51
|
Grau-Bové X, Weetman D. RNA editing: an overlooked source of fine-scale adaptation in insect vectors? CURRENT OPINION IN INSECT SCIENCE 2020; 40:48-55. [PMID: 32599511 DOI: 10.1016/j.cois.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
RNA editing is a source of molecular diversity that regulates the functional repertoire of animal transcriptomes. Multiple studies in Drosophila have revealed that conserved editing events can be a source of evolutionary adaptations, and there is a solid body of evidence linking editing and the fine-tuning of neural genes, which are often targeted by insecticides used in vector control. Yet, despite these suggestive connections, genome-wide analyses of editing in insect vectors are conspicuously lacking. Future advances will require complementing the growing wealth of vector genomes with targeted transcriptome analyses. Here, we review recent investigations of the genetic footprints of adaptive RNA editing in insects and provide an overview of new methodologies applicable to studies of RNA editing in insect vectors.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
52
|
Pande A, Makalowski W, Brosius J, Raabe CA. Enhancer occlusion transcripts regulate the activity of human enhancer domains via transcriptional interference: a computational perspective. Nucleic Acids Res 2020; 48:3435-3454. [PMID: 32133533 PMCID: PMC7144904 DOI: 10.1093/nar/gkaa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/27/2019] [Accepted: 01/31/2020] [Indexed: 02/05/2023] Open
Abstract
Analysis of ENCODE long RNA-Seq and ChIP-seq (Chromatin Immunoprecipitation Sequencing) datasets for HepG2 and HeLa cell lines uncovered 1647 and 1958 transcripts that interfere with transcription factor binding to human enhancer domains. TFBSs (Transcription Factor Binding Sites) intersected by these 'Enhancer Occlusion Transcripts' (EOTrs) displayed significantly lower relative transcription factor (TF) binding affinities compared to TFBSs for the same TF devoid of EOTrs. Expression of most EOTrs was regulated in a cell line specific manner; analysis for the same TFBSs across cell lines, i.e. in the absence or presence of EOTrs, yielded consistently higher relative TF/DNA-binding affinities for TFBSs devoid of EOTrs. Lower activities of EOTr-associated enhancer domains coincided with reduced occupancy levels for histone tail modifications H3K27ac and H3K9ac. Similarly, the analysis of EOTrs with allele-specific expression identified lower activities for alleles associated with EOTrs. ChIA-PET (Chromatin Interaction Analysis by Paired-End Tag Sequencing) and 5C (Carbon Copy Chromosome Conformation Capture) uncovered that enhancer domains associated with EOTrs preferentially interacted with poised gene promoters. Analysis of EOTr regions with GRO-seq (Global run-on) data established the correlation of RNA polymerase pausing and occlusion of TF-binding. Our results implied that EOTr expression regulates human enhancer domains via transcriptional interference.
Collapse
Affiliation(s)
- Amit Pande
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany.,Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany.,Institute of Bioinformatics, University of Münster, Niels-Stensen-Strasse 14, D-48149 Münster, Germany
| | - Wojciech Makalowski
- Institute of Bioinformatics, University of Münster, Niels-Stensen-Strasse 14, D-48149 Münster, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany.,Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany.,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Carsten A Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany.,Brandenburg Medical School (MHB), Fehrbelliner Strasse 38, D-16816 Neuruppin, Germany.,Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany
| |
Collapse
|
53
|
Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat Protoc 2020; 15:1098-1131. [PMID: 31996844 DOI: 10.1038/s41596-019-0279-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of the ADAR family of enzymes. A-to-I RNA editing has a plethora of biological functions, but its detection in large-scale transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database, containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease donors. On a 64-bit computer running Linux with ≥32 GB of random-access memory (RAM), both procedures should take ~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at https://github.com/BioinfoUNIBA/REDItools.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Rome, Italy.
| |
Collapse
|
54
|
|
55
|
Feng X, Wang Z, Li H, Li SC. MIRIA: a webserver for statistical, visual and meta-analysis of RNA editing data in mammals. BMC Bioinformatics 2019; 20:596. [PMID: 31861975 PMCID: PMC6923819 DOI: 10.1186/s12859-019-3242-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Adenosine-to-inosine RNA editing can markedly diversify the transcriptome, leading to a variety of critical molecular and biological processes in mammals. Over the past several years, researchers have developed several new pipelines and software packages to identify RNA editing sites with a focus on downstream statistical analysis and functional interpretation. Results Here, we developed a user-friendly public webserver named MIRIA that integrates statistics and visualization techniques to facilitate the comprehensive analysis of RNA editing sites data identified by the pipelines and software packages. MIRIA is unique in that provides several analytical functions, including RNA editing type statistics, genomic feature annotations, editing level statistics, genome-wide distribution of RNA editing sites, tissue-specific analysis and conservation analysis. We collected high-throughput RNA sequencing (RNA-seq) data from eight tissues across seven species as the experimental data for MIRIA and constructed an example result page. Conclusion MIRIA provides both visualization and analysis of mammal RNA editing data for experimental biologists who are interested in revealing the functions of RNA editing sites. MIRIA is freely available at https://mammal.deepomics.org.
