51
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
52
|
Myers N, Olender T, Savidor A, Levin Y, Reuven N, Shaul Y. The Disordered Landscape of the 20S Proteasome Substrates Reveals Tight Association with Phase Separated Granules. Proteomics 2018; 18:e1800076. [PMID: 30039638 DOI: 10.1002/pmic.201800076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Proteasomal degradation is the main route of regulated proteostasis. The 20S proteasome is the core particle (CP) responsible for the catalytic activity of all proteasome complexes. Structural constraints mean that only unfolded, extended polypeptide chains may enter the catalytic core of the 20S proteasome. It has been previously shown that the 20S CP is active in degradation of certain intrinsically disordered proteins (IDP) lacking structural constrains. Here, a comprehensive analysis of the 20S CP substrates in vitro is conducted. It is revealed that the 20S CP substrates are highly disordered. However, not all the IDPs are 20S CP substrates. The group of the IDPs that are 20S CP substrates, termed 20S-IDPome are characterized by having significantly more protein binding partners, more posttranslational modification sites, and are highly enriched for RNA binding proteins. The vast majority of them are involved in splicing, mRNA processing, and translation. Remarkably, it is found that low complexity proteins with prion-like domain (PrLD), which interact with GR or PR di-peptide repeats, are the most preferential 20S CP substrates. The finding suggests roles of the 20S CP in gene transcription and formation of phase-separated granules.
Collapse
Affiliation(s)
- Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science Department of Molecular Genetics, 76100, Rehovot, Israel
| |
Collapse
|
53
|
Miyanabe K, Yamashita T, Abe Y, Akiba H, Takamatsu Y, Nakakido M, Hamakubo T, Ueda T, Caaveiro JMM, Tsumoto K. Tyrosine Sulfation Restricts the Conformational Ensemble of a Flexible Peptide, Strengthening the Binding Affinity for an Antibody. Biochemistry 2018; 57:4177-4185. [DOI: 10.1021/acs.biochem.8b00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhiro Miyanabe
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshito Abe
- Laboratory of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroki Akiba
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Laboratory of Pharmacokinetic Optimization, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yuichiro Takamatsu
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Hamakubo
- Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan
| | - Jose M. M. Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Laboratory of Pharmacokinetic Optimization, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
- Laboratory of Medical Proteomics, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
54
|
Darling AL, Uversky VN. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Front Genet 2018; 9:158. [PMID: 29780404 PMCID: PMC5945825 DOI: 10.3389/fgene.2018.00158] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins and domains that devoid stable secondary and/or tertiary structure. IDPs/IDPRs are abundantly present in various proteomes, where they are involved in regulation, signaling, and control, thereby serving as crucial regulators of various cellular processes. Various mechanisms are utilized to tightly regulate and modulate biological functions, structural properties, cellular levels, and localization of these important controllers. Among these regulatory mechanisms are precisely controlled degradation and different posttranslational modifications (PTMs). Many normal cellular processes are associated with the presence of the right amounts of precisely activated IDPs at right places and in right time. However, wrecked regulation of IDPs/IDPRs might be associated with various human maladies, ranging from cancer and neurodegeneration to cardiovascular disease and diabetes. Pathogenic transformations of IDPs/IDPRs are often triggered by altered PTMs. This review considers some of the aspects of IDPs/IDPRs and their normal and aberrant regulation by PTMs.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
55
|
Stiers KM, Beamer LJ. Assessment and Impacts of Phosphorylation on Protein Flexibility of the α-d-Phosphohexomutases. Methods Enzymol 2018; 607:241-267. [DOI: 10.1016/bs.mie.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
56
|
Stiers KM, Xu J, Lee Y, Addison ZR, Van Doren SR, Beamer LJ. Phosphorylation-Dependent Effects on the Structural Flexibility of Phosphoglucosamine Mutase from Bacillus anthracis. ACS OMEGA 2017; 2:8445-8452. [PMID: 31457382 PMCID: PMC6645435 DOI: 10.1021/acsomega.7b01490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/16/2017] [Indexed: 06/09/2023]
Abstract
Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme in the peptidoglycan biosynthetic pathway, catalyzing the reversible conversion between glucosamine 1- and 6-phosphate. Previous structural studies of PNGM from the pathogen Bacillus anthracis revealed its dimeric assembly and highlighted the rotational mobility of its C-terminal domain. Recent studies of two other enzymes in the same superfamily have demonstrated the long-range effects on the conformational flexibility associated with phosphorylation of the conserved, active site phosphoserine involved in phosphoryl transfer. Building on this work, we use a combination of experimental and computational studies to show that the active, phosphorylated version of B. anthracis PNGM has decreased flexibility relative to its inactive, dephosphorylated state. Limited proteolysis reveals an enhanced and accelerated cleavage of the dephosphorylated enzyme. 15N transverse relaxation-optimized NMR spectra corroborate a conformational adjustment with broadening and shifts of peaks relative to the phospho-enzyme. Electrostatic calculations indicate that residues in the mobile, C-terminal domain are linked to the phosphoserine by lines of attraction that are absent in the dephosphorylated enzyme. Phosphorylation-dependent changes in protein flexibility appear linked with the conformational change and enzyme mechanism in PNGM, establishing this as a conserved theme in multiple subgroups of the diverse α-d-phosphohexomutase superfamily.
