distances remains relatively unexplored; possibly due to classification being better suited to machine and deep learning algorithms. METHODS Can regression methods be designed to predict real-valued distances as precise as binary contacts? To investigate this, we propose multiple novel methods of input label engineering, which is different from feature engineering, with the goal of optimizing the distribution of distances to cater to the loss function of the deep-learning model. Since an important utility of predicted contacts or distances is to build three-dimensional models, we also tested if predicted distances can reconstruct more accurate models than contacts. RESULTS Our results demonstrate, for the first time, that deep learning methods for real-valued protein distance prediction can deliver distances as precise as binary classification methods. When using an optimal distance transformation function on the standard PSICOV dataset consisting of 150 representative proteins, the precision of 'top-all' long-range contacts improves from 60.9% to 61.4% when predicting real-valued distances instead of contacts. When building three-dimensional models we observed an average TM-score increase from 0.61 to 0.72, highlighting the advantage of predicting real-valued distances.
Collapse
|
64
|
Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Comput Struct Biotechnol J 2022; 20:6138-6148. [DOI: 10.1016/j.csbj.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
65
|
Ravishankar K, Jiang X, Leddin EM, Morcos F, Cisneros GA. Computational compensatory mutation discovery approach: Predicting a PARP1 variant rescue mutation. Biophys J 2022; 121:3663-3673. [PMID: 35642254 PMCID: PMC9617126 DOI: 10.1016/j.bpj.2022.05.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
The prediction of protein mutations that affect function may be exploited for multiple uses. In the context of disease variants, the prediction of compensatory mutations that reestablish functional phenotypes could aid in the development of genetic therapies. In this work, we present an integrated approach that combines coevolutionary analysis and molecular dynamics (MD) simulations to discover functional compensatory mutations. This approach is employed to investigate possible rescue mutations of a poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung cancer and follicular lymphoma. MD simulations show PARP1 V762A exhibits noticeable changes in structural and dynamical behavior compared with wild-type (WT) PARP1. Our integrated approach predicts A755E as a possible compensatory mutation based on coevolutionary information, and molecular simulations indicate that the PARP1 A755E/V762A double mutant exhibits similar structural and dynamical behavior to WT PARP1. Our methodology can be broadly applied to a large number of systems where single-nucleotide polymorphisms have been identified as connected to disease and can shed light on the biophysical effects of such changes as well as provide a way to discover potential mutants that could restore WT-like functionality. This can, in turn, be further utilized in the design of molecular therapeutics that aim to mimic such compensatory effect.
Collapse
Affiliation(s)
| | - Xianli Jiang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, Texas
| | - Faruck Morcos
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas; Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas; Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas.
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas; Department of Physics, The University of Texas at Dallas, Richardson, Texas; Department of Chemistry, The University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
66
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
67
|
Li Y, Zhang C, Yu DJ, Zhang Y. Deep learning geometrical potential for high-accuracy ab initio protein structure prediction. iScience 2022; 25:104425. [PMID: 35663033 PMCID: PMC9160776 DOI: 10.1016/j.isci.2022.104425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Ab initio protein structure prediction has been vastly boosted by the modeling of inter-residue contact/distance maps in recent years. We developed a new deep learning model, DeepPotential, which accurately predicts the distribution of a complementary set of geometric descriptors including a novel hydrogen-bonding potential defined by C-alpha atom coordinates. On 154 Free-Modeling/Hard targets from the CASP and CAMEO experiments, DeepPotential demonstrated significant advantage on both geometrical feature prediction and full-length structure construction, with Top-L/5 contact accuracy and TM-score of full-length models 4.1% and 6.7% higher than the best of other deep-learning restraint prediction approaches. Detail analyses showed that the major contributions to the TM-score/contact-map improvements come from the employment of multi-tasking network architecture and metagenome-based MSA collection assisted with confidence-based MSA selection, where hydrogen-bonding and inter-residue orientation predictions help improve hydrogen-bonding network and secondary structure packing. These results demonstrated new progress in the deep-learning restraint-guided ab initio protein structure prediction. Multi-tasking network architecture for multiple inter-residue geometries Novel deep learning model for improved hydrogen-bonding modeling Rapid and high-accuracy Ab initio protein structure prediction
Collapse
Affiliation(s)
- Yang Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 21000, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 21000, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
68
|
Oteri F, Sarti E, Nadalin F, Carbone A. iBIS2Analyzer: a web server for a phylogeny-driven coevolution analysis of protein families. Nucleic Acids Res 2022; 50:W412-W419. [PMID: 35670671 PMCID: PMC9252744 DOI: 10.1093/nar/gkac481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
Residue coevolution within and between proteins is used as a marker of physical interaction and/or residue functional cooperation. Pairs or groups of coevolving residues are extracted from multiple sequence alignments based on a variety of computational approaches. However, coevolution signals emerging in subsets of sequences might be lost if the full alignment is considered. iBIS2Analyzer is a web server dedicated to a phylogeny-driven coevolution analysis of protein families with different evolutionary pressure. It is based on the iterative version, iBIS2, of the coevolution analysis method BIS, Blocks in Sequences. iBIS2 is designed to iteratively select and analyse subtrees in phylogenetic trees, possibly large and comprising thousands of sequences. With iBIS2Analyzer, openly accessible at http://ibis2analyzer.lcqb.upmc.fr/, the user visualizes, compares and inspects clusters of coevolving residues by mapping them onto sequences, alignments or structures of choice, greatly simplifying downstream analysis steps. A rich and interactive graphic interface facilitates the biological interpretation of the results.
