51
|
Cui J, Zhou F, Li J, Shen Z, Zhou J, Yang J, Jia Z, Zhang Z, Du F, Yao D. Amendment-driven soil health restoration through soil pH and microbial robustness in a Cd/Cu-combined acidic soil: A ten-year in-situ field experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133109. [PMID: 38071771 DOI: 10.1016/j.jhazmat.2023.133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
Soil health arguably depends on biodiversity and has received wide attention in heavy-metal (HM) contaminated farmland remediation in recent years. However, long-term effects and mechanisms of soil amendment remain poorly understood with respect to soil microbal community. In this in-situ field study, four soil amendments (attapulgite-At, apatite-Ap, montmorillonite-M, lime-L) at three rates were applied once only for ten years in a cadmium (Cd)-copper (Cu) contaminated paddy soil deprecated for over five years. Results showed that after ten years and in compared with CK (no amendment), total Cd concentration and its risk in plot soils were not altered by amendments (p > 0.05), but total Cu concentration and its risk were significantly increased by both Ap and L, especially the former, rather than At and M (p < 0.05), through increased soil pH and enhanced bacterial alpha diversity as well as plant community. Soil microbial communities were more affected by amendment type (30%) than dosage (11%), microbial network characteristics were dominated by rare taxa, and soil multifunctionality was improved in Ap- and L-amended soils. A structural equation model (SEM) indicated that 57.3% of soil multifunctionality variances were accounted for by soil pH (+0.696) and microbial network robustness (-0.301). Moreover, microbial robustness could be potentially used as an indicator of soil multifunctionality, and Ap could be optimized to improve soil health in combined with biomass removal. These findings would advance the understanding of soil microbial roles, especially its network robustness, on soil multifunctionality for the remediation of metal contaminated soils and metal control management strategies in acidic soils. ENVIRONMENTAL IMPLICATION: Farmland soil contamination by heavy metals (HMs) has been becoming a serious global environmental challenge. However, most studies have been conducted over the short term, leading to a gap in the long-term remediation efficiency and ecological benefits of soil amendments. For the successful deployment of immobilization technologies, it is critical to understand the long-term stability of the immobilized HMs and soil health. Our study, to the best of our knowlege, is the first to state the long-term effects and mechanisms of soil amendments on soil health and optimize an effective and eco-friendly amendment for long-term Cd/Cu immobilization.
Collapse
Affiliation(s)
- Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fengwu Zhou
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ziyao Shen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - John Yang
- Department of Agriculture and Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
52
|
Candeliere F, Sola L, Raimondi S, Rossi M, Amaretti A. Good and bad dispositions between archaea and bacteria in the human gut: New insights from metagenomic survey and co-occurrence analysis. Synth Syst Biotechnol 2024; 9:88-98. [PMID: 38292760 PMCID: PMC10824687 DOI: 10.1016/j.synbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Archaea are an understudied component of the human microbiome. In this study, the gut archaeome and bacteriome of 60 healthy adults from different region were analyzed by whole-genome shotgun sequencing. Archaea were ubiquitously found in a wide range of abundances, reaching up to 7.2 %. The dominant archaeal phylum was Methanobacteriota, specifically the family Methanobacteriaceae, encompassing more than 50 % of Archaea in 50 samples. The previously underestimated Thermoplasmatota, mostly composed of Methanomassiliicoccaceae, dominated in 10 subjects (>50 %) and was present in all others except one. Halobacteriota, the sole other archaeal phylum, occurred in negligible concentration, except for two samples (4.6-4.8 %). This finding confirmed that the human gut archaeome is primarily composed of methanogenic organisms and among the known methanogenic pathway: i) hydrogenotrophic reduction of CO2 is the predominant, being the genus Methanobrevibacter and the species Methanobrevibacter smithii the most abundant in the majority of the samples; ii) the second pathway, that involved Methanomassiliicoccales, was the hydrogenotrophic reduction of methyl-compounds; iii) dismutation of acetate or methyl-compounds seemed to be absent. Co-occurrence analysis allowed to unravel correlations between Archaea and Bacteria that shapes the overall structure of the microbial community, allowing to depict a clearer picture of the human gut archaeome.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Biogest-Siteia, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
53
|
Yu MK, Fogarty EC, Eren AM. Diverse plasmid systems and their ecology across human gut metagenomes revealed by PlasX and MobMess. Nat Microbiol 2024; 9:830-847. [PMID: 38443576 PMCID: PMC10914615 DOI: 10.1038/s41564-024-01610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
Plasmids alter microbial evolution and lifestyles by mobilizing genes that often confer fitness in changing environments across clades. Yet our ecological and evolutionary understanding of naturally occurring plasmids is far from complete. Here we developed a machine-learning model, PlasX, which identified 68,350 non-redundant plasmids across human gut metagenomes and organized them into 1,169 evolutionarily cohesive 'plasmid systems' using our sequence containment-aware network-partitioning algorithm, MobMess. Individual plasmids were often country specific, yet most plasmid systems spanned across geographically distinct human populations. Cargo genes in plasmid systems included well-known determinants of fitness, such as antibiotic resistance, but also many others including enzymes involved in the biosynthesis of essential nutrients and modification of transfer RNAs, revealing a wide repertoire of likely fitness determinants in complex environments. Our study introduces computational tools to recognize and organize plasmids, and uncovers the ecological and evolutionary patterns of diverse plasmids in naturally occurring habitats through plasmid systems.
Collapse
Affiliation(s)
- Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL, USA.
| | - Emily C Fogarty
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee On Microbiology, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.
- Marine 'Omics Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
54
|
Cao Z, Fan D, Sun Y, Huang Z, Li Y, Su R, Zhang F, Li Q, Yang H, Zhang F, Miao Y, Lan P, Wu X, Zuo T. The gut ileal mucosal virome is disturbed in patients with Crohn's disease and exacerbates intestinal inflammation in mice. Nat Commun 2024; 15:1638. [PMID: 38388538 PMCID: PMC10884039 DOI: 10.1038/s41467-024-45794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Gut bacteriome dysbiosis is known to be implicated in the pathogenesis of inflammatory bowel disease (IBD). Crohn's disease (CD) is an IBD subtype with extensive mucosal inflammation, yet the mucosal virome, an empirical modulator of the bacteriome and mucosal immunity, remains largely unclear regarding its composition and role. Here, we exploited trans-cohort CD patients and healthy individuals to compositionally and functionally investigate the small bowel (terminal ileum) virome and bacteriome. The CD ileal virome was characterised by an under-representation of both lytic and temperate bacteriophages (especially those targeting bacterial pathogens), particularly in patients with flare-up. Meanwhile, the virome-bacteriome ecology in CD ileal mucosa was featured by a lack of Bifidobacterium- and Lachnospiraceae-led mutualistic interactions between bacteria and bacteriophages; surprisingly it was more pronounced in CD remission than flare-up, underlining the refractory and recurrent nature of mucosal inflammation in CD. Lastly, we substantiated that ileal virions from CD patients causally exacerbated intestinal inflammation in IBD mouse models, by reshaping a gut virome-bacteriome ecology preceding intestinal inflammation (microbial trigger) and augmenting microbial sensing/defence pathways in the intestine cells (host response). Altogether, our results highlight the significance of mucosal virome in CD pathogenesis and importance of mucosal virome restoration in CD therapeutics.