Collapse
|
57
|
Shabareesh PRV, Kumar A, Salunke DM, Kaur KJ. Structural and functional studies of differentially O-glycosylated analogs of a thrombin inhibitory peptide - variegin. J Pept Sci 2017; 23:880-888. [DOI: 10.1002/psc.3052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Ashish Kumar
- Regional Centre for Biotechnology; NCR Biotech Science Cluster; 3rd Milestone Faridabad 121001 India
| | - Dinakar M. Salunke
- International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg New Delhi 110067 India
| | - Kanwal J. Kaur
- National Institute of Immunology; Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
58
|
Karasev DA, Veselova DA, Veselovsky AV, Sobolev BN, Zgoda VG, Archakov AI. Spatial features of proteins related to their phosphorylation and associated structural changes. Proteins 2017; 86:13-20. [DOI: 10.1002/prot.25397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/13/2017] [Accepted: 10/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Dmitry A. Karasev
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
- Department of Biochemistry; Pirogov Russian National Research Medical University (RNRMU); Moscow Russia
| | - Darya A. Veselova
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | | | - Boris N. Sobolev
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Victor G. Zgoda
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Alexander I. Archakov
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| |
Collapse
|
59
|
Lunde NN, Haugen MH, Bodin Larsen KB, Damgaard I, Pettersen SJ, Kasem R, Rut W, Drag M, Poreba M, Johansen HT, Solberg R. Glycosylation is important for legumain localization and processing to active forms but not for cystatin E/M inhibitory functions. Biochimie 2017; 139:27-37. [DOI: 10.1016/j.biochi.2017.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
|
60
|
Nüße J, Blumrich EM, Mirastschijski U, Kappelmann L, Kelm S, Dietz F. Intra- or extra-exosomal secretion of HDGF isoforms: the extraordinary function of the HDGF-A N-terminal peptide. Biol Chem 2017; 398:793-811. [DOI: 10.1515/hsz-2016-0315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
Abstract
Hepatoma-derived growth factor (HDGF) is a protein with diverse intracellular functions. Moreover, after non-conventional secretion, extracellular HDGF is able to influence different signaling pathways, leading for example to induction of processes like epithelial-mesenchymal transition (EMT) and cell migration. Intriguingly, in recent proteome studies, HDGF was also found secreted by special microvesicles called exosomes. Recently, we demonstrated the existence of two new HDGF isoforms (B and C). These isoforms are involved in different cellular processes than HDGF-A. Along this line, in the present study we discovered that full length HDGF-A clearly is located inside of exosomes, whereas the isoforms HDGF-B and HDGF-C are found exclusively on the outer surface. Furthermore, while HDGF-B and HDGF-C seem to use exosomes mediated pathway exclusively, HDGF-A was found also as unbound protein in the conditioned media. The new finding of an intra- or extra-exosomal localisation of protein splice variants opens a fascinating new perspective concerning functional diversity of HDGF isoforms. Dysregulation of HDGF expression during cancer development and tumor progression is a commonly known fact. With our new findings, unraveling the potential functional impact according to physiological versus pathophysiologically altered levels and compositions of intra- and extra-exosomal HDGF has to be addressed in future studies.
Collapse
|
61
|
Cryar A, Groves K, Quaglia M. Online Hydrogen-Deuterium Exchange Traveling Wave Ion Mobility Mass Spectrometry (HDX-IM-MS): a Systematic Evaluation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1192-1202. [PMID: 28374315 PMCID: PMC5438439 DOI: 10.1007/s13361-017-1633-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/11/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Adam Cryar
- LGC, Queens Road, Teddington, London, TW11 0LY, UK.
| | - Kate Groves
- LGC, Queens Road, Teddington, London, TW11 0LY, UK
| | | |
Collapse
|
62
|
Callaway DJE, Matsui T, Weiss T, Stingaciu LR, Stanley CB, Heller WT, Bu Z. Controllable Activation of Nanoscale Dynamics in a Disordered Protein Alters Binding Kinetics. J Mol Biol 2017; 429:987-998. [PMID: 28285124 DOI: 10.1016/j.jmb.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The "tip of the whip" that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the binding of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.
Collapse
Affiliation(s)
- David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, CUNY, New York, NY 10031, USA.
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, CA 94025, USA
| | - Thomas Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, CA 94025, USA
| | - Laura R Stingaciu
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christopher B Stanley
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, CUNY, New York, NY 10031, USA.
| |
Collapse
|
63
|
Morozov AV, Yurinskaya MM, Mitkevich VA, Garbuz DG, Preobrazhenskaia OV, Vinokurov MG, Evgen’ev MB, Karpov VL, Makarov AA. Heat-shock protein HSP70 decreases activity of proteasomes in human neuroblastoma cells treated by amyloid-beta 1-42 with isomerized Asp7. Mol Biol 2017. [DOI: 10.1134/s0026893316060133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Dewhurst HM, Torres MP. Systematic analysis of non-structural protein features for the prediction of PTM function potential by artificial neural networks. PLoS One 2017; 12:e0172572. [PMID: 28225828 PMCID: PMC5321281 DOI: 10.1371/journal.pone.0172572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022] Open
Abstract
Post-translational modifications (PTMs) provide an extensible framework for regulation of protein behavior beyond the diversity represented within the genome alone. While the rate of identification of PTMs has rapidly increased in recent years, our knowledge of PTM functionality encompasses less than 5% of this data. We previously developed SAPH-ire (Structural Analysis of PTM Hotspots) for the prioritization of eukaryotic PTMs based on function potential of discrete modified alignment positions (MAPs) in a set of 8 protein families. A proteome-wide expansion of the dataset to all families of PTM-bearing, eukaryotic proteins with a representational crystal structure and the application of artificial neural network (ANN) models demonstrated the broader applicability of this approach. Although structural features of proteins have been repeatedly demonstrated to be predictive of PTM functionality, the availability of adequately resolved 3D structures in the Protein Data Bank (PDB) limits the scope of these methods. In order to bridge this gap and capture the larger set of PTM-bearing proteins without an available, homologous structure, we explored all available MAP features as ANN inputs to identify predictive models that do not rely on 3D protein structural data. This systematic, algorithmic approach explores 8 available input features in exhaustive combinations (247 models; size 2-8). To control for potential bias in random sampling for holdback in training sets, we iterated each model across 100 randomized, sample training and testing sets-yielding 24,700 individual ANNs. The size of the analyzed dataset and iterative generation of ANNs represents the largest and most thorough investigation of predictive models for PTM functionality to date. Comparison of input layer combinations allows us to quantify ANN performance with a high degree of confidence and subsequently select a top-ranked, robust fit model which highlights 3,687 MAPs, including 10,933 PTMs with a high probability of biological impact but without a currently known functional role.