Collapse
|
56
|
Abstract
Modifications of RNA affect its function and stability. RNA editing is unique among these modifications because it not only alters the cellular fate of RNA molecules but also alters their sequence relative to the genome. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Recent transcriptomic studies have identified a number of 'recoding' sites at which A-to-I editing results in non-synonymous substitutions in protein-coding sequences. Many of these recoding sites are conserved within (but not usually across) lineages, are under positive selection and have functional and evolutionary importance. However, systematic mapping of the editome across the animal kingdom has revealed that most A-to-I editing sites are located within mobile elements in non-coding parts of the genome. Editing of these non-coding sites is thought to have a critical role in protecting against activation of innate immunity by self-transcripts. Both recoding and non-coding events have implications for genome evolution and, when deregulated, may lead to disease. Finally, ADARs are now being adapted for RNA engineering purposes.
Collapse
|
57
|
Wang Z, Feng X, Tang Z, Li SC. Genome-Wide Investigation and Functional Analysis of Sus scrofa RNA Editing Sites across Eleven Tissues. Genes (Basel) 2019; 10:E520. [PMID: 31295957 PMCID: PMC6678271 DOI: 10.3390/genes10070520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
Two errors occurred in the References part of our paper [...].
Collapse
Affiliation(s)
- Zishuai Wang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - Xikang Feng
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - Zhonglin Tang
- Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
58
|
TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiol Dis 2019; 132:104514. [PMID: 31229690 DOI: 10.1016/j.nbd.2019.104514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA binding protein 43 (TDP-43) is a multifunctional RNA binding protein directly implicated in the etiology of amyotrophic lateral sclerosis (ALS). Previous studies have demonstrated that loss of TDP-43 function leads to intracellular accumulation of non-coding repetitive element transcripts and double-stranded RNA (dsRNA). These events could cause immune activation and contribute to the neuroinflammation observed in ALS, but this possibility has not been investigated. Here, we knock down TDP-43 in primary rat astrocytes via siRNA, and we use RNA-seq, immunofluorescence, and immunoblotting to show that this results in: 1) accumulation of repetitive element transcripts and dsRNA; and 2) pro-inflammatory gene and protein expression consistent with innate immune signaling and astrocyte activation. We also show that both chemical inhibition and siRNA knockdown of protein kinase R (PKR), a dsRNA-activated kinase implicated in the innate immune response, block the expression of all activation markers assayed. Based on these findings, we suggest that intracellular accumulation of endogenous dsRNA may be a novel and important mechanism underlying the pathogenesis of ALS (and perhaps other neurodegenerative diseases), and that PKR inhibitors may have the potential to prevent reactive astrocytosis in ALS.
Collapse
|
59
|
Lin CH, Chen SCC. The Cancer Editome Atlas: A Resource for Exploratory Analysis of the Adenosine-to-Inosine RNA Editome in Cancer. Cancer Res 2019; 79:3001-3006. [PMID: 31015229 DOI: 10.1158/0008-5472.can-18-3501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Increasing evidence has suggested a role for adenosine-to-inosine RNA editing in carcinogenesis. However, the clinical utility of RNA editing remains limited because functions of the vast majority of editing events remain largely unexplored. To help the cancer research community investigate functional consequences of individual editing events, we have developed a user-friendly bioinformatic resource, The Cancer Editome Atlas (TCEA; http://tcea.tmu.edu.tw). TCEA characterizes >192 million editing events at >4.6 million editing sites from approximately 11,000 samples across 33 cancer types in The Cancer Genome Atlas. Clinical information, miRNA expression, and alteration in miRNA targeting modulated through RNA editing are also integrated into TCEA. TCEA supports several modules to search, analyze, and visualize the cancer editome, providing a solid basis for investigating the oncogenic mechanisms of RNA editing and expediting the identification of therapeutic targets in cancer. SIGNIFICANCE: This user-friendly bioinformatic resource reduces the barrier to analyzing the huge and complex cancer RNA editome that cancer researchers face and facilitates the identification of novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Chui-Hsien Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sean Chun-Chang Chen
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
60
|
Bian J, Deng P, Zhan H, Wu X, Nishantha MDLC, Yan Z, Du X, Nie X, Song W. Transcriptional Dynamics of Grain Development in Barley ( Hordeum vulgare L.). Int J Mol Sci 2019; 20:E962. [PMID: 30813307 PMCID: PMC6412674 DOI: 10.3390/ijms20040962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 11/29/2022] Open
Abstract