Collapse
Affiliation(s)
- Francesco Oteri
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Edoardo Sarti
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Francesca Nadalin
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France
| |
Collapse
|
69
|
Braberg H, Echeverria I, Kaake RM, Sali A, Krogan NJ. From systems to structure - using genetic data to model protein structures. Nat Rev Genet 2022; 23:342-354. [PMID: 35013567 PMCID: PMC8744059 DOI: 10.1038/s41576-021-00441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
70
|
Zhang H, Huang Y, Bei Z, Ju Z, Meng J, Hao M, Zhang J, Zhang H, Xi W. Inter-Residue Distance Prediction From Duet Deep Learning Models. Front Genet 2022; 13:887491. [PMID: 35651930 PMCID: PMC9148999 DOI: 10.3389/fgene.2022.887491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Residue distance prediction from the sequence is critical for many biological applications such as protein structure reconstruction, protein–protein interaction prediction, and protein design. However, prediction of fine-grained distances between residues with long sequence separations still remains challenging. In this study, we propose DuetDis, a method based on duet feature sets and deep residual network with squeeze-and-excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the ability to learn and fuse features directly or indirectly extracted from the whole-genome/metagenomic databases and, therefore, minimize the information loss through ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely used peer methods on a large-scale test set (610 proteins chains). The experimental results suggest that 1) prediction results from different feature sets show obvious differences; 2) ensembling different feature sets can improve the prediction performance; 3) high-quality multiple sequence alignment (MSA) used for both training and testing can greatly improve the prediction performance; and 4) DuetDis is more accurate than peer methods for the overall prediction, more reliable in terms of model prediction score, and more robust against shallow multiple sequence alignment (MSA).
Collapse
Affiliation(s)
- Huiling Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhendong Bei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jingjing Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiping Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Xi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenhui Xi,
| |
Collapse
|
71
|
Passemiers A, Moreau Y, Raimondi D. Fast and accurate inference of gene regulatory networks through robust precision matrix estimation. Bioinformatics 2022; 38:2802-2809. [PMID: 35561176 PMCID: PMC9113237 DOI: 10.1093/bioinformatics/btac178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Transcriptional regulation mechanisms allow cells to adapt and respond to external stimuli by altering gene expression. The possible cell transcriptional states are determined by the underlying gene regulatory network (GRN), and reliably inferring such network would be invaluable to understand biological processes and disease progression. RESULTS In this article, we present a novel method for the inference of GRNs, called PORTIA, which is based on robust precision matrix estimation, and we show that it positively compares with state-of-the-art methods while being orders of magnitude faster. We extensively validated PORTIA using the DREAM and MERLIN+P datasets as benchmarks. In addition, we propose a novel scoring metric that builds on graph-theoretical concepts. AVAILABILITY AND IMPLEMENTATION The code and instructions for data acquisition and full reproduction of our results are available at https://github.com/AntoinePassemiers/PORTIA-Manuscript. PORTIA is available on PyPI as a Python package (portia-grn). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
72
|
Eliasof M, Boesen T, Haber E, Keasar C, Treister E. Mimetic Neural Networks: A Unified Framework for Protein Design and Folding. FRONTIERS IN BIOINFORMATICS 2022; 2:715006. [PMID: 36304270 PMCID: PMC9580911 DOI: 10.3389/fbinf.2022.715006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/29/2022] [Indexed: 03/30/2025] Open
Abstract
Recent advancements in machine learning techniques for protein structure prediction motivate better results in its inverse problem-protein design. In this work we introduce a new graph mimetic neural network, MimNet, and show that it is possible to build a reversible architecture that solves the structure and design problems in tandem, allowing to improve protein backbone design when the structure is better estimated. We use the ProteinNet data set and show that the state of the art results in protein design can be met and even improved, given recent architectures for protein folding.
Collapse
Affiliation(s)
- Moshe Eliasof
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tue Boesen
- Department of EOAS, The University of British Columbia, Vancouver, BC, Canada
| | - Eldad Haber
- Department of EOAS, The University of British Columbia, Vancouver, BC, Canada
| | - Chen Keasar
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Treister
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
73
|
Weissenow K, Heinzinger M, Rost B. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction. Structure 2022; 30:1169-1177.e4. [DOI: 10.1016/j.str.2022.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
|
74
|
Gu J, Zhang T, Wu C, Liang Y, Shi X. Refined Contact Map Prediction of Peptides Based on GCN and ResNet. Front Genet 2022; 13:859626. [PMID: 35571037 PMCID: PMC9092020 DOI: 10.3389/fgene.2022.859626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Predicting peptide inter-residue contact maps plays an important role in computational biology, which determines the topology of the peptide structure. However, due to the limited number of known homologous structures, there is still much room for inter-residue contact map prediction. Current models are not sufficient for capturing the high accuracy relationship between the residues, especially for those with a long-range distance. In this article, we developed a novel deep neural network framework to refine the rough contact map produced by the existing methods. The rough contact map is used to construct the residue graph that is processed by the graph convolutional neural network (GCN). GCN can better capture the global information and is therefore used to grasp the long-range contact relationship. The residual convolutional neural network is also applied in the framework for learning local information. We conducted the experiments on four different test datasets, and the inter-residue long-range contact map prediction accuracy demonstrates the effectiveness of our proposed method.