Collapse
Affiliation(s)
- Henry M. Dewhurst
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Matthew P. Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
65
|
Alfonzo-Méndez MA, Alcántara-Hernández R, García-Sáinz JA. Novel Structural Approaches to Study GPCR Regulation. Int J Mol Sci 2016; 18:E27. [PMID: 28025563 PMCID: PMC5297662 DOI: 10.3390/ijms18010027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Upon natural agonist or pharmacological stimulation, G protein-coupled receptors (GPCRs) are subjected to posttranslational modifications, such as phosphorylation and ubiquitination. These posttranslational modifications allow protein-protein interactions that turn off and/or switch receptor signaling as well as trigger receptor internalization, recycling or degradation, among other responses. Characterization of these processes is essential to unravel the function and regulation of GPCR. METHODS In silico analysis and methods such as mass spectrometry have emerged as novel powerful tools. Both approaches have allowed proteomic studies to detect not only GPCR posttranslational modifications and receptor association with other signaling macromolecules but also to assess receptor conformational dynamics after ligand (agonist/antagonist) association. RESULTS this review aims to provide insights into some of these methodologies and to highlight how their use is enhancing our comprehension of GPCR function. We present an overview using data from different laboratories (including our own), particularly focusing on free fatty acid receptor 4 (FFA4) (previously known as GPR120) and α1A- and α1D-adrenergic receptors. From our perspective, these studies contribute to the understanding of GPCR regulation and will help to design better therapeutic agents.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Rocío Alcántara-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
66
|
Zeng J, Jiang F, Wu YD. Mechanism of Phosphorylation-Induced Folding of 4E-BP2 Revealed by Molecular Dynamics Simulations. J Chem Theory Comput 2016; 13:320-328. [PMID: 28068774 DOI: 10.1021/acs.jctc.6b00848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Site-specific phosphorylation of an intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can suppress its native function by folding it into a four-stranded β-sheet, but the mechanism of this phosphorylation-induced folding is unclear. In this work, we use all-atom molecular dynamics simulations to investigate both the folded and unfolded states of 4E-BP2 under different phosphorylation states of T37 and T46. The results show that the phosphorylated forms of both T37 and T46 play important roles in stabilizing the folded structure, especially for the β-turns and the sequestered binding motif. The phosphorylated residues not only guide the folding of the protein through several intermediate states but also affect the conformational distribution of the unfolded ensemble. Significantly, the phosphorylated residues can function as nucleation sites for the folding of the protein by forming certain local structures that are stabilized by hydrogen bonding involving the phosphate group. The region around phosphorylated T46 appears to fold before that around phosphorylated T37. These findings provide new insight into the intricate effects of protein phosphorylation.
Collapse
Affiliation(s)
- Juan Zeng
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
67
|
Korkuć P, Walther D. Towards understanding the crosstalk between protein post-translational modifications: Homo- and heterotypic PTM pair distances on protein surfaces are not random. Proteins 2016; 85:78-92. [PMID: 27802577 DOI: 10.1002/prot.25200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Paula Korkuć
- Max Planck Institute for Molecular Plant Physiology; Am Mühlenberg 1 Potsdam-Golm 14476 Germany
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology; Am Mühlenberg 1 Potsdam-Golm 14476 Germany
| |
Collapse
|
68
|
Berezovsky IN, Guarnera E, Zheng Z, Eisenhaber B, Eisenhaber F. Protein function machinery: from basic structural units to modulation of activity. Curr Opin Struct Biol 2016; 42:67-74. [PMID: 27865209 DOI: 10.1016/j.sbi.2016.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Contemporary protein structure is a result of the trade off between the laws of physics and the evolutionary selection. The polymer nature of proteins played a decisive role in establishing the basic structural and functional units of soluble proteins. We discuss how these elementary building blocks work in the hierarchy of protein domain structure, co-translational folding, as well as in enzymatic activity and molecular interactions. Next, we consider modulators of the protein function, such as intermolecular interactions, disorder-to-order transitions, and allosteric signaling, acting via interference with the protein's structural dynamics. We also discuss the post-translational modifications, which is a complementary intricate mechanism evolved for regulation of protein functions and interactions. In conclusion, we assess an anticipated contribution of discussed topics to the future advancements in the field.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
69
|
Importance of post-translational modifications on the function of key haemostatic proteins. Blood Coagul Fibrinolysis 2016; 27:1-4. [PMID: 26484638 DOI: 10.1097/mbc.0000000000000301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Post-translational modifications (PTMs) such as glycosylation and phosphorylation play an important role on the function of haemostatic proteins and are critical in the setting of disease. Such secondary level changes to haemostatic proteins have wide ranging effects on their ability to interact with other proteins. This review aimed to summarize the knowledge of the common PTMs associated with haemostatic proteins and the implications of such modifications on protein function. Haemostatic proteins that represent the main focus for studies specific to PTMs are von Willebrand factor, tissue factor, factor VIII, antithrombin and fibrinogen. These proteins are susceptible to PTMs by glycosylation, phosphorylation, sulphation, citrullination and nitration, respectively, with a significant impact on their function. During synthesis, vWF must undergo extensive PTMs, with N-linked glycosylation being the most common. Increased phosphorylation of tissue factor results in increased affinity for platelets to the vessel endothelium. Citrullination of antithrombin leads to an increased anticoagulant function of this protein and therefore an anticoagulant state that inhibits clot formation. On the contrary, nitration of fibrinogen has been shown to result in a prothrombotic state, whilst sulphation is required for the normal function of Factor VIII. From this review, it is evident that PTMs of haemostatic proteins as a change in protein structure at a secondary level greatly influences the behaviour of the protein at a tertiary level.
Collapse
|
70
|
Eichmann C, Tzitzilonis C, Nakamura T, Kwiatkowski W, Maslennikov I, Choe S, Lipton SA, Riek R. S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein. J Mol Biol 2016; 428:3737-51. [PMID: 27473602 PMCID: PMC5260856 DOI: 10.1016/j.jmb.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023]
Abstract
S-Nitrosylation is well established as an important post-translational regulator in protein function and signaling. However, relatively little is known about its structural and dynamical consequences. We have investigated the effects of S-nitrosylation on the rhodanese domain of the Escherichia coli integral membrane protein YgaP by NMR, X-ray crystallography, and mass spectrometry. The results show that the active cysteine in the rhodanese domain of YgaP is subjected to two competing modifications: S-nitrosylation and S-sulfhydration, which are naturally occurring in vivo. It has been observed that in addition to inhibition of the sulfur transfer activity, S-nitrosylation of the active site residue Cys63 causes an increase in slow motion and a displacement of helix 5 due to a weakening of the interaction between the active site and the helix dipole. These findings provide an example of how nitrosative stress can exert action at the atomic level.