Grain development, as a vital process in the crop's life cycle, is crucial for determining crop quality and yield. However, the molecular basis and regulatory network of barley grain development is not well understood at present. Here, we investigated the transcriptional dynamics of barley grain development through RNA sequencing at four developmental phases, including early prestorage phase (3 days post anthesis (DPA)), late prestorage or transition phase (8 DPA), early storage phase (13 DPA), and levels off stages (18 DPA). Transcriptome profiling found that pronounced shifts occurred in the abundance of transcripts involved in both primary and secondary metabolism during grain development. The transcripts' activity was decreased during maturation while the largest divergence was observed between the transitions from prestorage phase to storage phase, which coincided with the physiological changes. Furthermore, the transcription factors, hormone signal transduction-related as well as sugar-metabolism-related genes, were found to play a crucial role in barley grain development. Finally, 4771 RNA editing events were identified in these four development stages, and most of the RNA editing genes were preferentially expressed at the prestore stage rather than in the store stage, which was significantly enriched in "essential" genes and plant hormone signal transduction pathway. These results suggested that RNA editing might act as a 'regulator' to control grain development. This study systematically dissected the gene expression atlas of barley grain development through transcriptome analysis, which not only provided the potential targets for further functional studies, but also provided insights into the dynamics of gene regulation underlying grain development in barley and beyond.
Collapse
Affiliation(s)
- Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haoshuang Zhan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaotong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mutthanthirige D L C Nishantha
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhaogui Yan
- Huazhong Agricultural University, Wuhan 430070, China.
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Joint Research Center for Agriculture Research in Arid Areas, Yangling, Shaanxi 712100, China.
| |
Collapse
|
61
|
González-Peñas J, Costas J, Villamayor MJG, Xu B. Enrichment of rare genetic variants in astrocyte gene enriched co-expression modules altered in postmortem brain samples of schizophrenia. Neurobiol Dis 2019; 121:305-314. [DOI: 10.1016/j.nbd.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 01/21/2023] Open
|
62
|
Computational approaches for detection and quantification of A-to-I RNA-editing. Methods 2018; 156:25-31. [PMID: 30465820 DOI: 10.1016/j.ymeth.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine (A-to-I) RNA editing in double-stranded RNA. Such editing is important for protection against false activation of the immune system, but also confers plasticity on the transcriptome by generating several versions of a transcript from a single genomic locus. Recently, great efforts were made in developing computational methods for detecting editing events directly from RNA-sequencing (RNA-seq) data. These efforts have led to an improved understanding of the makeup of the editome in various genomes. Here we review recent advances in editing detection based on the data available to the researcher, with emphasis on the principles underlying the various methods and the limitations they were designed to overcome. We also discuss the available various methods for analyzing and quantifying editing levels. This review collects and organizes the available approaches for analyzing RNA editing and discuss the current status of the different A-to-I detection methods with possible directions for extending these approaches.
Collapse
|
63
|
Hung LY, Chen YJ, Mai TL, Chen CY, Yang MY, Chiang TW, Wang YD, Chuang TJ. An Evolutionary Landscape of A-to-I RNA Editome across Metazoan Species. Genome Biol Evol 2018; 10:521-537. [PMID: 29294013 PMCID: PMC5800060 DOI: 10.1093/gbe/evx277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is widespread across the kingdom Metazoa. However, for the lack of comprehensive analysis in nonmodel animals, the evolutionary history of A-to-I editing remains largely unexplored. Here, we detect high-confidence editing sites using clustering and conservation strategies based on RNA sequencing data alone, without using single-nucleotide polymorphism information or genome sequencing data from the same sample. We thereby unveil the first evolutionary landscape of A-to-I editing maps across 20 metazoan species (from worm to human), providing unprecedented evidence on how the editing mechanism gradually expands its territory and increases its influence along the history of evolution. Our result revealed that highly clustered and conserved editing sites tended to have a higher editing level and a higher magnitude of the ADAR motif. The ratio of the frequencies of nonsynonymous editing to that of synonymous editing remarkably increased with increasing the conservation level of A-to-I editing. These results thus suggest potentially functional benefit of highly clustered and conserved editing sites. In addition, spatiotemporal dynamics analyses reveal a conserved enrichment of editing and ADAR expression in the central nervous system throughout more than 300 Myr of divergent evolution in complex animals and the comparability of editing patterns between invertebrates and between vertebrates during development. This study provides evolutionary and dynamic aspects of A-to-I editome across metazoan species, expanding this important but understudied class of nongenomically encoded events for comprehensive characterization.