Collapse
Affiliation(s)
- Jiawei Gu
- College of Computer Science and Technology, University of Jilin, Changchun, China
| | - Tianhao Zhang
- College of Computer Science and Technology, University of Jilin, Changchun, China
| | - Chunguo Wu
- College of Computer Science and Technology, University of Jilin, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
| | - Yanchun Liang
- College of Computer Science and Technology, University of Jilin, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Xiaohu Shi
- College of Computer Science and Technology, University of Jilin, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, China
- *Correspondence: Xiaohu Shi,
| |
Collapse
|
75
|
Chelur VR, Priyakumar UD. BiRDS - Binding Residue Detection from Protein Sequences Using Deep ResNets. J Chem Inf Model 2022; 62:1809-1818. [PMID: 35414182 DOI: 10.1021/acs.jcim.1c00972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-drug interactions play important roles in many biological processes and therapeutics. Predicting the binding sites of a protein helps to discover such interactions. New drugs can be designed to optimize these interactions, improving protein function. The tertiary structure of a protein decides the binding sites available to the drug molecule, but the determination of the 3D structure is slow and expensive. Conversely, the determination of the amino acid sequence is swift and economical. Although quick and accurate prediction of the binding site using just the sequence is challenging, the application of Deep Learning, which has been hugely successful in several biochemical tasks, makes it feasible. BiRDS is a Residual Neural Network that predicts the protein's most active binding site using sequence information. SC-PDB, an annotated database of druggable binding sites, is used for training the network. Multiple Sequence Alignments of the proteins in the database are generated using DeepMSA, and features such as Position-Specific Scoring Matrix, Secondary Structure, and Relative Solvent Accessibility are extracted. During training, a weighted binary cross-entropy loss function is used to counter the substantial imbalance in the two classes of binding and nonbinding residues. A novel test set SC6K is introduced to compare binding-site prediction methods. BiRDS achieves an AUROC score of 0.87, and the center of 25% of its predicted binding sites lie within 4 Å of the center of the actual binding site.
Collapse
Affiliation(s)
- Vineeth R Chelur
- Center for Computational Natural Sciences & Bioinformatics International Institute of Information Technology Hyderabad 500032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences & Bioinformatics International Institute of Information Technology Hyderabad 500032, India
| |
Collapse
|
76
|
Topology Adaptive Graph Estimation in High Dimensions. MATHEMATICS 2022. [DOI: 10.3390/math10081244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We introduce Graphical TREX (GTREX), a novel method for graph estimation in high-dimensional Gaussian graphical models. By conducting neighborhood selection with TREX, GTREX avoids tuning parameters and is adaptive to the graph topology. We compared GTREX with standard methods on a new simulation setup that was designed to assess accurately the strengths and shortcomings of different methods. These simulations showed that a neighborhood selection scheme based on Lasso and an optimal (in practice unknown) tuning parameter outperformed other standard methods over a large spectrum of scenarios. Moreover, we show that GTREX can rival this scheme and, therefore, can provide competitive graph estimation without the need for tuning parameter calibration.
Collapse
|
77
|
Neuwald AF, Yang H, Tracy Nixon B. SPARC: Structural properties associated with residue constraints. Comput Struct Biotechnol J 2022; 20:1702-1715. [PMID: 35495120 PMCID: PMC9020082 DOI: 10.1016/j.csbj.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
SPARC facilitates the generation of plausible hypotheses regarding underlying biochemical mechanisms by structurally characterizing protein sequence constraints. Such constraints appear as residues co-conserved in functionally related subgroups, as subtle pairwise correlations (i.e., direct couplings), and as correlations among these sequence features or with structural features. SPARC performs three types of analyses. First, based on pairwise sequence correlations, it estimates the biological relevance of alternative conformations and of homomeric contacts, as illustrated here for death domains. Second, it estimates the statistical significance of the correspondence between directly coupled residue pairs and interactions at heterodimeric interfaces. Third, given molecular dynamics simulated structures, it characterizes interactions among constrained residues or between such residues and ligands that: (a) are stably maintained during the simulation; (b) undergo correlated formation and/or disruption of interactions with other constrained residues; or (c) switch between alternative interactions. We illustrate this for two homohexameric complexes: the bacterial enhancer binding protein (bEBP) NtrC1, which activates transcription by remodeling RNA polymerase (RNAP) containing σ54, and for DnaB helicase, which opens DNA at the bacterial replication fork. Based on the NtrC1 analysis, we hypothesize possible mechanisms for inhibiting ATP hydrolysis until ADP is released from an adjacent subunit and for coupling ATP hydrolysis to restructuring of σ54 binding loops. Based on the DnaB analysis, we hypothesize that DnaB 'grabs' ssDNA by flipping every fourth base and inserting it into cavities between subunits and that flipping of a DnaB-specific glutamine residue triggers ATP hydrolysis.