Collapse
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Christos Tzitzilonis
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA
| | - Witek Kwiatkowski
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Senyon Choe
- Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stuart A. Lipton
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA,Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland,Structural Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
71
|
Morozov AV, Kulikova AA, Astakhova TM, Mitkevich VA, Burnysheva KM, Adzhubei AA, Erokhov PA, Evgen’ev MB, Sharova NP, Karpov VL, Makarov AA. Amyloid-β Increases Activity of Proteasomes Capped with 19S and 11S Regulators. J Alzheimers Dis 2016; 54:763-76. [DOI: 10.3233/jad-160491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey V. Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia M. Burnysheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Erokhov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michail B. Evgen’ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
72
|
Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection. J Virol 2016; 90:7748-60. [PMID: 27334588 DOI: 10.1128/jvi.00833-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. IMPORTANCE How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically, phosphorylation, on the capsid protein regulate the capsid-RNA interaction and the stability of the virions and affect viral gene expression. Mutational analysis confirmed that changes in modification affected virion stability and the timing of viral infection. The mechanism for modification of the virion has striking parallels to the mechanism of regulation of chromatin packaging by nucleosomes.
Collapse
|
73
|
Grammatikakis I, Abdelmohsen K, Gorospe M. Posttranslational control of HuR function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27307117 DOI: 10.1002/wrna.1372] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
Abstract
The RNA-binding protein HuR (human antigen R) associates with numerous transcripts, coding and noncoding, and controls their splicing, localization, stability, and translation. Through its regulation of target transcripts, HuR has been implicated in cellular events including proliferation, senescence, differentiation, apoptosis, and the stress and immune responses. In turn, HuR influences processes such as cancer and inflammation. HuR function is primarily regulated through posttranslational modifications that alter its subcellular localization and its ability to bind target RNAs; such modifications include phosphorylation, methylation, ubiquitination, NEDDylation, and proteolytic cleavage. In this review, we describe the modifications that impact upon HuR function on gene expression programs and disease states. WIREs RNA 2017, 8:e1372. doi: 10.1002/wrna.1372 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ioannis Grammatikakis
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
74
|
Volkov V, Cavaco-Paulo A. In vitro phosphorylation as tool for modification of silk and keratin fibrous materials. Appl Microbiol Biotechnol 2016; 100:4337-45. [PMID: 27075736 DOI: 10.1007/s00253-016-7515-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/20/2022]
Abstract
An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk.
Collapse
Affiliation(s)
- Vadim Volkov
- CEB - Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
75
|
Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access. Proteomics 2016; 15:2525-46. [PMID: 26038108 PMCID: PMC4745020 DOI: 10.1002/pmic.201400633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022]
Abstract
Many protein posttranslational modifications (PTMs) are the result of an enzymatic reaction. The modifying enzyme has to recognize the substrate protein's sequence motif containing the residue(s) to be modified; thus, the enzyme's catalytic cleft engulfs these residue(s) and the respective sequence environment. This residue accessibility condition principally limits the range where enzymatic PTMs can occur in the protein sequence. Non‐globular, flexible, intrinsically disordered segments or large loops/accessible long side chains should be preferred whereas residues buried in the core of structures should be void of what we call canonical, enzyme‐generated PTMs. We investigate whether PTM sites annotated in UniProtKB (with MOD_RES/LIPID keys) are situated within sequence ranges that can be mapped to known 3D structures. We find that N‐ or C‐termini harbor essentially exclusively canonical PTMs. We also find that the overwhelming majority of all other PTMs are also canonical though, later in the protein's life cycle, the PTM sites can become buried due to complex formation. Among the remaining cases, some can be explained (i) with autocatalysis, (ii) with modification before folding or after temporary unfolding, or (iii) as products of interaction with small, diffusible reactants. Others require further research how these PTMs are mechanistically generated in vivo.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore.,School of Computer Engineering (SCE), Nanyang Technological University (NTU), Singapore
| |
Collapse
|
76
|
Korkuć P, Walther D. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding. Proteins 2016; 84:565-79. [PMID: 26817627 DOI: 10.1002/prot.25001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/12/2016] [Accepted: 01/18/2016] [Indexed: 01/07/2023]
Abstract
Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events.
Collapse
Affiliation(s)
- Paula Korkuć
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
77
|
Kulikova AA, Cheglakov IB, Kukharsky MS, Ovchinnikov RK, Kozin SA, Makarov AA. Intracerebral Injection of Metal-Binding Domain of Aβ Comprising the Isomerized Asp7 Increases the Amyloid Burden in Transgenic Mice. Neurotox Res 2016; 29:551-7. [PMID: 26842600 DOI: 10.1007/s12640-016-9603-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 11/30/2022]
Abstract
Intracerebral or intraperitoneal injections of brain extracts from the Alzheimer's disease patients result in the acceleration of cerebral β-amyloidosis in transgenic mice. Earlier, we have found that intravenous injections of synthetic full-length amyloid-β (Aβ) comprising the isomerized Asp7 trigger cerebral β-amyloidosis. In vitro studies have shown that isomerization of Asp7 promotes zinc-induced oligomerization of the Aβ metal-binding domain (Aβ1-16). Here we report that single intracerebral injection of the peptide Aβ1-16 with isomerized Asp7 (isoAβ1-16) but not the injection of Aβ1-16 significantly increases amyloid burden in 5XFAD transgenic mice. Our results provide evidence for a role of isoAβ1-16 as a minimal seeding agent of Aβ aggregation in vivo.
Collapse
Affiliation(s)
- Alexandra A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991.
| | - Ivan B Cheglakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Michail S Kukharsky
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow region, Russia, 1142432
| | - Ruslan K Ovchinnikov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severniy Proezd, Chernogolovka, Moscow region, Russia, 1142432
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991.