Collapse
Affiliation(s)
- Zhirui Cao
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dejun Fan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yang Sun
- Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
- Yunnan Province Clinical Research Centre for Digestive Diseases, Kunming, Yunnan, China.
- Yunnan Geriatric Medical Centre, Kunming, Yunnan, China.
| | - Ziyu Huang
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Li
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Runping Su
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing Li
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongju Yang
- Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Geriatric Medical Centre, Kunming, Yunnan, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yinglei Miao
- Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Clinical Research Centre for Digestive Diseases, Kunming, Yunnan, China
| | - Ping Lan
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojian Wu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
55
|
Sadeghi M, Mestivier D, Carbonnelle E, Benamouzig R, Khazaie K, Sobhani I. Loss of symbiotic and increase of virulent bacteria through microbial networks in Lynch syndrome colon carcinogenesis. Front Oncol 2024; 13:1313735. [PMID: 38375206 PMCID: PMC10876293 DOI: 10.3389/fonc.2023.1313735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Through a pilot study, we performed whole gut metagenomic analysis in 17 Lynch syndrome (LS) families, including colorectal cancer (CRC) patients and their healthy first-degree relatives. In a second asymptomatic LS cohort (n=150) undergoing colonoscopy-screening program, individuals with early precancerous lesions were compared to those with a normal colonoscopy. Since bacteria are organized into different networks within the microbiota, we compared related network structures in patients and controls. Experimental design Fecal prokaryote DNA was extracted prior to colonoscopy for whole metagenome (n=34, pilot study) or 16s rRNA sequencing (validation study). We characterized bacteria taxonomy using Diamond/MEGAN6 and DADA2 pipelines and performed differential abundances using Shaman website. We constructed networks using SparCC inference tools and validated the construction's accuracy by performing qPCR on selected bacteria. Results Significant differences in bacterial communities in LS-CRC patients were identified, with an enrichment of virulent bacteria and a depletion of symbionts compared to their first-degree relatives. Bacteria taxa in LS asymptomatic individuals with colonic precancerous lesions (n=79) were significantly different compared to healthy individuals (n=71). The main bacterial network structures, constructed based on bacteria-bacteria correlations in CRC (pilot study) and in asymptomatic precancerous patients (validation-study), showed a different pattern than in controls. It was characterized by virulent/symbiotic co-exclusion in both studies and illustrated (validation study) by a higher Escherichia/Bifidobacterium ratio, as assessed by qPCR. Conclusion Enhanced fecal virulent/symbiotic bacteria ratios influence bacterial network structures. As an early event in colon carcinogenesis, these ratios can be used to identify asymptomatic LS individual with a higher risk of CRC.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Denis Mestivier
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Etienne Carbonnelle
- Bacteriology, Virology, Hygiene Laboratory, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | | | - Iradj Sobhani
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, Créteil, France
| |
Collapse
|
56
|
Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics 2024; 56:221-234. [PMID: 38073489 DOI: 10.1152/physiolgenomics.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiuyu Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinglan Gu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
57
|
Lei S, Wang X, Wang J, Zhang L, Liao L, Liu G, Wang G, Song Z, Zhang C. Effect of aridity on the β-diversity of alpine soil potential diazotrophs: insights into community assembly and co-occurrence patterns. mSystems 2024; 9:e0104223. [PMID: 38059620 PMCID: PMC10804954 DOI: 10.1128/msystems.01042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Microbial diversity plays a vital role in the maintenance of ecosystem functions. However, the current understanding of mechanisms that shape microbial diversity along environmental gradients at broad spatial scales is relatively limited, especially for specific functional groups, such as potential diazotrophs. Here, we conducted an aridity-gradient transect survey from 60 sites across the Tibetan Plateau, the largest alpine ecosystem of the planet, to investigate the ecological processes (e.g., local species pools, community assembly processes, and co-occurrence patterns) that underlie the β-diversity of alpine soil potential diazotrophic communities. We found that aridity strongly and negatively affected the abundance, richness, and β-diversity of soil diazotrophs. Diazotrophs displayed a distance-decay pattern along the aridity gradient, with organisms living in lower aridity habitats having a stronger distance-decay pattern. Arid habitats had lower co-occurrence complexity, including the number of edges and vertices, the average degree, and the number of keystone taxa, as compared with humid habitats. Local species pools explained limited variations in potential diazotrophic β-diversity. In contrast, co-occurrence patterns and stochastic processes (e.g., dispersal limitation and ecological drift) played a significant role in regulating potential diazotrophic β-diversity. The relative importance of stochastic processes and co-occurrence patterns changed with increasing aridity, with stochastic processes weakening whereas that of co-occurrence patterns enhancing. The genera Geobacter and Paenibacillus were identified as keystone taxa of co-occurrence patterns that are associated with β-diversity. In summary, aridity affects the co-occurrence patterns and community assembly by regulating soil and vegetation characteristics and ultimately shapes the β-diversity of potential diazotrophs. These findings highlight the importance of co-occurrence patterns in structuring microbial diversity and advance the current understanding of mechanisms that drive belowground communities.IMPORTANCERecent studies have shown that community assembly processes and species pools are the main drivers of β-diversity in grassland microbial communities. However, co-occurrence patterns can also drive β-diversity formation by influencing the dispersal and migration of species, the importance of which has not been reported in previous studies. Assessing the impact of co-occurrence patterns on β-diversity is important for understanding the mechanisms of diversity formation. Our study highlights the influence of microbial co-occurrence patterns on β-diversity and combines the drivers of community β-diversity with drought variation, revealing that drought indirectly affects β-diversity by influencing diazotrophic co-occurrence patterns and community assembly.
