51
|
Mckenna A, P N Dubey S. Machine Learning Based Predictive Model for the Analysis of Sequence Activity Relationships Using Protein Spectra and Protein Descriptors. J Biomed Inform 2022; 128:104016. [PMID: 35143999 DOI: 10.1016/j.jbi.2022.104016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
Accurately establishing the connection between a protein sequence and its function remains a focal point within the field of protein engineering, especially in the context of predicting the effects of mutations. From this, there has been a continued drive to build accurate and reliable predictive models via machine learning that allow for the virtual screening of many protein mutant sequences, measuring the relationship between sequence and 'fitness' or 'activity', commonly known as a Sequence-Activity-Relationship (SAR). An important preliminary stage in the building of these predictive models is the encoding of the chosen sequences. Evaluated in this work is a plethora of encoding strategies using the Amino Acid Index database, where the indices are transformed into their spectral form via Digital Signal Processing (DSP) techniques, as well as numerous protein structural and physiochemical descriptors. The encoding strategies are explored on a dataset curated to measure the thermostability of various mutants from a recombination library, designed from parental cytochrome P450s. In this work it was concluded that the implementation of protein spectra in concatenation with protein descriptors, together with the Partial Least Squares Regression (PLS) algorithm, gave the most noteworthy increase in the quality of the predictive models (as described in Encoding Strategy C), highlighting their utility in identifying an SAR. The accompanying software produced for this paper is termed pySAR (Python Sequence-Activity-Relationship), which allows for a user to find the optimal arrangement of structural and or physiochemical properties to encode their specific mutant library dataset; the source code is available at: https://github.com/amckenna41/pySAR.
Collapse
Affiliation(s)
- Adam Mckenna
- School of Electronics, Electrical Engineering and Computer Science, Queen's University of Belfast, University Road, BT7 1NN, Belfast, United Kingdom.
| | - Sandhya P N Dubey
- Department of Data Science and Computer Applications, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
| |
Collapse
|
52
|
Effects of interaction between hesperetin/hesperidin and glutenin on the structure and functional properties of glutenin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
53
|
Miotto M, Di Rienzo L, Gosti G, Bo' L, Parisi G, Piacentini R, Boffi A, Ruocco G, Milanetti E. Inferring the stabilization effects of SARS-CoV-2 variants on the binding with ACE2 receptor. Commun Biol 2022; 5:20221. [PMID: 34992214 PMCID: PMC8738749 DOI: 10.1038/s42003-021-02946-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
As the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic continues to spread, several variants of the virus, with mutations distributed all over the viral genome, are emerging. While most of the variants present mutations having little to no effects at the phenotypic level, some of these variants are spreading at a rate that suggests they may present a selective advantage. In particular, these rapidly spreading variants present specific mutations on the spike protein. These observations call for an urgent need to characterize the effects of these variants’ mutations on phenotype features like contagiousness and antigenicity. With this aim, we performed molecular dynamics simulations on a selected set of possible spike variants in order to assess the stabilizing effect of particular amino acid substitutions on the molecular complex. We specifically focused on the mutations that are both characteristic of the top three most worrying variants at the moment, i.e the English, South African, and Amazonian ones, and that occur at the molecular interface between SARS-CoV-2 spike protein and its human ACE2 receptor. We characterize these variants’ effect in terms of (i) residue mobility, (ii) compactness, studying the network of interactions at the interface, and (iii) variation of shape complementarity via expanding the molecular surfaces in the Zernike basis. Overall, our analyses highlighted greater stability of the three variant complexes with respect to both the wild type and two negative control systems, especially for the English and Amazonian variants. In addition, in the three variants, we investigate the effects a not-yet observed mutation in position 501 could provoke on complex stability. We found that a phenylalanine mutation behaves similarly to the English variant and may cooperate in further increasing the stability of the South African one, hinting at the need for careful surveillance for the emergence of these mutations in the population. Ultimately, we show that the proposed observables describe key features for the stability of the ACE2-spike complex and can help to monitor further possible spike variants. Miotto et al. perform molecular dynamics simulations on a selected set of possible SARS-CoV-2 spike variants in order to assess the stabilizing effect of particular amino acid substitutions on the molecular complex. Their analysis can help to monitor further possible spike variants.