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| |
Collapse
|
78
|
Gianazza E, Parravicini C, Primi R, Miller I, Eberini I. In silico prediction and characterization of protein post-translational modifications. J Proteomics 2015; 134:65-75. [PMID: 26436211 DOI: 10.1016/j.jprot.2015.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
This review outlines the computational approaches and procedures for predicting post translational modification (PTM)-induced changes in protein conformation and their influence on protein function(s), the latter being assessed as differential affinity in interaction with either low (ligands for receptors or transporters, substrates for enzymes) or high molecular mass molecules (proteins or nucleic acids in supramolecular assemblies). The scope for an in silico approach is discussed against a summary of the in vitro evidence on the structural and functional outcome of protein PTM.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Sezione di Scienze Farmacologiche, Via Balzaretti 9, I-20133 Milan, Italy.
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Laboratorio di Biochimica e Biofisica Computazionale, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Via Trentacoste, 2, I-20134 Milan, Italy
| | - Roberto Primi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Laboratorio di Biochimica e Biofisica Computazionale, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Via Trentacoste, 2, I-20134 Milan, Italy
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Laboratorio di Biochimica e Biofisica Computazionale, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Via Trentacoste, 2, I-20134 Milan, Italy
| |
Collapse
|
79
|
Xu J, Lee Y, Beamer LJ, Van Doren SR. Phosphorylation in the catalytic cleft stabilizes and attracts domains of a phosphohexomutase. Biophys J 2015; 108:325-37. [PMID: 25606681 DOI: 10.1016/j.bpj.2014.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation can modulate the activities of enzymes. The phosphoryl donor in the catalytic cleft of α-D-phosphohexomutases is transiently dephosphorylated while the reaction intermediate completes a 180° reorientation within the cleft. The phosphorylated form of 52 kDa bacterial phosphomannomutase/phosphoglucomutase is less accessible to dye or protease, more stable to chemical denaturation, and widely stabilized against NMR-detected hydrogen exchange across the core of domain 3 to juxtaposed domain 4 (each by ≥ 1.3 kcal/mol) and parts of domains 1 and 2. However, phosphorylation accelerates hydrogen exchange in specific regions of domains 1 and 2, including a metal-binding residue in the active site. Electrostatic field lines reveal attraction across the catalytic cleft between phosphorylated Ser-108 and domain 4, but repulsion when Ser-108 is dephosphorylated. Molecular dynamics (MD) simulated the dephosphorylated form to be expanded due to enhanced rotational freedom of domain 4. The contacts and fluctuations of the MD trajectories enabled correct simulation of more than 80% of sites that undergo either protection or deprotection from hydrogen exchange due to phosphorylation. Electrostatic attraction in the phosphorylated enzyme accounts for 1) domain 4 drawing closer to domains 1 and 3; 2) decreased accessibility; and 3) increased stability within these domains. The electrostriction due to phosphorylation may help capture substrate, whereas the opening of the cleft upon transient dephosphorylation allows rotation of the intermediate. The long-range effects of phosphorylation on hydrogen exchange parallel reports on protein kinases, suggesting a conceptual link among these multidomain, phosphoryl transfer enzymes.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Yingying Lee
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
80
|
Kowalski A. Abundance of intrinsic structural disorder in the histone H1 subtypes. Comput Biol Chem 2015; 59 Pt A:16-27. [PMID: 26366527 DOI: 10.1016/j.compbiolchem.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 08/03/2015] [Accepted: 08/30/2015] [Indexed: 01/06/2023]
Abstract
The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes.
Collapse
Affiliation(s)
- Andrzej Kowalski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland.
| |
Collapse
|
81
|
Johnson JR, Santos SD, Johnson T, Pieper U, Strumillo M, Wagih O, Sali A, Krogan NJ, Beltrao P. Prediction of Functionally Important Phospho-Regulatory Events in Xenopus laevis Oocytes. PLoS Comput Biol 2015; 11:e1004362. [PMID: 26312481 PMCID: PMC4552029 DOI: 10.1371/journal.pcbi.1004362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 05/27/2015] [Indexed: 01/10/2023] Open
Abstract
The African clawed frog Xenopus laevis is an important model organism for studies in developmental and cell biology, including cell-signaling. However, our knowledge of X. laevis protein post-translational modifications remains scarce. Here, we used a mass spectrometry-based approach to survey the phosphoproteome of this species, compiling a list of 2636 phosphosites. We used structural information and phosphoproteomic data for 13 other species in order to predict functionally important phospho-regulatory events. We found that the degree of conservation of phosphosites across species is predictive of sites with known molecular function. In addition, we predicted kinase-protein interactions for a set of cell-cycle kinases across all species. The degree of conservation of kinase-protein interactions was found to be predictive of functionally relevant regulatory interactions. Finally, using comparative protein structure models, we find that phosphosites within structured domains tend to be located at positions with high conformational flexibility. Our analysis suggests that a small class of phosphosites occurs in positions that have the potential to regulate protein conformation.
Collapse
Affiliation(s)
- Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Silvia D Santos
- Quantitative Cell Biology group, MRC Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Tasha Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ursula Pieper
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America; Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America
| | - Marta Strumillo
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Omar Wagih
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America; Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall at Mission Bay, University of California, San Francisco, San Francisco, California, United States of America
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America; Gladstone Institutes, San Francisco, California, United States of America
| | - Pedro Beltrao
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany and European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom; iBiMED and Department of Health Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
82
|
Rombouts I, Lagrain B, Scherf KA, Koehler P, Delcour JA. Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Sci Rep 2015; 5:12210. [PMID: 26193081 PMCID: PMC4507448 DOI: 10.1038/srep12210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022] Open
Abstract
Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide bonds and free thiol groups in the different samples were compared to those deduced from the crystal structure of native BSA. Results revealed non-enzymatic posttranslational modifications of cysteine during isolation, extensive dry storage, and heating. Heat-induced extractability loss of BSA was linked to the impact of protein unfolding on the involvement of specific cysteine residues in intermolecular and intramolecular thiol-disulfide interchange and thiol oxidation reactions. The here developed approach holds promise for exploring disulfide bond formation and reshuffling in various proteins under conditions relevant for chemical, biochemical, pharmaceutical and food processing.