Collapse
Affiliation(s)
- Shilong Lei
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangtao Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang, China
| | - Lu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Lirong Liao
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobin Liu
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Science, Yangling, Shaanxi, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
58
|
Lu Y, Chu S, Shi Z, You R, Chen H. Marked variations in diversity and functions of gut microbiota between wild and domestic stag beetle Dorcus Hopei Hopei. BMC Microbiol 2024; 24:24. [PMID: 38238710 PMCID: PMC10795464 DOI: 10.1186/s12866-023-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Although stag beetles are a popular saprophytic insect, their gut microbiome has been poorly studied. Here, 16 S rRNA gene sequencing was employed to reveal the gut microbiota composition and functional variations between wild and domestic Dorcus hopei hopei (Dhh) larval individuals. RESULTS The results indicated a significant difference between the wild and domestic Dhh gut microbiota., the domestic Dhh individuals contained more gut microbial taxa (e.g. genera Ralstonia and Methyloversatilis) with xenobiotic degrading functions. The wild Dhh possesses gut microbiota compositions (e.g. Turicibacter and Tyzzerella ) more appropriate for energy metabolism and potential growth. This study furthermore assigned all Dhh individuals by size into groups for data analysis; which indicated limited disparities between the gut microbiota of different-sized D. hopei hopei larvae. CONCLUSION The outcome of this study illustrated that there exists a significant discrepancy in gut microbiota composition between wild and domestic Dhh larvae. In addition, the assemblage of gut microbiome in Dhh was primarily attributed to environmental influences instead of individual differences such as developmental potential or size. These findings will provide a valuable theoretical foundation for the protection of wild saprophytic insects and the potential utilization of the insect-associated intestinal microbiome in the future.
Collapse
Affiliation(s)
- Yikai Lu
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Siyuan Chu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zhiyuan Shi
- BASIS International School Hangzhou, Hangzhou, 310020, Zhejiang, China
| | - Ruobing You
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Haimin Chen
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
59
|
Dong L, Li MX, Li S, Yue LX, Ali M, Han JR, Lian WH, Hu CJ, Lin ZL, Shi GY, Wang PD, Gao SM, Lian ZH, She TT, Wei QC, Deng QQ, Hu Q, Xiong JL, Liu YH, Li L, Abdelshafy OA, Li WJ. Aridity drives the variability of desert soil microbiomes across north-western China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168048. [PMID: 37890638 DOI: 10.1016/j.scitotenv.2023.168048] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Dryland covers >35 % of the terrestrial surface and the global extent of dryland increases due to the forecasted increase in aridity driven by climate change. Due to the climate change-driven aridity ecosystems, deserts provide one of the most hostile environments for microbial life and survival. Therefore, a detailed study was carried out to explore the deserts with different aridity levels (exposed to severe climate change) influence on microbial (bacteria, fungi, and protist) diversity patterns, assembly processes, and co-occurrence. The results revealed that the aridity (semi-arid, arid, and hyper-arid) patterns caused distinct changes in environmental heterogeneity in desert ecosystems. Similarly, microbial diversities were also reduced with increasing the aridity pattern, and it was found that environmental heterogeneity is highly involved in affecting microbial diversities under different ecological niches. Interestingly, it was found that certain microbes, including bacterial (Firmicutes), fungal (Sordariomycetes), and protistan (Ciliophora) abundance increased with increasing aridity levels, indicating that these microbes might possess the capability to tolerate the environmental stress conditions. Moreover, microbial community turnover analysis revealed that bacterial diversities followed homogenous selection, whereas fungi and protists were mostly driven by the dispersal limitation pattern. Co-occurrence network analysis showed that hyper-arid and arid conditions tightened the bacterial and fungal communities and had more positive associations compared to protistan. In conclusion, multiple lines of evidence were provided to shed light on the habitat specialization impact on microbial (bacteria, fungi, and protists) communities and composition under different desert ecosystems.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mei-Xiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ling-Xiang Yue
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Guo-Yuan Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Pan-Deng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Shao-Ming Gao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ting-Ting She
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Qi-Chuang Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Jia-Liang Xiong
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, PR China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Osama Abdalla Abdelshafy
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
60
|
Mahmoudi M, Almario J, Lutap K, Nieselt K, Kemen E. Microbial communities living inside plant leaves or on the leaf surface are differently shaped by environmental cues. ISME COMMUNICATIONS 2024; 4:ycae103. [PMID: 39165396 PMCID: PMC11333920 DOI: 10.1093/ismeco/ycae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Leaf-associated microbial communities can promote plant health and resistance to biotic and abiotic stresses. However, the importance of environmental cues in the assembly of the leaf endo- and epi-microbiota remains elusive. Here, we aimed to investigate the impact of seasonal environmental variations, on the establishment of the leaf microbiome, focusing on long-term changes (five years) in bacterial, fungal, and nonfungal eukaryotic communities colonizing the surface and endosphere of six wild Arabidopsis thaliana populations. While leaf-microbial communities were found to be highly stochastic, the leaf niche had a predominant importance with endophytic microbial communities consistently exhibiting a lower diversity and variability. Among environmental factors, radiation- and humidity-related factors are the most important drivers of diversity patterns in the leaf, with stronger effects on epiphytic communities. Using linear models, we identified 30 important genera whose relative abundance in leaf compartments could be modeled from environmental variables, suggesting specific niche preferences for these taxa. With the hypothesis that environmental factors could impact interactions within microbial communities, we analyzed the seasonal patterns of microbial interaction networks across leaf compartments. We showed that epiphytic networks are more complex than endophytic and that the complexity and connectivity of these networks are partially correlated with the mentioned environmental cues. Our results indicate that humidity and solar radiation function as major environmental cues shaping the phyllosphere microbiome at both micro (leaf compartment) and macro (site) scales. These findings could have practical implications for predicting and developing field-adapted microbes in the face of global change.
Collapse
Affiliation(s)
- Maryam Mahmoudi
- Microbial Interactions in Plant Ecosystems, IMIT/ZMBP, Eberhard Karls University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Juliana Almario
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Katrina Lutap
- Microbial Interactions in Plant Ecosystems, IMIT/ZMBP, Eberhard Karls University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, Eberhard Karls University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Eric Kemen
- Microbial Interactions in Plant Ecosystems, IMIT/ZMBP, Eberhard Karls University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
61
|
Wang J, Zhang G, Lai H, Li Z, Shen M, Li C, Kwan P, O'Brien TJ, Wu T, Yang S, Zhang X, Zhang L. Characterizing Gut Microbiota in Older Chinese Adults with Cognitive Impairment: A Cross-Sectional Study. J Alzheimers Dis 2024; 101:761-771. [PMID: 39213074 DOI: 10.3233/jad-240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.