Collapse
Affiliation(s)
- Andrew F. Neuwald
- Institute for Genome Sciences and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Steet, Baltimore, MD 21201, USA,Corresponding author.
| | - Hui Yang
- Department of Biology. Penn State University, 304A Frear South Building, University Park, PA 16802
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, 335 Frear South Building, University Park, PA 16802, USA
| |
Collapse
|
78
|
Santra S, Jana M. Predicting the evolution of number of native contacts of a small protein by using deep learning approach. Comput Biol Chem 2022; 97:107625. [DOI: 10.1016/j.compbiolchem.2022.107625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/28/2022]
|
79
|
Lee D, Xiong D, Wierbowski S, Li L, Liang S, Yu H. Deep learning methods for 3D structural proteome and interactome modeling. Curr Opin Struct Biol 2022; 73:102329. [PMID: 35139457 PMCID: PMC8957610 DOI: 10.1016/j.sbi.2022.102329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein-protein interaction interfaces, and characterization of protein-drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.
Collapse
Affiliation(s)
- Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
80
|
Abstract
Compensatory substitutions happen when one mutation is advantageously selected because it restores the loss of fitness induced by a previous deleterious mutation. How frequent such mutations occur in evolution and what is the structural and functional context permitting their emergence remain open questions. We built an atlas of intra-protein compensatory substitutions using a phylogenetic approach and a dataset of 1,630 bacterial protein families for which high-quality sequence alignments and experimentally derived protein structures were available. We identified more than 51,000 positions coevolving by the mean of predicted compensatory mutations. Using the evolutionary and structural properties of the analyzed positions, we demonstrate that compensatory mutations are scarce (typically only a few in the protein history) but widespread (the majority of proteins experienced at least one). Typical coevolving residues are evolving slowly, are located in the protein core outside secondary structure motifs, and are more often in contact than expected by chance, even after accounting for their evolutionary rate and solvent exposure. An exception to this general scheme is residues coevolving for charge compensation, which are evolving faster than noncoevolving sites, in contradiction with predictions from simple coevolutionary models, but similar to stem pairs in RNA. While sites with a significant pattern of coevolution by compensatory mutations are rare, the comparative analysis of hundreds of structures ultimately permits a better understanding of the link between the three-dimensional structure of a protein and its fitness landscape.
Collapse
Affiliation(s)
- Shilpi Chaurasia
- RG Molecular Systems Evolution, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Excelra Knowledge Solutions Pvt Ltd, Hyderabad, India
| | - Julien Y Dutheil
- RG Molecular Systems Evolution, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute of Evolution Sciences of Montpellier (ISEM), CNRS, University of Montpellier, IRD, EPHE, 34095 Montpellier, France
| |
Collapse
|
81
|
Casadio R, Martelli PL, Savojardo C. Machine learning solutions for predicting protein–protein interactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rita Casadio
- Biocomputing Group University of Bologna Bologna Italy
| | | | | |
Collapse
|
82
|
Wang L, Zhang J, Wang D, Song C. Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins. PLoS Comput Biol 2022; 18:e1009972. [PMID: 35353812 PMCID: PMC9000120 DOI: 10.1371/journal.pcbi.1009972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2022] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
One of the unique traits of membrane proteins is that a significant fraction of their hydrophobic amino acids is exposed to the hydrophobic core of lipid bilayers rather than being embedded in the protein interior, which is often not explicitly considered in the protein structure and function predictions. Here, we propose a characteristic and predictive quantity, the membrane contact probability (MCP), to describe the likelihood of the amino acids of a given sequence being in direct contact with the acyl chains of lipid molecules. We show that MCP is complementary to solvent accessibility in characterizing the outer surface of membrane proteins, and it can be predicted for any given sequence with a machine learning-based method by utilizing a training dataset extracted from MemProtMD, a database generated from molecular dynamics simulations for the membrane proteins with a known structure. As the first of many potential applications, we demonstrate that MCP can be used to systematically improve the prediction precision of the protein contact maps and structures. The distribution of residues on protein surfaces is largely determined by the surrounding environment. For soluble proteins, most of the residues on the outer surface are hydrophilic, and people use the quantity “solvent accessibility” to describe and predict these surface residues. In contrast, for membrane proteins that are embedded in a lipid bilayer, many of their surface residues are hydrophobic and membrane-contacting, but there is yet a widely-accepted quantity for the description or prediction of this characteristic property. Here, we propose a new quantity termed “membrane contact probability (MCP)”, which can be used to describe and predict the membrane-contacting surface residues of proteins. We also propose a machine learning-based method to predict MCP from protein sequences, utilizing the dataset generated by physics-based computer simulations. We demonstrate that a quantity such as MCP is helpful for protein structure prediction, and we believe that it will find broad applications in the structure and function studies of membrane proteins.