Collapse
Affiliation(s)
- Li-Yuan Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Te-Lun Mai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Yu Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Da Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Gonzales PK, Roberts CM, Fonte V, Jacobsen C, Stein GH, Link CD. Transcriptome analysis of genetically matched human induced pluripotent stem cells disomic or trisomic for chromosome 21. PLoS One 2018; 13:e0194581. [PMID: 29584757 PMCID: PMC5870938 DOI: 10.1371/journal.pone.0194581] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/06/2018] [Indexed: 12/03/2022] Open
Abstract
Trisomy of chromosome 21, the genetic cause of Down syndrome, has the potential to alter expression of genes on chromosome 21, as well as other locations throughout the genome. These transcriptome changes are likely to underlie the Down syndrome clinical phenotypes. We have employed RNA-seq to undertake an in-depth analysis of transcriptome changes resulting from trisomy of chromosome 21, using induced pluripotent stem cells (iPSCs) derived from a single individual with Down syndrome. These cells were originally derived by Li et al, who genetically targeted chromosome 21 in trisomic iPSCs, allowing selection of disomic sibling iPSC clones. Analyses were conducted on trisomic/disomic cell pairs maintained as iPSCs or differentiated into cortical neuronal cultures. In addition to characterization of gene expression levels, we have also investigated patterns of RNA adenosine-to-inosine editing, alternative splicing, and repetitive element expression, aspects of the transcriptome that have not been significantly characterized in the context of Down syndrome. We identified significant changes in transcript accumulation associated with chromosome 21 trisomy, as well as changes in alternative splicing and repetitive element transcripts. Unexpectedly, the trisomic iPSCs we characterized expressed higher levels of neuronal transcripts than control disomic iPSCs, and readily differentiated into cortical neurons, in contrast to another reported study. Comparison of our transcriptome data with similar studies of trisomic iPSCs suggests that trisomy of chromosome 21 may not intrinsically limit neuronal differentiation, but instead may interfere with the maintenance of pluripotency.
Collapse
Affiliation(s)
- Patrick K. Gonzales
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States of America
| | - Christine M. Roberts
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States of America
| | - Virginia Fonte
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States of America
| | - Connor Jacobsen
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States of America
| | - Gretchen H. Stein
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, Colorado, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Christopher D. Link
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
65
|
Yan S, Lu Y, He L, Zhao X, Wu L, Zhu H, Jiang M, Su Y, Cao W, Tian W, Xing Q. Dynamic Editome of Zebrafish under Aminoglycosides Treatment and Its Potential Involvement in Ototoxicity. Front Pharmacol 2017; 8:854. [PMID: 29213239 PMCID: PMC5702851 DOI: 10.3389/fphar.2017.00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022] Open
Abstract
RNA editing is an important co- and post-transcriptional event that generates RNA and protein diversity. Aminoglycosides are a group of bactericidal antibiotics and a mainstay of antimicrobial therapy for several life-threatening infections. However, aminoglycosides can induce ototoxicity, resulting in damage to the organs responsible for hearing and balance. At low concentrations, aminoglycosides can bind to many RNA sequences and critically influence RNA editing. We used a bioinformatics approach to investigate the effect of aminoglycosides on global mRNA editing events to gain insight into the interactions between mRNA editing and aminoglycoside ototoxicity. We identified 6,850 mRNA editing sites in protein coding genes in embryonic zebrafish, and in about 10% of these, the degree of RNA editing changed more than 15% under aminoglycosides treatment. Twelve ear-development or ototoxicity related genes, including plekhm1, fgfr1a, sox9a, and calrl2, exhibited remarkable changes in mRNA editing levels in zebrafish treated with aminoglycosides. Our results indicate that aminoglycosides may have a widespread and complicated influence on the progress of mRNA editing and expression. Furthermore, these results highlight the potential importance of mRNA editing in the pathogenesis and etiology of aminoglycoside-induced ototoxicity.
Collapse
Affiliation(s)
- Sijia Yan
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yulan Lu
- Children's Hospital, Fudan University, Shanghai, China
| | - Lin He
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xinzhi Zhao
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Lihua Wu
- Zhengzhou People's Hospital, Zhengzhou, China
| | - Huizhong Zhu
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Menglin Jiang
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Yu Su
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | - Wei Cao
- Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Weidong Tian
- Department of Biostatistics and Computational Biology, School of Life Science, Fudan University, Shanghai, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| |
Collapse
|