Collapse
Affiliation(s)
- Jing Wang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Gong Zhang
- MOE Key Laboratory of Tumour Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Lai
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Zengbin Li
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Mingwang Shen
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Patrick Kwan
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Yang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| |
Collapse
|
62
|
Chalifour BN, Trifonova DI, Holzhausen EA, Bailey MJ, Schmidt KA, Babaei M, Mokhtari P, Goran MI, Alderete TL. Characterizing alterations in the gut microbiota following postpartum weight change. mSystems 2023; 8:e0080823. [PMID: 37905810 PMCID: PMC10734492 DOI: 10.1128/msystems.00808-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Previous research has reported differences in the gut microbiome associated with varying body compositions. More specifically, within populations of mothers, the focus has been on the impact of gestational weight gain. This is the first study to examine postpartum weight change and its association with changes in the gut microbiome, similarly, it is the first to use a Latina cohort to do so. The results support the idea that weight gain may be an important factor in reducing gut microbiome network connectivity, diversity, and changing abundances of specific microbial taxa, all measures thought to impact host health. These results suggest that weight gain dynamically alters mothers' gut microbial communities in the first 6 months postpartum, with comparatively little change in mothers who lost weight; further research is needed to examine the health consequences of such changes.
Collapse
Affiliation(s)
- Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Diana I. Trifonova
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Maximilian J. Bailey
- Stanford University School of Medicine, Leland Stanford Junior University, Stanford, California, USA
| | - Kelsey A. Schmidt
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Mahsa Babaei
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Pari Mokhtari
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Michael I. Goran
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
63
|
Liu M, Zhang J, Zhou Y, Xiong S, Zhou M, Wu L, Liu Q, Chen Z, Jiang H, Yang J, Liu Y, Wang Y, Chen C, Huang L. Gut microbiota affects the estrus return of sows by regulating the metabolism of sex steroid hormones. J Anim Sci Biotechnol 2023; 14:155. [PMID: 38115159 PMCID: PMC10731813 DOI: 10.1186/s40104-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Sex hormones play important roles in the estrus return of post-weaning sows. Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota. However, the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown. RESULTS In this study, we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows. Using metagenomic sequencing data from 85 fecal samples, we identified 37 bacterial species that were significantly associated with estrus return. Normally returning sows were characterized by increased abundances of L. reuteri and P. copri and decreased abundances of B. fragilis, S. suis, and B. pseudolongum. The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome. The results were confirmed in a validation cohort. Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis. An integrated analysis of differential bacterial species, metagenome, and fecal metabolome provided evidence that normal return-associated bacterial species L. reuteri and Prevotella spp. participated in the degradation of pregnenolone, progesterone, and testosterone, thereby promoting estrogen biosynthesis. Furthermore, the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return. CONCLUSIONS An integrated analysis of differentially abundant bacterial species, metagenome, and fecal metabolome revealed the involvement of L. reuteri and Prevotella spp. in sow estrus return. These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones, suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.
Collapse
Affiliation(s)
- Min Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Zhang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunyan Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuqi Xiong
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mengqing Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Wu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhe Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Jiang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaxiang Wang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
64
|
Liu S, Hu R, Strong PJ, Saleem M, Zhou Z, Luo Z, Wu Y, He Z, Wang C. Vertical connectivity of microbiome and metabolome reveals depth-dependent variations across a deep cold-seep water column. ENVIRONMENTAL RESEARCH 2023; 239:117310. [PMID: 37805181 DOI: 10.1016/j.envres.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Deciphering the vertical connectivity of oceanic microbiome and metabolome is crucial for understanding the carbon sequestration and achieving the carbon neutrality. However, we lack a systematic view of the interplay among particle transport, microbial community, and metabolic trait across depths. Through integrating the biogeochemical, microbial, and metabolic characteristics of a deep cold-seep water column (∼1989 m), we find the altered connectivity of microbial community and dissolved organic matter (DOM) across depths. Both the microbial communities (bacteria and protists) and DOM show a clear compositional connectivity from surface to the depth of 1000 m, highlighting the controls of sinking particle over microbial connectivity from the epipelagic to mesopelagic zone. However, due to the biological migration and ocean mixing, the fecal-associated bacteria and protistan consumers unexpectedly emerge and the degradation index of DOM substantially alters around 1000-1200 m. Collectively, we unveil the significance of multi-faceted particle dispersion, which supports the connectivity and variability of deep ocean microbial communities.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongjie Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
65
|
Liu S, Hu R, Peng N, Zhou Z, Chen R, He Z, Wang C. Phylogenetic and ecophysiological novelty of subsurface mercury methylators in mangrove sediments. THE ISME JOURNAL 2023; 17:2313-2325. [PMID: 37880540 PMCID: PMC10689504 DOI: 10.1038/s41396-023-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Mangrove sediment is a crucial component in the global mercury (Hg) cycling and acts as a hotspot for methylmercury (MeHg) production. Early evidence has documented the ubiquity of well-studied Hg methylators in mangrove superficial sediments; however, their diversity and metabolic adaptation in the more anoxic and highly reduced subsurface sediments are lacking. Through MeHg biogeochemical assay and metagenomic sequencing, we found that mangrove subsurface sediments (20-100 cm) showed a less hgcA gene abundance but higher diversity of Hg methylators than superficial sediments (0-20 cm). Regional-scale investigation of mangrove subsurface sediments spanning over 1500 km demonstrated a prevalence and family-level novelty of Hg-methylating microbial lineages (i.e., those affiliated to Anaerolineae, Phycisphaerae, and Desulfobacterales). We proposed the candidate phylum Zixibacteria lineage with sulfate-reducing capacity as a currently understudied Hg methylator across anoxic environments. Unlike other Hg methylators, the Zixibacteria lineage does not use the Wood-Ljungdahl pathway but has unique capabilities of performing methionine synthesis to donate methyl groups. The absence of cobalamin biosynthesis pathway suggests that this Hg-methylating lineage may depend on its syntrophic partners (i.e., Syntrophobacterales members) for energy in subsurface sediments. Our results expand the diversity of subsurface Hg methylators and uncover their unique ecophysiological adaptations in mangrove sediments.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Nenglong Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruihan Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
66
|
Wei XY, Jia PP, Hu H, Liu L, Li TY, Li YZ, Pei DS. Multi-omics reveal mechanisms underlying chronic kidney disease of unknown etiology (CKDu) pathogenesis using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122524. [PMID: 37683759 DOI: 10.1016/j.envpol.2023.122524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.