Collapse
Affiliation(s)
- Lei Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary studies, Peking University, Beijing, China
| | - Jiangguo Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Dali Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
83
|
Zhang H, Shan G, Yang B. Optimized Elastic Network Models With Direct Characterization of Inter-Residue Cooperativity for Protein Dynamics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1064-1074. [PMID: 32915744 DOI: 10.1109/tcbb.2020.3023147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The elastic network models (ENMs)are known as representative coarse-grained models to capture essential dynamics of proteins. Due to simple designs of the force constants as a decay with spatial distances of residue pairs in many previous studies, there is still much room for the improvement of ENMs. In this article, we directly computed the force constants with the inverse covariance estimation using a ridge-type operater for the precision matrix estimation (ROPE)on a large-scale set of NMR ensembles. Distance-dependent statistical analyses on the force constants were further comprehensively performed in terms of several paired types of sequence and structural information, including secondary structure, relative solvent accessibility, sequence distance and terminal. Various distinguished distributions of the mean force constants highlight the structural and sequential characteristics coupled with the inter-residue cooperativity beyond the spatial distances. We finally integrated these structural and sequential characteristics to build novel ENM variations using the particle swarm optimization for the parameter estimation. The considerable improvements on the correlation coefficient of the mean-square fluctuation and the mode overlap were achieved by the proposed variations when compared with traditional ENMs. This study opens a novel way to develop more accurate elastic network models for protein dynamics.
Collapse
|
84
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
85
|
Bhattacharya S, Roche R, Moussad B, Bhattacharya D. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins. Proteins 2022; 90:579-588. [PMID: 34599831 PMCID: PMC8738102 DOI: 10.1002/prot.26254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023]
Abstract
Threading a query protein sequence onto a library of weakly homologous structural templates remains challenging, even when sequence-based predicted contact or distance information is used. Contact-assisted or distance-assisted threading methods utilize only the spatial proximity of the interacting residue pairs for template selection and alignment, ignoring their orientation. Moreover, existing threading methods fail to consider the neighborhood effect induced by the query-template alignment. We present a new distance- and orientation-based covariational threading method called DisCovER by effectively integrating information from inter-residue distance and orientation along with the topological network neighborhood of a query-template alignment. Our method first selects a subset of templates using standard profile-based threading coupled with topological network similarity terms to account for the neighborhood effect and subsequently performs distance- and orientation-based query-template alignment using an iterative double dynamic programming framework. Multiple large-scale benchmarking results on query proteins classified as weakly homologous from the continuous automated model evaluation experiment and from the current literature show that our method outperforms several existing state-of-the-art threading approaches, and that the integration of the neighborhood effect with the inter-residue distance and orientation information synergistically contributes to the improved performance of DisCovER. DisCovER is freely available at https://github.com/Bhattacharya-Lab/DisCovER.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
86
|
Ju F, Zhu J, Zhang Q, Wei G, Sun S, Zheng WM, Bu D. Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction. Bioinformatics 2022; 38:990-996. [PMID: 34849579 DOI: 10.1093/bioinformatics/btab777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Accurate prediction of protein structure relies heavily on exploiting multiple sequence alignment (MSA) for residue mutations and correlations as this information specifies protein tertiary structure. The widely used prediction approaches usually transform MSA into inter-mediate models, say position-specific scoring matrix or profile hidden Markov model. These inter-mediate models, however, cannot fully represent residue mutations and correlations carried by MSA; hence, an effective way to directly exploit MSAs is highly desirable. RESULTS Here, we report a novel sequence set network (called Seq-SetNet) to directly and effectively exploit MSA for protein structure prediction. Seq-SetNet uses an 'encoding and aggregation' strategy that consists of two key elements: (i) an encoding module that takes a component homologue in MSA as input, and encodes residue mutations and correlations into context-specific features for each residue; and (ii) an aggregation module to aggregate the features extracted from all component homologues, which are further transformed into structural properties for residues of the query protein. As Seq-SetNet encodes each homologue protein individually, it could consider both insertions and deletions, as well as long-distance correlations among residues, thus representing more information than the inter-mediate models. Moreover, the encoding module automatically learns effective features and thus avoids manual feature engineering. Using symmetric aggregation functions, Seq-SetNet processes the homologue proteins as a sequence set, making its prediction results invariable to the order of these proteins. On popular benchmark sets, we demonstrated the successful application of Seq-SetNet to predict secondary structure and torsion angles of residues with improved accuracy and efficiency. AVAILABILITY AND IMPLEMENTATION The code and datasets are available through https://github.com/fusong-ju/Seq-SetNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fusong Ju
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Zhu
- Microsoft Research Asia, Beijing 100080, China
| | - Qi Zhang
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozheng Wei
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongke Big Data Academy, Zhengzhou 450046, Henan, China
| | - Wei-Mou Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Zhongke Big Data Academy, Zhengzhou 450046, Henan, China
| |
Collapse
|
87
|
Epistatic models predict mutable sites in SARS-CoV-2 proteins and epitopes. Proc Natl Acad Sci U S A 2022; 119:2113118119. [PMID: 35022216 PMCID: PMC8795541 DOI: 10.1073/pnas.2113118119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
During the COVID pandemic, new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerge and spread, some being of major concern due to their increased infectivity or capacity to reduce vaccine efficiency. Anticipating mutations, which might give rise to new variants, would be of great interest. We construct sequence models predicting how mutable SARS-CoV-2 positions are, using a single SARS-CoV-2 sequence and databases of other coronaviruses. Predictions are tested against available mutagenesis data and the observed variability of SARS-CoV-2 proteins. Interestingly, predictions agree increasingly with observations, as more SARS-CoV-2 sequences become available. Combining predictions with immunological data, we find an overrepresentation of mutations in current variants of concern. The approach may become relevant for potential outbreaks of future viral diseases. The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.