Collapse
Affiliation(s)
- Mattia Miotto
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Leonardo Bo'
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giacomo Parisi
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Roberta Piacentini
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Alberto Boffi
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.,Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy. .,Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
54
|
Li S, Liu Y, Chen D, Jiang Y, Nie Z, Pan F. Encoding the atomic structure for machine learning in materials science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shunning Li
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Yuanji Liu
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Dong Chen
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Yi Jiang
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Zhiwei Nie
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| | - Feng Pan
- School of Advanced Materials Peking University, Shenzhen Graduate School Shenzhen China
| |
Collapse
|
55
|
Miotto M, Armaos A, Di Rienzo L, Ruocco G, Milanetti E, Tartaglia GG. OUP accepted manuscript. Bioinformatics 2022; 38:2060-2061. [PMID: 35020787 PMCID: PMC8963285 DOI: 10.1093/bioinformatics/btab868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Motivation Thermal properties of proteins are of great importance for a number of theoretical and practical implications. Predicting the thermal stability of a protein is a difficult and still scarcely addressed task. Results Here, we introduce Thermometer, a webserver to assess the thermal stability of a protein using structural information. Thermometer is implemented as a publicly available, user-friendly interface. Availability and implementation Our server can be found at the following link (all major browser supported): http://service.tartaglialab.com/new_submission/thermometer_file. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mattia Miotto
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, 00161 Rome, Italy
| | - Alexandros Armaos
- Department of Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuroscience, Italian Institute of Technology, 00161 Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, 00161 Rome, Italy
| | | | | |
Collapse
|
56
|
Comparative studies on the interaction of ascorbic acid with gastric enzyme using multispectroscopic and docking methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
57
|
Hashemi-Shahraki F, Shareghi B, Farhadian S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
58
|
Kristensen HT, Christensen M, Hansen MS, Hammershøj M, Dalsgaard TK. Protein–protein interactions of a whey–pea protein co‐precipitate. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Mette Christensen
- Arla Innovation Centre Arla Foods Amba Agro Food Park 19 Aarhus N 8200 Denmark
| | | | - Marianne Hammershøj
- Department of Food Science Aarhus University Agro Food Park 48 Aarhus N 8200 Denmark
- iFOOD Aarhus University Centre for Innovative Food Research Aarhus C 8000 Denmark
| | - Trine Kastrup Dalsgaard
- Department of Food Science Aarhus University Agro Food Park 48 Aarhus N 8200 Denmark
- iFOOD Aarhus University Centre for Innovative Food Research Aarhus C 8000 Denmark
- CBIO Aarhus University Centre for Circular Bioeconomy Aarhus C 8000 Denmark
| |
Collapse
|
59
|
Arnittali M, Rissanou AN, Amprazi M, Kokkinidis M, Harmandaris V. Structure and Thermal Stability of wtRop and RM6 Proteins through All-Atom Molecular Dynamics Simulations and Experiments. Int J Mol Sci 2021; 22:ijms22115931. [PMID: 34073028 PMCID: PMC8199364 DOI: 10.3390/ijms22115931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
In the current work we study, via molecular simulations and experiments, the folding and stability of proteins from the tertiary motif of 4-α-helical bundles, a recurrent motif consisting of four amphipathic α-helices packed in a parallel or antiparallel fashion. The focus is on the role of the loop region in the structure and the properties of the wild-type Rop (wtRop) and RM6 proteins, exploring the key factors which can affect them, through all-atom molecular dynamics (MD) simulations and supporting by experimental findings. A detailed investigation of structural and conformational properties of wtRop and its RM6 loopless mutation is presented, which display different physical characteristics even in their native states. Then, the thermal stability of both proteins is explored showing RM6 as more thermostable than wtRop through all studied measures. Deviations from native structures are detected mostly in tails and loop regions and most flexible residues are indicated. Decrease of hydrogen bonds with the increase of temperature is observed, as well as reduction of hydrophobic contacts in both proteins. Experimental data from circular dichroism spectroscopy (CD), are also presented, highlighting the effect of temperature on the structural integrity of wtRop and RM6. The central goal of this study is to explore on the atomic level how a protein mutation can cause major changes in its physical properties, like its structural stability.
Collapse
Affiliation(s)
- Maria Arnittali
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece; (M.A.); (V.H.)
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
| | - Anastassia N. Rissanou
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece; (M.A.); (V.H.)
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-393746
| | - Maria Amprazi
- Department of Biology, University of Crete, GR-71409 Heraklion, Crete, Greece; (M.A.); (M.K.)