Collapse
Affiliation(s)
- Xing-Yi Wei
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Hu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
67
|
Fischer MS, Patel NJ, de Lorimier PJ, Traxler MF. Prescribed fire selects for a pyrophilous soil sub-community in a northern California mixed conifer forest. Environ Microbiol 2023; 25:2498-2515. [PMID: 37553729 DOI: 10.1111/1462-2920.16475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Prescribed fire is a critical strategy for mitigating the effects of catastrophic wildfires. While the above-ground response to fire has been well-documented, fewer studies have addressed the effect of prescribed fire on soil microorganisms. To understand how soil microbial communities respond to prescribed fire, we sampled four plots at a high temporal resolution (two burned, two controls), for 17 months, in a mixed conifer forest in northern California, USA. Using amplicon sequencing, we found that prescribed fire significantly altered both fungal and bacterial community structure. We found that most differentially abundant fungal taxa had a positive fold-change, while differentially abundant bacterial taxa generally had a negative fold-change. We tested the null hypothesis that these communities assembled due to neutral processes (i.e., drift and/or dispersal), finding that >90% of taxa fit this neutral prediction. However, a dynamic sub-community composed of burn-associated indicator taxa that were positively differentially abundant was enriched for non-neutral amplicon sequence variants, suggesting assembly via deterministic processes. In synthesizing these results, we identified 15 pyrophilous taxa with a significant and positive response to prescribed burns. Together, these results lay the foundation for building a process-driven understanding of microbial community assembly in the context of the classical disturbance regime of fire.
Collapse
Affiliation(s)
- Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Neem J Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Phillip J de Lorimier
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
68
|
Lebeer S, Ahannach S, Gehrmann T, Wittouck S, Eilers T, Oerlemans E, Condori S, Dillen J, Spacova I, Vander Donck L, Masquillier C, Allonsius CN, Bron PA, Van Beeck W, De Backer C, Donders G, Verhoeven V. A citizen-science-enabled catalogue of the vaginal microbiome and associated factors. Nat Microbiol 2023; 8:2183-2195. [PMID: 37884815 PMCID: PMC10627828 DOI: 10.1038/s41564-023-01500-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Understanding the composition and function of the vaginal microbiome is crucial for reproductive and overall health. Here we established the Isala citizen-science project to analyse the vaginal microbiomes of 3,345 women in Belgium (18-98 years) through self-sampling, 16S amplicon sequencing and extensive questionnaires. The overall vaginal microbiome composition was strongly tied to age, childbirth and menstrual cycle phase. Lactobacillus species dominated 78% of the vaginal samples. Specific bacterial taxa also showed to co-occur in modules based on network correlation analysis. Notably, the module containing Lactobacillus crispatus, Lactobacillus jensenii and Limosilactobacillus taxa was positively linked to oestrogen levels and contraceptive use and negatively linked to childbirth and breastfeeding. Other modules, named after abundant taxa (Gardnerella, Prevotella and Bacteroides), correlated with multiple partners, menopause, menstrual hygiene and contraceptive use. With this resource-rich vaginal microbiome map and associated health, life-course, lifestyle and dietary factors, we provide unique data and insights for follow-up clinical and mechanistic research.
Collapse
Affiliation(s)
- Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium.
| | - Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Tom Eilers
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Eline Oerlemans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Sandra Condori
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Jelle Dillen
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Leonore Vander Donck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Caroline Masquillier
- Department of Sociology, Center for Population, Family and Health, University of Antwerp, Antwerp, Belgium
| | - Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Peter A Bron
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | | | - Gilbert Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
- Regional Hospital Heilig Hart, Tienen, Belgium
- Femicare Clinical Research for Women, Tienen, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
69
|
Epp Schmidt D, Maul JE, Yarwood SA. Quantitative Amplicon Sequencing Is Necessary to Identify Differential Taxa and Correlated Taxa Where Population Sizes Differ. MICROBIAL ECOLOGY 2023; 86:2790-2801. [PMID: 37563275 DOI: 10.1007/s00248-023-02273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
High-throughput, multiplexed-amplicon sequencing has become a core tool for understanding environmental microbiomes. As researchers have widely adopted sequencing, many open-source analysis pipelines have been developed to compare microbiomes using compositional analysis frameworks. However, there is increasing evidence that compositional analyses do not provide the information necessary to accurately interpret many community assembly processes. This is especially true when there are large gradients that drive distinct community assembly processes. Recently, sequencing has been combined with Q-PCR (among other sources of total quantitation) to generate "Quantitative Sequencing" (QSeq) data. QSeq more accurately estimates the true abundance of taxa, is a more reliable basis for inferring correlation, and, ultimately, can be more reliably related to environmental data to infer community assembly processes. In this paper, we use a combination of published data sets, synthesis, and empirical modeling to offer guidance for which contexts QSeq is advantageous. As little as 5% variation in total abundance among experimental groups resulted in more accurate inference by QSeq than compositional methods. Compositional methods for differential abundance and correlation unreliably detected patterns in abundance and covariance when there was greater than 20% variation in total abundance among experimental groups. Whether QSeq performs better for beta diversity analysis depends on the question being asked, and the analytic strategy (e.g., what distance metric is being used); for many questions and methods, QSeq and compositional analysis are equivalent for beta diversity analysis. QSeq is especially useful for taxon-specific analysis; QSeq transformation and analysis should be the default for answering taxon-specific questions of amplicon sequence data. Publicly available bioinformatics pipelines should incorporate support for QSeq transformation and analysis.
Collapse
Affiliation(s)
| | - Jude E Maul
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | | |
Collapse
|
70
|
Johansson MHK, Aarestrup FM, Petersen TN. Importance of mobile genetic elements for dissemination of antimicrobial resistance in metagenomic sewage samples across the world. PLoS One 2023; 18:e0293169. [PMID: 37856515 PMCID: PMC10586675 DOI: 10.1371/journal.pone.0293169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
We are facing an ever-growing threat from increasing antimicrobial resistance (AMR) in bacteria. To mitigate this, we need a better understanding of the global spread of antimicrobial resistance genes (ARGs). ARGs are often spread among bacteria by horizontal gene transfer facilitated by mobile genetic elements (MGE). Here we use a dataset consisting of 677 metagenomic sequenced sewage samples from 97 countries or regions to study how MGEs are geographically distributed and how they disseminate ARGs worldwide. The ARGs, MGEs, and bacterial abundance were calculated by reference-based read mapping. We found systematic differences in the abundance of MGEs and ARGs, where some elements were prevalent on all continents while others had higher abundance in separate geographic areas. Different MGEs tended to be localized to temperate or tropical climate zones, while different ARGs tended to separate according to continents. This suggests that the climate is an important factor influencing the local flora of MGEs. MGEs were also found to be more geographically confined than ARGs. We identified several integrated MGEs whose abundance correlated with the abundance of ARGs and bacterial genera, indicating the ability to mobilize and disseminate these genes. Some MGEs seemed to be more able to mobilize ARGs and spread to more bacterial species. The host ranges of MGEs seemed to differ between elements, where most were associated with bacteria of the same family. We believe that our method could be used to investigate the population dynamics of MGEs in complex bacterial populations.