Collapse
|
88
|
Biswas A, Haldane A, Levy RM. Limits to detecting epistasis in the fitness landscape of HIV. PLoS One 2022; 17:e0262314. [PMID: 35041711 PMCID: PMC8765623 DOI: 10.1371/journal.pone.0262314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
The rapid evolution of HIV is constrained by interactions between mutations which affect viral fitness. In this work, we explore the role of epistasis in determining the mutational fitness landscape of HIV for multiple drug target proteins, including Protease, Reverse Transcriptase, and Integrase. Epistatic interactions between residues modulate the mutation patterns involved in drug resistance, with unambiguous signatures of epistasis best seen in the comparison of the Potts model predicted and experimental HIV sequence "prevalences" expressed as higher-order marginals (beyond triplets) of the sequence probability distribution. In contrast, experimental measures of fitness such as viral replicative capacities generally probe fitness effects of point mutations in a single background, providing weak evidence for epistasis in viral systems. The detectable effects of epistasis are obscured by higher evolutionary conservation at sites. While double mutant cycles in principle, provide one of the best ways to probe epistatic interactions experimentally without reference to a particular background, we show that the analysis is complicated by the small dynamic range of measurements. Overall, we show that global pairwise interaction Potts models are necessary for predicting the mutational landscape of viral proteins.
Collapse
Affiliation(s)
- Avik Biswas
- Department of Physics, Temple University, Philadelphia, PA, United States of America
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, United States of America
| | - Allan Haldane
- Department of Physics, Temple University, Philadelphia, PA, United States of America
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, United States of America
| | - Ronald M. Levy
- Department of Physics, Temple University, Philadelphia, PA, United States of America
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, United States of America
- Department of Chemistry, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
89
|
Si Y, Zhang Y, Yan C. A reproducibility analysis-based statistical framework for residue-residue evolutionary coupling detection. Brief Bioinform 2022; 23:6509046. [PMID: 35037015 DOI: 10.1093/bib/bbab576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Direct coupling analysis (DCA) has been widely used to infer evolutionary coupled residue pairs from the multiple sequence alignment (MSA) of homologous sequences. However, effectively selecting residue pairs with significant evolutionary couplings according to the result of DCA is a non-trivial task. In this study, we developed a general statistical framework for significant evolutionary coupling detection, referred to as irreproducible discovery rate (IDR)-DCA, which is based on reproducibility analysis of the coupling scores obtained from DCA on manually created MSA replicates. IDR-DCA was applied to select residue pairs for contact prediction for monomeric proteins, protein-protein interactions and monomeric RNAs, in which three different versions of DCA were applied. We demonstrated that with the application of IDR-DCA, the residue pairs selected using a universal threshold always yielded stable performance for contact prediction. Comparing with the application of carefully tuned coupling score cutoffs, IDR-DCA always showed better performance. The robustness of IDR-DCA was also supported through the MSA downsampling analysis. We further demonstrated the effectiveness of applying constraints obtained from residue pairs selected by IDR-DCA to assist RNA secondary structure prediction.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
90
|
Tran NH, Xu J, Li M. A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. Brief Bioinform 2022; 23:bbab493. [PMID: 34891158 PMCID: PMC8769896 DOI: 10.1093/bib/bbab493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
In this article, we review two challenging computational questions in protein science: neoantigen prediction and protein structure prediction. Both topics have seen significant leaps forward by deep learning within the past five years, which immediately unlocked new developments of drugs and immunotherapies. We show that deep learning models offer unique advantages, such as representation learning and multi-layer architecture, which make them an ideal choice to leverage a huge amount of protein sequence and structure data to address those two problems. We also discuss the impact and future possibilities enabled by those two applications, especially how the data-driven approach by deep learning shall accelerate the progress towards personalized biomedicine.
Collapse
Affiliation(s)
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, USA
| | - Ming Li
- University of Waterloo, Canada
| |
Collapse
|
91
|
Pazos F. Computational prediction of protein functional sites-Applications in biotechnology and biomedicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:39-57. [PMID: 35534114 DOI: 10.1016/bs.apcsb.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There are many computational approaches for predicting protein functional sites based on different sequence and structural features. These methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. They complement the more expensive and time-consuming experimental approaches by pointing them to possible candidate positions. In many cases they are jointly used to characterize the functional sites in proteins of biotechnological and biomedical interest and eventually modify them for different purposes. There is a clear trend towards approaches based on machine learning and those using structural information, due to the recent developments in these areas. Nevertheless, "classic" methods based on sequence and evolutionary features are still playing an important role as these features are strongly related to functionality. In this review, the main approaches for predicting general functional sites in a protein are discussed, with a focus on sequence-based approaches.