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Department of Biology, University of Crete, GR-71409 Heraklion, Crete, Greece; (M.A.); (M.K.)
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion, Crete, Greece; (M.A.); (V.H.)
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
| |
Collapse
|
60
|
Factors deciding the assembly and thermostability of the DmrB cage. Int J Biol Macromol 2021; 182:959-967. [PMID: 33872614 DOI: 10.1016/j.ijbiomac.2021.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/20/2022]
Abstract
Dihydromethanopterin reductase (DmrB), is a naturally occurring cage protein found in various archaeal and a few bacterial species. It exists as 24mer with cubic geometry where 8 trimeric subunits are present at the corners of each cube. Each trimer is made up of three monomeric units and six FMN, where two molecules of FMN are present at the interface of each monomer. DmrB is involved in the conversion of dihydromethanopterin to tetrahydromethanopterin using FMN as a redox equivalent. In the present study, we have used spectroscopic and biochemical techniques along with complementary bio-informatic work to understand the assembly principles of the DmrB. Our results show a concentration dependant self-assembly of DmrB which is mediated by ionic interactions. The co-factor FMN stabilizes and preserves the secondary and quaternary structure of DmrB against thermal insult, indicating that the higher order assembly of DmrB is very thermostable. Our work provides an interesting piece of information regarding the role of the co-factors in the thermostability of these classes of cage proteins. The understanding of the assembly and disassembly of this thermostable cage would enable the downstream usage of this system in various nano-biotechnological applications.
Collapse
|
61
|
Opdensteinen P, Lobanov A, Buyel JF. A combined pH and temperature precipitation step facilitates the purification of tobacco-derived recombinant proteins that are sensitive to extremes of either parameter. Biotechnol J 2021; 16:e2000340. [PMID: 33247609 DOI: 10.1002/biot.202000340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/03/2020] [Indexed: 11/06/2022]
Abstract
Incubation at pH 4.0 or blanching at ∼65°C facilitates the purification of biopharmaceutical proteins from plants by precipitating most of the host cell proteins (HCPs) before chromatography. However, both methods are compatible only with pH or thermostable target proteins whereas many target proteins may irreversibly denature, e.g., at pH < 4.0. Here, we developed a combined pH/temperature treatment for clarified tobacco extracts and intact leaves. The latter were subjected to a blanching procedure, i.e., the submersion into a hot buffer. Using a design of experiments approach we identified conditions that remove ∼70% of HCPs at ∼55°C, using the thermosensitive antibody 2G12 and the pH-sensitive DsRed as model proteins. We found that pH and temperature exerted a combined effect during the precipitation of HCPs in the pH range 5.0-7.0 at 35°C-60°C. For clarified extracts, the temperature required to achieve a DsRed purity threshold of 20% total soluble protein (TSP) increased from 54°C to 63°C when the pH was increased from 6.4 to 7.3. The pH-stable antibody 2G12 was less responsive to the combined treatment, but the purity of 1% TSP was achieved at 35°C instead of 44°C when the pH was reduced from 6.3 to 5.8. When blanching intact leaves, product losses were not exacerbated at pH 4.0. Indeed, the highest DsRed purity (58% TSP) was achieved at this pH, combined with a temperature of 60°C and an incubation time of 30 min. In contrast, the highest 2G12 purity (0.7% TSP) was achieved at pH 5.1 and 40°C with an incubation time of 20 min. Our data suggest that a combined pH/temperature regime can avoid extreme values of either parameter; therefore, broadening the applicability of these simple purification techniques to other recombinant proteins.