Collapse
Affiliation(s)
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas N. Petersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
71
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. The Bacterial Microbiome of the Coral Skeleton Algal Symbiont Ostreobium Shows Preferential Associations and Signatures of Phylosymbiosis. MICROBIAL ECOLOGY 2023; 86:2032-2046. [PMID: 37002423 PMCID: PMC10497448 DOI: 10.1007/s00248-023-02209-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Ostreobium, the major algal symbiont of the coral skeleton, remains understudied despite extensive research on the coral holobiont. The enclosed nature of the coral skeleton might reduce the dispersal and exposure of residing bacteria to the outside environment, allowing stronger associations with the algae. Here, we describe the bacterial communities associated with cultured strains of 5 Ostreobium clades using 16S rRNA sequencing. We shed light on their likely physical associations by comparative analysis of three datasets generated to capture (1) all algae associated bacteria, (2) enriched tightly attached and potential intracellular bacteria, and (3) bacteria in spent media. Our data showed that while some bacteria may be loosely attached, some tend to be tightly attached or potentially intracellular. Although colonised with diverse bacteria, Ostreobium preferentially associated with 34 bacterial taxa revealing a core microbiome. These bacteria include known nitrogen cyclers, polysaccharide degraders, sulphate reducers, antimicrobial compound producers, methylotrophs, and vitamin B12 producers. By analysing co-occurrence networks of 16S rRNA datasets from Porites lutea and Paragoniastrea australensis skeleton samples, we show that the Ostreobium-bacterial associations present in the cultures are likely to also occur in their natural environment. Finally, our data show significant congruence between the Ostreobium phylogeny and the community composition of its tightly associated microbiome, largely due to the phylosymbiotic signal originating from the core bacterial taxa. This study offers insight into the Ostreobium microbiome and reveals preferential associations that warrant further testing from functional and evolutionary perspectives.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Tasmania, 7000, Victoria, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
72
|
Zhao Y, Chen L, Yao S, Chen L, Huang J, Chen S, Yu Z. Genome-centric investigation of the potential succession pattern in gut microbiota and altered functions under high-protein diet. Curr Res Food Sci 2023; 7:100600. [PMID: 37840698 PMCID: PMC10569982 DOI: 10.1016/j.crfs.2023.100600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Excessive intake of protein has been considered as a factor leading to intestinal microecological disorder, but why and how intestinal microbes change under the high-protein diet (HPD) have yet to be fully elucidated. Here, we performed 16S rRNA gene amplicon sequencing and metagenomic sequencing on contents of cecum, colon and feces from two groups of mice with standard diet (SD) and HPD. And then the microbial alteration of composition and function were deeply analyzed by using several statistical models and bioinformatic methods. Among the three niches, the microbes in the colon are observed to show the most significant change with lower alpha-diversity and higher beta-diversity after HPD. In addition, this alteration of microbial structure may be related to the replacement process and co-occurring community. Most species are also enriched or impoverished in the colon during this process. After analyzing the functional genes related to protein and carbohydrate hydrolysis in different niches, we found that the carbon source provided by poor carbohydrates compared with the rich protein may be the potential factor driving the enrichment of mucin degraders and desulphaters in the colon under HPD. Therefore, our study provided a new insight to understand the underlying mechanism of HPD affecting intestinal health from the perspective of microbial functional ecology.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lulu Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuijiao Chen
- Department of Gastroenterology, Xiangya Hospital Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
73
|
Bahadori M, Chen C, Lewis S, Wang J, Shen J, Hou E, Rashti MR, Huang Q, Bainbridge Z, Stevens T. The origin of suspended particulate matter in the Great Barrier Reef. Nat Commun 2023; 14:5629. [PMID: 37699913 PMCID: PMC10497579 DOI: 10.1038/s41467-023-41183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
Collapse
Affiliation(s)
- Mohammad Bahadori
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jupei Shen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, PR China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mehran Rezaei Rashti
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Tom Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
74
|
Hernandez DJ, Kiesewetter KN, Almeida BK, Revillini D, Afkhami ME. Multidimensional specialization and generalization are pervasive in soil prokaryotes. Nat Ecol Evol 2023; 7:1408-1418. [PMID: 37550510 DOI: 10.1038/s41559-023-02149-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Habitat specialization underpins biological processes from species distributions to speciation. However, organisms are often described as specialists or generalists based on a single niche axis, despite facing complex, multidimensional environments. Here, we analysed 236 environmental soil microbiomes across the United States and demonstrate that 90% of >1,200 prokaryotes followed one of two trajectories: specialization on all niche axes (multidimensional specialization) or generalization on all axes (multidimensional generalization). We then documented that this pervasive multidimensional specialization/generalization had many ecological and evolutionary consequences. First, multidimensional specialization and generalization are highly conserved with very few transitions between these two trajectories. Second, multidimensional generalists dominated communities because they were 73 times more abundant than specialists. Lastly, multidimensional specialists played important roles in community structure with ~220% more connections in microbiome networks. These results indicate that multidimensional generalization and specialization are evolutionarily stable with multidimensional generalists supporting larger populations and multidimensional specialists playing important roles within communities, probably stemming from their overrepresentation among pollutant detoxifiers and nutrient cyclers. Taken together, we demonstrate that the vast majority of soil prokaryotes are restricted to one of two multidimensional niche trajectories, multidimensional specialization or multidimensional generalization, which then has far-reaching consequences for evolutionary transitions, microbial dominance and community roles.
Collapse
Affiliation(s)
| | | | | | - Daniel Revillini
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | | |
Collapse
|
75
|
Kishore D, Birzu G, Hu Z, DeLisi C, Korolev KS, Segrè D. Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation. mSystems 2023; 8:e0096122. [PMID: 37338270 PMCID: PMC10469762 DOI: 10.1128/msystems.00961-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
Microbes commonly organize into communities consisting of hundreds of species involved in complex interactions with each other. 16S ribosomal RNA (16S rRNA) amplicon profiling provides snapshots that reveal the phylogenies and abundance profiles of these microbial communities. These snapshots, when collected from multiple samples, can reveal the co-occurrence of microbes, providing a glimpse into the network of associations in these communities. However, the inference of networks from 16S data involves numerous steps, each requiring specific tools and parameter choices. Moreover, the extent to which these steps affect the final network is still unclear. In this study, we perform a meticulous analysis of each step of a pipeline that can convert 16S sequencing data into a network of microbial associations. Through this process, we map how different choices of algorithms and parameters affect the co-occurrence network and identify the steps that contribute substantially to the variance. We further determine the tools and parameters that generate robust co-occurrence networks and develop consensus network algorithms based on benchmarks with mock and synthetic data sets. The Microbial Co-occurrence Network Explorer, or MiCoNE (available at https://github.com/segrelab/MiCoNE) follows these default tools and parameters and can help explore the outcome of these combinations of choices on the inferred networks. We envisage that this pipeline could be used for integrating multiple data sets and generating comparative analyses and consensus networks that can guide our understanding of microbial community assembly in different biomes. IMPORTANCE Mapping the interrelationships between different species in a microbial community is important for understanding and controlling their structure and function. The surge in the high-throughput sequencing of microbial communities has led to the creation of thousands of data sets containing information about microbial abundances. These abundances can be transformed into co-occurrence networks, providing a glimpse into the associations within microbiomes. However, processing these data sets to obtain co-occurrence information relies on several complex steps, each of which involves numerous choices of tools and corresponding parameters. These multiple options pose questions about the robustness and uniqueness of the inferred networks. In this study, we address this workflow and provide a systematic analysis of how these choices of tools affect the final network and guidelines on appropriate tool selection for a particular data set. We also develop a consensus network algorithm that helps generate more robust co-occurrence networks based on benchmark synthetic data sets.