Collapse
Affiliation(s)
- Florencio Pazos
- Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
92
|
Roy RS, Quadir F, Soltanikazemi E, Cheng J. OUP accepted manuscript. Bioinformatics 2022; 38:1904-1910. [PMID: 35134816 PMCID: PMC8963319 DOI: 10.1093/bioinformatics/btac063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Motivation Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue–residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue–residue contacts in homodimers from residue–residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue–residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features. Results Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset and CASP-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%, 47.10% and 33.50% respectively at 6 Å contact threshold, which is substantially better than DeepHomo and DNCON2_inter and similar to Glinter. Moreover, our experiments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the unbound state as input, DRCon still performs well, even though its accuracy is lower than using true tertiary structures in the bound state are used as input. Finally, our case study shows that good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers. Availability and implementation The source code of DRCon is available at https://github.com/jianlin-cheng/DRCon. The datasets are available at https://zenodo.org/record/5998532#.YgF70vXMKsB. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Elham Soltanikazemi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
93
|
Schwarz D, Georges G, Kelm S, Shi J, Vangone A, Deane CM. Co-evolutionary distance predictions contain flexibility information. Bioinformatics 2021; 38:65-72. [PMID: 34383892 DOI: 10.1093/bioinformatics/btab562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/19/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Co-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predict distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. With AlphaFold2 lifting the accuracy of some predicted protein models close to experimental levels, structure prediction research will move on to other challenges. One of those areas is the prediction of more than one conformation of a protein. Here, we examine the potential of residue-residue distance predictions to be informative of protein flexibility rather than simply static structure. RESULTS We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. We found that rigid residue pairs tended to have only a single local maximum in their predicted distance distributions while flexible residue pairs more often had multiple local maxima. These results suggest that the shape of predicted distance distributions contains information on the rigidity or flexibility of a protein and its constituent residues. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dominik Schwarz
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Guy Georges
- Department of Computational Engineering and Data Science, Large Molecule Research, Penzberg 82377, Germany
| | - Sebastian Kelm
- Computer-Aided Drug Design, UCB Pharma, Slough SL1 3WE, UK
| | - Jiye Shi
- Computer-Aided Drug Design, UCB Pharma, Slough SL1 3WE, UK
| | - Anna Vangone
- Department of Computational Engineering and Data Science, Large Molecule Research, Penzberg 82377, Germany
| | | |
Collapse
|
94
|
Zerihun MB, Pucci F, Schug A. CoCoNet-boosting RNA contact prediction by convolutional neural networks. Nucleic Acids Res 2021; 49:12661-12672. [PMID: 34871451 PMCID: PMC8682773 DOI: 10.1093/nar/gkab1144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Co-evolutionary models such as direct coupling analysis (DCA) in combination with machine learning (ML) techniques based on deep neural networks are able to predict accurate protein contact or distance maps. Such information can be used as constraints in structure prediction and massively increase prediction accuracy. Unfortunately, the same ML methods cannot readily be applied to RNA as they rely on large structural datasets only available for proteins. Here, we demonstrate how the available smaller data for RNA can be used to improve prediction of RNA contact maps. We introduce an algorithm called CoCoNet that is based on a combination of a Coevolutionary model and a shallow Convolutional Neural Network. Despite its simplicity and the small number of trained parameters, the method boosts the positive predictive value (PPV) of predicted contacts by about 70% with respect to DCA as tested by cross-validation of about eighty RNA structures. However, the direct inclusion of the CoCoNet contacts in 3D modeling tools does not result in a proportional increase of the 3D RNA structure prediction accuracy. Therefore, we suggest that the field develops, in addition to contact PPV, metrics which estimate the expected impact for 3D structure modeling tools better. CoCoNet is freely available and can be found at https://github.com/KIT-MBS/coconet.
Collapse
Affiliation(s)
- Mehari B Zerihun
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Fabrizio Pucci
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Computational Biology and Bioinformatics, Université Libre de Bruxelles 1050, Brussels, Belgium
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany.,Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
95
|
Su H, Wang W, Du Z, Peng Z, Gao S, Cheng M, Yang J. Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102592. [PMID: 34719864 PMCID: PMC8693034 DOI: 10.1002/advs.202102592] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/12/2021] [Indexed: 06/04/2023]
Abstract
The accuracy of de novo protein structure prediction has been improved considerably in recent years, mostly due to the introduction of deep learning techniques. In this work, trRosettaX, an improved version of trRosetta for protein structure prediction is presented. The major improvement over trRosetta consists of two folds. The first is the application of a new multi-scale network, i.e., Res2Net, for improved prediction of inter-residue geometries, including distance and orientations. The second is an attention-based module to exploit multiple homologous templates to increase the accuracy further. Compared with trRosetta, trRosettaX improves the contact precision by 6% and 8% on the free modeling targets of CASP13 and CASP14, respectively. A preliminary version of trRosettaX is ranked as one of the top server groups in CASP14's blind test. Additional benchmark test on 161 targets from CAMEO (between Jun and Sep 2020) shows that trRosettaX achieves an average TM-score ≈0.8, outperforming the top groups in CAMEO. These data suggest the effectiveness of using the multi-scale network and the benefit of incorporating homologous templates into the network. The trRosettaX algorithm is incorporated into the trRosetta server since Nov 2020. The web server, the training and inference codes are available at: https://yanglab.nankai.edu.cn/trRosetta/.