Collapse
Affiliation(s)
- Ine Rombouts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| | - Bert Lagrain
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| | - Katharina A. Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Jan A. Delcour
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, box 2463, B-3001 Leuven, Belgium
| |
Collapse
|
83
|
Craveur P, Joseph AP, Esque J, Narwani TJ, Noël F, Shinada N, Goguet M, Leonard S, Poulain P, Bertrand O, Faure G, Rebehmed J, Ghozlane A, Swapna LS, Bhaskara RM, Barnoud J, Téletchéa S, Jallu V, Cerny J, Schneider B, Etchebest C, Srinivasan N, Gelly JC, de Brevern AG. Protein flexibility in the light of structural alphabets. Front Mol Biosci 2015; 2:20. [PMID: 26075209 PMCID: PMC4445325 DOI: 10.3389/fmolb.2015.00020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023] Open
Abstract
Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.
Collapse
Affiliation(s)
- Pierrick Craveur
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Agnel P Joseph
- Rutherford Appleton Laboratory, Science and Technology Facilities Council Didcot, UK
| | - Jeremy Esque
- Institut National de la Santé et de la Recherche Médicale U964,7 UMR Centre National de la Recherche Scientifique 7104, IGBMC, Université de Strasbourg Illkirch, France
| | - Tarun J Narwani
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Floriane Noël
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Nicolas Shinada
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Matthieu Goguet
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Sylvain Leonard
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Pierre Poulain
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Ets Poulain Pointe-Noire, Congo
| | - Olivier Bertrand
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Guilhem Faure
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Joseph Rebehmed
- Centre National de la Recherche Scientifique UMR7590, Sorbonne Universités, Université Pierre et Marie Curie - MNHN - IRD - IUC Paris, France
| | | | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore Bangalore, India ; Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto Toronto, ON, Canada
| | - Ramachandra M Bhaskara
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore Bangalore, India ; Department of Theoretical Biophysics, Max Planck Institute of Biophysics Frankfurt, Germany
| | - Jonathan Barnoud
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, Centre National de la Recherche Scientifique UMR 5672 Lyon, France
| | - Stéphane Téletchéa
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Faculté des Sciences et Techniques, Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines, Centre National de la Recherche Scientifique UMR 6286, Université Nantes Nantes, France
| | - Vincent Jallu
- Platelet Unit, Institut National de la Transfusion Sanguine Paris, France
| | - Jiri Cerny
- Institute of Biotechnology, The Czech Academy of Sciences Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology, The Czech Academy of Sciences Prague, Czech Republic
| | - Catherine Etchebest
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | | | - Jean-Christophe Gelly
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Alexandre G de Brevern
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| |
Collapse
|
84
|
Chorev DS, Ben-Nissan G, Sharon M. Exposing the subunit diversity and modularity of protein complexes by structural mass spectrometry approaches. Proteomics 2015; 15:2777-91. [PMID: 25727951 DOI: 10.1002/pmic.201400517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 12/11/2022]
Abstract
Although the number of protein-encoding genes in the human genome is only about 20 000 not far from the amount found in the nematode worm genome, the number of proteins that are translated from these sequences is larger by several orders of magnitude. A number of mechanisms have evolved to enable this diversity. For example, genes can be alternatively spliced to create multiple transcripts; they may also be translated from different alternative initiation sites. After translation, hundreds of chemical modifications can be introduced in proteins, altering their chemical properties, folding, stability, and activity. The complexity is then further enhanced by the various combinations that are generated from the assembly of different subunit variants into protein complexes. This, in turn, confers structural and functional flexibility, and endows the cell with the ability to adapt to various environmental conditions. Therefore, exposing the variability of protein complexes is an important step toward understanding their biological functions. Revealing this enormous diversity, however, is not a simple task. In this review, we will focus on the array of MS-based strategies that are capable of performing this mission. We will also discuss the challenges that lie ahead, and the future directions toward which the field might be heading.
Collapse
Affiliation(s)
- Dror S Chorev
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
85
|
Kulikova AA, Makarov AA, Kozin SA. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol Biol 2015. [DOI: 10.1134/s0026893315020065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Uversky VN. The intrinsic disorder alphabet. III. Dual personality of serine. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1027032. [PMID: 28232888 DOI: 10.1080/21690707.2015.1027032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
Proteins are natural polypeptides consisting of 20 major amino acid residues, content and order of which in a given amino acid sequence defines the ability of a related protein to fold into unique functional state or to stay intrinsically disordered. Amino acid sequences code for both foldable (ordered) proteins/domains and for intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), but these sequence codes are dramatically different. This difference starts with a very general property of the corresponding amino acid sequences, namely, their compositions. IDPs/IDPRs are enriched in specific disorder-promoting residues, whereas amino acid sequences of ordered proteins/domains typically contain more order-promoting residues. Therefore, the relative abundances of various amino acids in ordered and disordered proteins can be used to scale amino acids according to their disorder promoting potentials. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and represents serine, which is the third most disorder-promoting residue. Similar to previous publications, this review represents some physico-chemical properties of serine and the roles of this residue in structures and functions of ordered proteins, describes major posttranslational modifications tailored to serine, and finally gives an overview of roles of serine in structure and functions of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science, King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences; Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins; Institute of Cytology, Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
87
|
Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 2015; 5:8926. [PMID: 25748215 PMCID: PMC4352867 DOI: 10.1038/srep08926] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.
Collapse
|
88
|
Lee JJ, Park YS, Lee KJ. Hydrogen-deuterium exchange mass spectrometry for determining protein structural changes in drug discovery. Arch Pharm Res 2015; 38:1737-45. [PMID: 25743629 DOI: 10.1007/s12272-015-0584-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022]
Abstract
Protein structures are dynamically changed in response to post-translational modifications, ligand or chemical binding, or protein-protein interactions. Understanding the structural changes that occur in proteins in response to potential candidate drugs is important for predicting the modes of action of drugs and their functions and regulations. Recent advances in hydrogen/deuterium exchange mass spectrometry (HDX-MS) have the potential to offer a tool for obtaining such understanding similarly to other biophysical techniques, such as X-ray crystallography and high resolution NMR. We present here, a review of basic concept and methodology of HDX-MS, how it is being applied for identifying the sites and structural changes in proteins following their interactions with other proteins and small molecules, and the potential of this tool to help in drug discovery.