Collapse
Affiliation(s)
- Dileep Kishore
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Gabriel Birzu
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Applied Physics, Stanford University, Stanford, California, USA
| | - Zhenjun Hu
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Charles DeLisi
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Kirill S. Korolev
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
76
|
Demarquest G, Lajoie G. Bacterial endophytes of sugar maple leaves vary more idiosyncratically than epiphytes across a large geographic area. FEMS Microbiol Ecol 2023; 99:fiad079. [PMID: 37442613 DOI: 10.1093/femsec/fiad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Bacteria from the leaf surface and the leaf tissue have been attributed with several beneficial properties for their plant host. Though physically connected, the microbial ecology of these compartments has mostly been studied separately such that we lack an integrated understanding of the processes shaping their assembly. We sampled leaf epiphytes and endophytes from the same individuals of sugar maple across the northern portion of its range to evaluate if their community composition was driven by similar processes within and across populations differing in plant traits and overall abiotic environment. Leaf compartment explained most of the variation in community diversity and composition across samples. Leaf epiphytic communities were driven more by host and site characteristics than endophytic communities, whose community composition was more idiosyncratic across samples. Our results suggest a greater importance of priority effects and opportunistic colonization in driving community assembly of leaf endophytes. Understanding the comparative assembly of bacterial communities at the surface and inside plant leaves may be particularly useful for leveraging their respective potential for improving the health of plants in natural and anthropized ecosystems.
Collapse
Affiliation(s)
- Garance Demarquest
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E, H1X 2B2 Montréal, Canada
- Université de Rennes, Agro-Campus Ouest, 65 Rue de Saint-Brieuc, 35042 Rennes, France
| | - Geneviève Lajoie
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 rue Sherbrooke E, H1X 2B2 Montréal, Canada
- Jardin Botanique de Montréal, 4101 rue Sherbrooke E, H1X 2B2 Montréal, Canada
| |
Collapse
|
77
|
Hessler T, Huddy RJ, Sachdeva R, Lei S, Harrison STL, Diamond S, Banfield JF. Vitamin interdependencies predicted by metagenomics-informed network analyses and validated in microbial community microcosms. Nat Commun 2023; 14:4768. [PMID: 37553333 PMCID: PMC10409787 DOI: 10.1038/s41467-023-40360-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Metagenomic or metabarcoding data are often used to predict microbial interactions in complex communities, but these predictions are rarely explored experimentally. Here, we use an organism abundance correlation network to investigate factors that control community organization in mine tailings-derived laboratory microbial consortia grown under dozens of conditions. The network is overlaid with metagenomic information about functional capacities to generate testable hypotheses. We develop a metric to predict the importance of each node within its local network environments relative to correlated vitamin auxotrophs, and predict that a Variovorax species is a hub as an important source of thiamine. Quantification of thiamine during the growth of Variovorax in minimal media show high levels of thiamine production, up to 100 mg/L. A few of the correlated thiamine auxotrophs are predicted to produce pantothenate, which we show is required for growth of Variovorax, supporting that a subset of vitamin-dependent interactions are mutualistic. A Cryptococcus yeast produces the B-vitamin pantothenate, and co-culturing with Variovorax leads to a 90-130-fold fitness increase for both organisms. Our study demonstrates the predictive power of metagenome-informed, microbial consortia-based network analyses for identifying microbial interactions that underpin the structure and functioning of microbial communities.
Collapse
Affiliation(s)
- Tomas Hessler
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert J Huddy
- Reasearch Office, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rohan Sachdeva
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Shufei Lei
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Susan T L Harrison
- The Center for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
- The Future Water Institute, University of Cape Town, Cape Town, South Africa
- Department of Chemical Engineering, University of Cape Town, Cape Town, South Africa
| | - Spencer Diamond
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- The Innovative Genomics Institute at the University of California, Berkeley, CA, USA.
- The Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- The Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
78
|
Mu Y, Hu A, Kan H, Li Y, He Y, Fan W, Liu H, Li Q, Zheng Y. Preterm Prelabor Rupture of Membranes Linked to Vaginal Bacteriome of Pregnant Females in the Early Second Trimester: a Case-Cohort Design. Reprod Sci 2023; 30:2324-2335. [PMID: 36725814 PMCID: PMC9891760 DOI: 10.1007/s43032-022-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023]
Abstract
Preterm prelabor rupture of membranes (PPROM) is a major cause of spontaneous preterm birth (sPTB), one of the greatest challenges facing obstetrics with complicated pathogenesis. This case-cohort study investigated the association between vaginal bacteriome of singleton pregnant females in the early second trimester and PPROM. The study included 35,255 and 180 pregnant females with PPROM as cases and term-birth without prelabor rupture of membranes (TWPROM) and term prelabor rupture of membranes (TPROM) pregnant females as controls, respectively. Using 16S rRNA sequencing, the vaginal microbiome traits were analyzed. Females with PPROM had higher alpha and beta diversity (P < 0.05) than TWPROM and TPROM. The presence of L. mulieris was associated with a decreased risk of PPROM (adjusted odds ratio [aOR] = 0.35; 95% confidence interval [CI]: 0.17-0.72) compared with TWPROM. Meanwhile, the presence of Megasphaera genus (aOR = 2.27; 95% CI: 1.09-4.70), Faecalibacterium genus (aOR = 3.29; 95% CI: 1.52-7.13), Bifidobacterium genus (aOR = 3.26; 95% CI: 1.47-7.24), Xanthomonadales genus (aOR = 2.76; 95% CI: 1.27-6.01), Gammaproteobacteria class (aOR = 2.36; 95% CI: 1.09-5.14), and Alphaproteobacteria class (aOR = 2.45; 95% CI: 1.14-5.26) was associated with an increased risk of PPROM compared with TWPROM. Our results indicated that the risk of PPROM can decrease with vaginal L. mulieris but increase with high alpha or beta diversity, and several vaginal bacteria in pregnant females may be involved in the occurrence of PPROM.