Collapse
Affiliation(s)
| | - Aleksandr Lobanov
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
62
|
Borges B, Gallo G, Coelho C, Negri N, Maiello F, Hardy L, Würtele M. Dynamic cross correlation analysis of Thermus thermophilus alkaline phosphatase and determinants of thermostability. Biochim Biophys Acta Gen Subj 2021; 1865:129895. [PMID: 33781823 DOI: 10.1016/j.bbagen.2021.129895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Understanding the determinants of protein thermostability is very important both from the theoretical and applied perspective. One emerging view in thermostable enzymes seems to indicate that a salt bridge/charged residue network plays a fundamental role in their thermostability. METHODS The structure of alkaline phosphatase (AP) from Thermus thermophilus HB8 was solved by X-ray crystallography at 2.1 Å resolution. The obtained structure was further analyzed by molecular dynamics studies at different temperatures (303 K, 333 K and 363 K) and compared to homologous proteins from the cold-adapted organisms Shewanella sp. and Vibrio strain G15-21. To analyze differences in measures of dynamic variation, several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis were used. Using hierarchical clustering, the obtained results were combined to determine residues showing high degree dynamical variations due to temperature jumps. Furthermore, dynamic cross correlation (DCC) analysis was carried out to characterize networks of charged residues. RESULTS Top clustered residues showed a higher propensity for thermostabilizing mutations, indicating evolutionary pressure acting on thermophilic organisms. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. DCC analysis revealed a significant trend to de-correlation of the movement of charged residues at higher temperatures. SIGNIFICANCE The de-correlation of charged residues detected in Thermus thermophilus AP, highlights the importance of dynamic electrostatic network interactions for the thermostability of this enzyme.
Collapse
Affiliation(s)
- Bruno Borges
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Naiane Negri
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil; Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Maiello
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
63
|
Di Rienzo L, Miotto M, Bò L, Ruocco G, Raimondo D, Milanetti E. Characterizing Hydropathy of Amino Acid Side Chain in a Protein Environment by Investigating the Structural Changes of Water Molecules Network. Front Mol Biosci 2021; 8:626837. [PMID: 33718433 PMCID: PMC7954116 DOI: 10.3389/fmolb.2021.626837] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Assessing the hydropathy properties of molecules, like proteins and chemical compounds, has a crucial role in many fields of computational biology, such as drug design, biomolecular interaction, and folding prediction. Over the past decades, many descriptors were devised to evaluate the hydrophobicity of side chains. In this field, recently we likewise have developed a computational method, based on molecular dynamics data, for the investigation of the hydrophilicity and hydrophobicity features of the 20 natural amino acids, analyzing the changes occurring in the hydrogen bond network of water molecules surrounding each given compound. The local environment of each residue is complex and depends on the chemical nature of the side chain and the location in the protein. Here, we characterize the solvation properties of each amino acid side chain in the protein environment by considering its spatial reorganization in the protein local structure, so that the computational evaluation of differences in terms of hydropathy profiles in different structural and dynamical conditions can be brought to bear. A set of atomistic molecular dynamics simulations have been used to characterize the dynamic hydrogen bond network at the interface between protein and solvent, from which we map out the local hydrophobicity and hydrophilicity of amino acid residues.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mattia Miotto
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Physics, Sapienza University, Rome, Italy
| | - Leonardo Bò
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Physics, Sapienza University, Rome, Italy
| | | | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy.,Department of Physics, Sapienza University, Rome, Italy
| |
Collapse
|
64
|
Espinoza-Herrera J, Martínez LM, Serna-Saldívar SO, Chuck-Hernández C. Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems. Foods 2021; 10:foods10010118. [PMID: 33429906 PMCID: PMC7826639 DOI: 10.3390/foods10010118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The substitution of wheat gluten in the food industry is a relevant research area because the only known treatment for celiac disease is abstinence from this protein complex. The use of gluten-free cereals in dough systems has demonstrated that the viscoelastic properties of gluten cannot be achieved without the modification of the protein fraction. The quality of the final product is determined by the ability of the modification to form a matrix similar to that of gluten and to reach this, different methods have been proposed and tested. These procedures can be classified into four main types: chemical, enzymatic, physical, and genetic. This article provides a comprehensive review of the most recent research done in protein modification of cereal and pseudocereals for gluten substitution. The reported effects and methodologies for studying the changes made with each type of modification are described; also, some opportunity areas for future works regarding the study of the effect of protein modifications on gluten-free products are presented.
Collapse
|
65
|
Duru Kamaci U, Peksel A. Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. Int J Biol Macromol 2020; 164:3315-3322. [DOI: 10.1016/j.ijbiomac.2020.08.226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
|
66
|
Di Rienzo L, Milanetti E, Testi C, Montemiglio LC, Baiocco P, Boffi A, Ruocco G. A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction. Comput Struct Biotechnol J 2020; 18:2678-2686. [PMID: 33101606 PMCID: PMC7548301 DOI: 10.1016/j.csbj.2020.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces.