Collapse
Affiliation(s)
- Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Yeon Seung Park
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
89
|
Nishi H, Demir E, Panchenko AR. Crosstalk between signaling pathways provided by single and multiple protein phosphorylation sites. J Mol Biol 2014; 427:511-20. [PMID: 25451034 DOI: 10.1016/j.jmb.2014.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
Abstract
Cellular fate depends on the spatiotemporal separation and integration of signaling processes that can be provided by phosphorylation events. In this study, we identify the crucial points in signaling crosstalk that can be triggered by discrete phosphorylation events on a single target protein. We integrated the data on individual human phosphosites with the evidence on their corresponding kinases, the functional consequences of phosphorylation on activity of the target protein and corresponding pathways. Our results show that there is a substantial fraction of phosphosites that can play critical roles in crosstalk between alternative and redundant pathways and regulatory outcome of phosphorylation can be linked to a type of phosphorylated residue. These regulatory phosphosites can serve as hubs in the signal flow and their functional roles are directly connected to their specific properties. Namely, phosphosites with similar regulatory functions are phosphorylated by the same kinases and participate in regulation of similar biochemical pathways. Such sites are more likely to cluster in sequence and space unlike sites with antagonistic outcomes of their phosphorylation on a target protein. In addition, we found that in silico phosphorylation of sites with similar functional consequences has comparable outcomes on a target protein stability. An important role of phosphorylation sites in biological crosstalk is evident from the analysis of their evolutionary conservation.
Collapse
Affiliation(s)
- Hafumi Nishi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emek Demir
- Computational Biology Center, Memorial Sloan Kettering Research Center, New York, NY 10065, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
90
|
Lisitsa A, Moshkovskii S, Chernobrovkin A, Ponomarenko E, Archakov A. Profiling proteoforms: promising follow-up of proteomics for biomarker discovery. Expert Rev Proteomics 2014; 11:121-9. [PMID: 24437377 DOI: 10.1586/14789450.2014.878652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Today, proteomics usually compares clinical samples by use of bottom-up profiling with high resolution mass spectrometry, where all protein products of a single gene are considered as an integral whole. At the same time, proteomics of proteoforms, which considers the variety of protein species, offers the potential to discover valuable biomarkers. Proteoforms are protein species that arise as a consequence of genetic polymorphisms, alternative splicing, post-translational modifications and other less-explored molecular events. The comprehensive observation of proteoforms has been an exclusive privilege of top-down proteomics. Here, we review the possibilities of a bottom-up approach to address the microheterogeneity of the human proteome. Special focus is given to shotgun proteomics and structure-based bioinformatics as a source of hypothetical proteoforms, which can potentially be verified by targeted mass spectrometry to determine the relevance of proteoforms to diseases.
Collapse
Affiliation(s)
- Andrey Lisitsa
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, 119121, Pogodinskaya Street 10, Moscow, Russia
| | | | | | | | | |
Collapse
|
91
|
Moreno-Gonzalo O, Villarroya-Beltri C, Sánchez-Madrid F. Post-translational modifications of exosomal proteins. Front Immunol 2014; 5:383. [PMID: 25157254 PMCID: PMC4128227 DOI: 10.3389/fimmu.2014.00383] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/28/2014] [Indexed: 11/26/2022] Open
Abstract
Exosomes mediate intercellular communication and participate in many cell processes such as cancer progression, immune activation or evasion, and the spread of infection. Exosomes are small vesicles secreted to the extracellular environment through the release of intraluminal vesicles contained in multivesicular bodies (MVBs) upon the fusion of these MVBs with the plasma membrane. The composition of exosomes is not random, suggesting that the incorporation of cargo into them is a regulated process. However, the mechanisms that control the sorting of protein cargo into exosomes are currently elusive. Here, we review the post-translational modifications detected in exosomal proteins, and discuss their possible role in their specific sorting into exosomes.
Collapse
Affiliation(s)
- Olga Moreno-Gonzalo
- Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain ; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Universidad Autónoma de Madrid , Madrid , Spain
| | - Carolina Villarroya-Beltri
- Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain ; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Universidad Autónoma de Madrid , Madrid , Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation Department, Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain ; Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria de la Princesa, Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
92
|
Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Front Genet 2014; 5:270. [PMID: 25147561 PMCID: PMC4124799 DOI: 10.3389/fgene.2014.00270] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation offers a dynamic way to regulate protein activity and subcellular localization, which is achieved through its reversibility and fast kinetics. Adding or removing a dianionic phosphate group somewhere on a protein often changes the protein’s structural properties, its stability and dynamics. Moreover, the majority of signaling pathways involve an extensive set of protein–protein interactions, and phosphorylation can be used to regulate and modulate protein–protein binding. Losses of phosphorylation sites, as a result of disease mutations, might disrupt protein binding and deregulate signal transduction. In this paper we focus on the effects of phosphorylation on protein stability, dynamics, and binding. We describe several physico-chemical mechanisms of protein regulation through phosphorylation and pay particular attention to phosphorylation in protein complexes and phosphorylation in the context of disorder–order and order–disorder transitions. Finally we assess the role of multiple phosphorylation sites in a protein molecule, their possible cooperativity and function.
Collapse
Affiliation(s)
- Hafumi Nishi
- Graduate School of Medical Life Science, Yokohama City University Yokohama Japan
| | - Alexey Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD USA
| |
Collapse
|
93
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
94
|
Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 2014; 23:1077-93. [PMID: 24888500 DOI: 10.1002/pro.2494] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED The structural, functional, and mechanistic characterization of several types of post-translational modifications (PTMs) is well-documented. PTMs, however, may interact or interfere with one another when regulating protein function. Yet, characterization of the structural and functional signatures of their crosstalk has been hindered by the scarcity of data. To this end, we developed a unified sequence-based predictor of 23 types of PTM sites that, we believe, is a useful tool in guiding biological experiments and data interpretation. We then used experimentally determined and predicted PTM sites to investigate two particular cases of potential PTM crosstalk in eukaryotes. First, we identified proteins statistically enriched in multiple types of PTM sites and found that they show preferences toward intrinsically disordered regions as well as functional roles in transcriptional, posttranscriptional, and developmental processes. Second, we observed that target sites modified by more than one type of PTM, referred to as shared PTM sites, show even stronger preferences toward disordered regions than their single-PTM counterparts; we explain this by the need for these regions to accommodate multiple partners. Finally, we investigated the influence of single and shared PTMs on differential regulation of protein-protein interactions. We provide evidence that molecular recognition features (MoRFs) show significant preferences for PTM sites, particularly shared PTM sites, implicating PTMs in the modulation of this specific type of macromolecular recognition. We conclude that intrinsic disorder is a strong structural prerequisite for complex PTM-based regulation, particularly in context-dependent protein-protein interactions related to transcriptional and developmental processes. AVAILABILITY www.modpred.org.