Collapse
Affiliation(s)
- Hong Su
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Wenkai Wang
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Zongyang Du
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Zhenling Peng
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| | - Shang‐Hua Gao
- College of Computer ScienceNankai UniversityTianjin300071China
| | - Ming‐Ming Cheng
- College of Computer ScienceNankai UniversityTianjin300071China
| | - Jianyi Yang
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| |
Collapse
|
96
|
Li Y, Zhang C, Zheng W, Zhou X, Bell EW, Yu DJ, Zhang Y. Protein inter-residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in CASP14. Proteins 2021; 89:1911-1921. [PMID: 34382712 PMCID: PMC8616805 DOI: 10.1002/prot.26211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
This article reports and analyzes the results of protein contact and distance prediction by our methods in the 14th Critical Assessment of techniques for protein Structure Prediction (CASP14). A new deep learning-based contact/distance predictor was employed based on the ensemble of two complementary coevolution features coupling with deep residual networks. We also improved our multiple sequence alignment (MSA) generation protocol with wholesale meta-genome sequence databases. On 22 CASP14 free modeling (FM) targets, the proposed model achieved a top-L/5 long-range precision of 63.8% and a mean distance bin error of 1.494. Based on the predicted distance potentials, 11 out of 22 FM targets and all of the 14 FM/template-based modeling (TBM) targets have correctly predicted folds (TM-score >0.5), suggesting that our approach can provide reliable distance potentials for ab initio protein folding.
Collapse
Affiliation(s)
- Yang Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric W. Bell
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
97
|
Hou M, Peng C, Zhou X, Zhang B, Zhang G. Multi contact-based folding method for de novo protein structure prediction. Brief Bioinform 2021; 23:6445108. [PMID: 34849573 DOI: 10.1093/bib/bbab463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 11/12/2022] Open
Abstract
Meta contact, which combines different contact maps into one to improve contact prediction accuracy and effectively reduce the noise from a single contact map, is a widely used method. However, protein structure prediction using meta contact cannot fully exploit the information carried by original contact maps. In this work, a multi contact-based folding method under the evolutionary algorithm framework, MultiCFold, is proposed. In MultiCFold, the thorough information of different contact maps is directly used by populations to guide protein structure folding. In addition, noncontact is considered as an effective supplement to contact information and can further assist protein folding. MultiCFold is tested on a set of 120 nonredundant proteins, and the average TM-score and average RMSD reach 0.617 and 5.815 Å, respectively. Compared with the meta contact-based method, MetaCFold, average TM-score and average RMSD have a 6.62 and 8.82% improvement. In particular, the import of noncontact information increases the average TM-score by 6.30%. Furthermore, MultiCFold is compared with four state-of-the-art methods of CASP13 on the 24 FM targets, and results show that MultiCFold is significantly better than other methods after the full-atom relax procedure.
Collapse
Affiliation(s)
- Minghua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chunxiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Hangzhou 310023, China
| | - Biao Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
98
|
Abstract
Metalloproteins play diverse and critical functions in all living systems, and their dysfunctional forms are closely related to many human diseases. The development of methods that enable comprehensive mapping of metalloproteome is of great interest to help elucidate crucial roles of metalloproteins in both physiology and pathology, as well as to discover new metalloproteins. We herein briefly review recent progress in the field of metalloproteomics and provide future outlooks.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
99
|
Alshammari M, He J. Combining Cryo-EM Density Map and Residue Contact for Protein Secondary Structure Topologies. Molecules 2021; 26:7049. [PMID: 34834140 PMCID: PMC8624718 DOI: 10.3390/molecules26227049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Although atomic structures have been determined directly from cryo-EM density maps with high resolutions, current structure determination methods for medium resolution (5 to 10 Å) cryo-EM maps are limited by the availability of structure templates. Secondary structure traces are lines detected from a cryo-EM density map for α-helices and β-strands of a protein. A topology of secondary structures defines the mapping between a set of sequence segments and a set of traces of secondary structures in three-dimensional space. In order to enhance accuracy in ranking secondary structure topologies, we explored a method that combines three sources of information: a set of sequence segments in 1D, a set of amino acid contact pairs in 2D, and a set of traces in 3D at the secondary structure level. A test of fourteen cases shows that the accuracy of predicted secondary structures is critical for deriving topologies. The use of significant long-range contact pairs is most effective at enriching the rank of the maximum-match topology for proteins with a large number of secondary structures, if the secondary structure prediction is fairly accurate. It was observed that the enrichment depends on the quality of initial topology candidates in this approach. We provide detailed analysis in various cases to show the potential and challenge when combining three sources of information.
Collapse
Affiliation(s)
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
100
|
Learning the local landscape of protein structures with convolutional neural networks. J Biol Phys 2021; 47:435-454. [PMID: 34751854 DOI: 10.1007/s10867-021-09593-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022] Open
Abstract
One fundamental problem of protein biochemistry is to predict protein structure from amino acid sequence. The inverse problem, predicting either entire sequences or individual mutations that are consistent with a given protein structure, has received much less attention even though it has important applications in both protein engineering and evolutionary biology. Here, we ask whether 3D convolutional neural networks (3D CNNs) can learn the local fitness landscape of protein structure to reliably predict either the wild-type amino acid or the consensus in a multiple sequence alignment from the local structural context surrounding site of interest. We find that the network can predict wild type with good accuracy, and that network confidence is a reliable measure of whether a given prediction is likely going to be correct or not. Predictions of consensus are less accurate and are primarily driven by whether or not the consensus matches the wild type. Our work suggests that high-confidence mis-predictions of the wild type may identify sites that are primed for mutation and likely targets for protein engineering.
Collapse
|