Collapse
Affiliation(s)
- Lorenzo Di Rienzo
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | | | - Paola Baiocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Biochemical Sciences ‘A. Rossi Fanelli’ Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences ‘A. Rossi Fanelli’ Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
67
|
Duru Kamaci U, Peksel A. Enhanced Catalytic Activity of Immobilized Phytase into Polyvinyl Alcohol-Sodium Alginate Based Electrospun Nanofibers. Catal Letters 2020. [DOI: 10.1007/s10562-020-03339-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of thermostability. PLoS One 2020; 15:e0232959. [PMID: 32401802 PMCID: PMC7219735 DOI: 10.1371/journal.pone.0232959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
The elucidation of mechanisms behind the thermostability of proteins is extremely important both from the theoretical and applied perspective. Here we report the crystal structure of methylenetetrahydrofolate dehydrogenase (MTHFD) from Thermus thermophilus HB8, a thermophilic model organism. Molecular dynamics trajectory analysis of this protein at different temperatures (303 K, 333 K and 363 K) was compared with homologous proteins from the less temperature resistant organism Thermoplasma acidophilum and the mesophilic organism Acinetobacter baumannii using several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis. These methods enabled the determination of important residues for the thermostability of this enzyme. The description of rotamer distributions by Gini coefficients and Kullback–Leibler (KL) divergence both revealed significant correlations with temperature. The emerging view seems to indicate that a static salt bridge/charged residue network plays a fundamental role in the temperature resistance of Thermus thermophilus MTHFD by enhancing both electrostatic interactions and entropic energy dispersion. Furthermore, this analysis uncovered a relationship between residue mutations and evolutionary pressure acting on thermophilic organisms and thus could be of use for the design of future thermostable enzymes.
Collapse
|
69
|
Miotto M, Di Rienzo L, Corsi P, Ruocco G, Raimondo D, Milanetti E. Simulated Epidemics in 3D Protein Structures to Detect Functional Properties. J Chem Inf Model 2020; 60:1884-1891. [PMID: 32011881 DOI: 10.1021/acs.jcim.9b01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outcome of an epidemic is closely related to the network of interactions between individuals. Likewise, protein functions depend on the 3D arrangement of their residues and the underlying energetic interaction network. Borrowing ideas from the theoretical framework that has been developed to address the spreading of real diseases, we study for the first time the diffusion of a fictitious epidemic inside the protein nonbonded interaction network, aiming to study network features and properties. Our approach allows us to probe the overall stability and the capability of propagating information in complex 3D structures, proving to be very efficient in addressing different problems, from the assessment of thermal stability to the identification of functional sites.
Collapse
Affiliation(s)
- Mattia Miotto
- Department of Physics, Sapienza University, Rome 00185, Italy.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | | | - Pietro Corsi
- Department of Science, Roma Tre University, Rome 00154, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Rome 00185, Italy.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Domenico Raimondo
- Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Rome 00185, Italy.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
70
|
Panja AS, Maiti S, Bandyopadhyay B. Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Sci Rep 2020; 10:1822. [PMID: 32020026 PMCID: PMC7000726 DOI: 10.1038/s41598-020-58825-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2020] [Indexed: 12/02/2022] Open
Abstract
Several organisms, specifically microorganisms survive in a wide range of harsh environments including extreme temperature, pH, and salt concentration. We analyzed systematically a large number of protein sequences with their structures to understand their stability and to discriminate extremophilic proteins from their non-extremophilic orthologs. Our results highlighted that the strategy for the packing of the protein core was influenced by the environmental stresses through substitutive structural events through better ionic interaction. Statistical analysis showed that a significant difference in number and composition of amino acid exist among them. The negative correlation of pairwise sequence alignments and structural alignments indicated that most of the extremophile and non-extremophile proteins didn’t contain any association for maintaining their functional stability. A significant numbers of salt bridges were noticed on the surface of the extremostable proteins. The Ramachandran plot data represented more occurrences of amino acids being present in helix and sheet regions of extremostable proteins. We also found that a significant number of small nonpolar amino acids and moderate number of charged amino acids like Arginine and Aspartic acid represented more nonplanar Omega angles in their peptide bond. Thus, extreme conditions may predispose amino acid composition including geometric variability for molecular adaptation of extremostable proteins against atmospheric variations and associated changes under natural selection pressure. The variation of amino acid composition and structural diversifications in proteins play a major role in evolutionary adaptation to mitigate climate change.
Collapse
Affiliation(s)
- Anindya S Panja
- Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India.
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bidyut Bandyopadhyay
- Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
71
|
In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|