Collapse
Affiliation(s)
- Vikas Pejaver
- Department of Computer Science and Informatics, Indiana University, Bloomington, Indiana, 47405
| | | | | | | | | | | |
Collapse
|
95
|
Craveur P, Rebehmed J, de Brevern AG. PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau041. [PMID: 24857970 PMCID: PMC4038255 DOI: 10.1093/database/bau041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Posttranslational modifications (PTMs) define covalent and chemical modifications of protein residues. They play important roles in modulating various biological functions. Current PTM databases contain important sequence annotations but do not provide informative 3D structural resource about these modifications. Posttranslational modification structural database (PTM-SD) provides access to structurally solved modified residues, which are experimentally annotated as PTMs. It combines different PTM information and annotation gathered from other databases, e.g. Protein DataBank for the protein structures and dbPTM and PTMCuration for fine sequence annotation. PTM-SD gives an accurate detection of PTMs in structural data. PTM-SD can be browsed by PDB id, UniProt accession number, organism and classic PTM annotation. Advanced queries can also be performed, i.e. detailed PTM annotations, amino acid type, secondary structure, SCOP class classification, PDB chain length and number of PTMs by chain. Statistics and analyses can be computed on a selected dataset of PTMs. Each PTM entry is detailed in a dedicated page with information on the protein sequence, local conformation with secondary structure and Protein Blocks. PTM-SD gives valuable information on observed PTMs in protein 3D structure, which is of great interest for studying sequence-structure- function relationships at the light of PTMs, and could provide insights for comparative modeling and PTM predictions protocols. Database URL: PTM-SD can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/PTM-SD/.
Collapse
Affiliation(s)
- Pierrick Craveur
- INSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| | - Joseph Rebehmed
- INSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| |
Collapse
|
96
|
Neuronal process structure and growth proteins are targets of heavy PTM regulation during brain development. J Proteomics 2014; 101:77-87. [DOI: 10.1016/j.jprot.2014.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/30/2022]
|
97
|
Ni P, Vaughan RC, Tragesser B, Hoover H, Kao CC. The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous. J Mol Biol 2014; 426:1061-76. [PMID: 24036424 PMCID: PMC3944473 DOI: 10.1016/j.jmb.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.
Collapse
Affiliation(s)
- Peng Ni
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert C Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brady Tragesser
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
98
|
Koike R, Ota M, Kidera A. Hierarchical Description and Extensive Classification of Protein Structural Changes by Motion Tree. J Mol Biol 2014; 426:752-62. [DOI: 10.1016/j.jmb.2013.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/25/2022]
|
99
|
Kulikova AA, Tsvetkov PO, Indeykina MI, Popov IA, Zhokhov SS, Golovin AV, Polshakov VI, Kozin SA, Nudler E, Makarov AA. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain. ACTA ACUST UNITED AC 2014; 10:2590-6. [DOI: 10.1039/c4mb00332b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation of Ser8 leads to the formation of a new Zn2+ binding site and promotes zinc-induced dimerization of Aβ(1–16).
Collapse
Affiliation(s)
- Alexandra A. Kulikova
- Engelhardt Institute of Molecular Biology
- Russian Academy of Sciences
- 119991 Moscow, Russia
| | - Philipp O. Tsvetkov
- Engelhardt Institute of Molecular Biology
- Russian Academy of Sciences
- 119991 Moscow, Russia
| | - Maria I. Indeykina
- Engelhardt Institute of Molecular Biology
- Russian Academy of Sciences
- 119991 Moscow, Russia
- Emanuel Institute of Biochemical Physics
- Russian Academy of Sciences
| | - Igor A. Popov
- Emanuel Institute of Biochemical Physics
- Russian Academy of Sciences
- 119334 Moscow, Russia
| | - Sergey S. Zhokhov
- Faculty of Fundamental Medicine
- M.V. Lomonosov Moscow State University
- 119191 Moscow, Russia
| | - Andrey V. Golovin
- Bioengineering and Bioinformatics Department
- M.V. Lomonosov Moscow State University
- 119991 Moscow, Russia
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine
- M.V. Lomonosov Moscow State University
- 119191 Moscow, Russia
| | - Sergey A. Kozin
- Engelhardt Institute of Molecular Biology
- Russian Academy of Sciences
- 119991 Moscow, Russia
- Orekhovich Institute of Biomedical Chemistry
- Russian Academy of Medical Sciences
| | - Evgeny Nudler
- Howard Hughes Medical Institute
- New York University School of Medicine
- New York, USA
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology
- Russian Academy of Sciences
- 119991 Moscow, Russia
| |
Collapse
|
100
|
Zhou Y, Liu S, Song J, Zhang Z. Structural propensities of human ubiquitination sites: accessibility, centrality and local conformation. PLoS One 2013; 8:e83167. [PMID: 24349449 PMCID: PMC3859641 DOI: 10.1371/journal.pone.0083167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/30/2013] [Indexed: 12/03/2022] Open
Abstract
The existence and function of most proteins in the human proteome are regulated by the ubiquitination process. To date, tens of thousands human ubiquitination sites have been identified from high-throughput proteomic studies. However, the mechanism of ubiquitination site selection remains elusive because of the complicated sequence pattern flanking the ubiquitination sites. In this study, we perform a systematic analysis of 1,330 ubiquitination sites in 505 protein structures and quantify the significantly high accessibility and unexpectedly high centrality of human ubiquitination sites. Further analysis suggests that the higher centrality of ubiquitination sites is associated with the multi-functionality of ubiquitination sites, among which protein-protein interaction sites are common targets of ubiquitination. Moreover, we demonstrate that ubiquitination sites are flanked by residues with non-random local conformation. Finally, we provide quantitative and unambiguous evidence that most of the structural propensities contain specific information about ubiquitination site selection that is not represented by the sequence pattern. Therefore, the hypothesis about the structural level of the ubiquitination site selection mechanism has been substantially approved.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sixue Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangning Song
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|