Collapse
Affiliation(s)
- Yutong Mu
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Anqun Hu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Hui Kan
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yijie Li
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yining He
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
- Biostatistics Office, Clinical Research Unit, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Wei Fan
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Haiyan Liu
- Biostatistics Office, Clinical Research Unit, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
- Department of Blood Transfusion, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Qing Li
- Department of Obstetrics and Gynecology, Anqing Municipal Hospital, Anqing, 246003, China.
| | - Yingjie Zheng
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
79
|
Xue C, Li L, Guo C, Gao Y, Yang C, Deng X, Li X, Tai P, Sun L. Understanding the role of graphene oxide in affecting PAHs biodegradation by microorganisms: An integrated analysis using 16SrRNA, metatranscriptomic, and metabolomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131811. [PMID: 37307733 DOI: 10.1016/j.jhazmat.2023.131811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO)-promoted microbial degradation technology is considered an important strategy to eliminate polycyclic aromatic hydrocarbons (PAHs) in the environment; however, the mechanism by which GO affects microbial degradation of PAHs has not been fully studied. Thus, this study aimed to analyze the effect of GO-microbial interaction on PAHs degradation at the microbial community structure, community gene expression, and metabolic levels using multi-omics combined technology. We treated PAHs-contaminated soil samples with different concentrations of GO and analyzed the soil samples for microbial diversity after 14 and 28 days. After a short exposure, GO reduced the diversity of soil microbial community but increased potential degrading microbial abundance, promoting PAHs biodegradation. This promotion effect was further influenced by the GO concentration. In a short period of time, GO upregulated the expression of genes involved in microbial movement (flagellar assembly), bacterial chemotaxis, two-component system, and phosphotransferase system in the soil microbial community and increased the probability of microbial contact with PAHs. Biosynthesis of amino acids and carbon metabolism of microorganisms were accelerated, thereby increasing the degradation of PAHs. With the extension of time, the degradation of PAHs stagnated, which may be due to the weakened stimulation of GO on microorganisms. The results showed that screening specific degrading microorganisms, increasing the contact area between microorganisms and PAHs, and prolonging the stimulation of GO on microorganisms were important means to improve the biodegradation efficiency of PAHs in soil. This study elucidates how GO affects microbial PAHs degradation and provides important insights for the application of GO-assisted microbial degradation technology.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmei Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yingmei Gao
- Shenyang Agricultural University, Shenyang 110016, China
| | - Caixia Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Deng
- Yunnan Institute of Eco-environmental Science, Kunming, Yunnan 650034, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China.
| |
Collapse
|
80
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Park T, Lee Y, Lee SS, Lee SS. Oral administration of Pinus koraiensis cone essential oil reduces rumen methane emission by altering the rumen microbial composition and functions in Korean native goat ( Capra hircus coreanae). Front Vet Sci 2023; 10:1168237. [PMID: 37275608 PMCID: PMC10234127 DOI: 10.3389/fvets.2023.1168237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
This study aimed to investigate Pinus koraiensis cone essential oil (PEO) as a methane (CH4) inhibitor and determine its impact on the taxonomic and functional characteristics of the rumen microbiota in goats. A total of 10 growing Korean native goats (Capra hircus coreanae, 29.9 ± 1.58 kg, male) were assigned to different dietary treatments: control (CON; basal diet without additive) and PEO (basal diet +1 g/d of PEO) by a 2 × 2 crossover design. Methane measurements were conducted every 4 consecutive days for 17-20 days using a laser CH4 detector. Samples of rumen fluid and feces were collected during each experimental period to evaluate the biological effects and dry matter (DM) digestibility after PEO oral administration. The rumen microbiota was analyzed via 16S rRNA gene amplicon sequencing. The PEO oral administration resulted in reduced CH4 emission (eructation CH4/body weight0.75, p = 0.079) without affecting DM intake; however, it lowered the total volatile fatty acids (p = 0.041), molar proportion of propionate (p = 0.075), and ammonia nitrogen (p = 0.087) in the rumen. Blood metabolites (i.e., albumin, alanine transaminase/serum glutamic pyruvate transaminase, creatinine, and triglyceride) were significantly affected (p < 0.05) by PEO oral administration. The absolute fungal abundance (p = 0.009) was reduced by PEO oral administration, whereas ciliate protozoa, total bacteria, and methanogen abundance were not affected. The composition of rumen prokaryotic microbiota was altered by PEO oral administration with lower evenness (p = 0.054) observed for the PEO group than the CON group. Moreover, PICRUSt2 analysis revealed that the metabolic pathways of prokaryotic bacteria, such as pyruvate metabolism, were enriched in the PEO group. We also identified the Rikenellaceae RC9 gut group as the taxa potentially contributing to the enriched KEGG modules for histidine biosynthesis and pyruvate oxidation in the rumen of the PEO group using the FishTaco analysis. The entire co-occurrence networks showed that more nodes and edges were detected in the PEO group. Overall, these findings provide an understanding of how PEO oral administration affects CH4 emission and rumen prokaryotic microbiota composition and function. This study may help develop potential manipulation strategies to find new essential oils to mitigate enteric CH4 emissions from ruminants.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
81
|
Yousefi B, Melograna F, Galazzo G, van Best N, Mommers M, Penders J, Schwikowski B, Van Steen K. Capturing the dynamics of microbial interactions through individual-specific networks. Front Microbiol 2023; 14:1170391. [PMID: 37256048 PMCID: PMC10225591 DOI: 10.3389/fmicb.2023.1170391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023] Open
Abstract
Longitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions. However, the field needs novel views on handling microbial interactions in temporal analyses. This study proposes a novel data analysis framework, MNDA, that combines representation learning and individual-specific microbial co-occurrence networks to uncover taxon neighborhood dynamics. As a use case, we consider a cohort of newborns with microbiomes available at 6 and 9 months after birth, and extraneous data available on the mode of delivery and diet changes between the considered time points. Our results show that prediction models for these extraneous outcomes based on an MNDA measure of local neighborhood dynamics for each taxon outperform traditional prediction models solely based on individual-specific microbial abundances. Furthermore, our results show that unsupervised similarity analysis of newborns in the study, again using the notion of a taxon's dynamic neighborhood derived from time-matched individual-specific microbial networks, can reveal different subpopulations of individuals, compared to standard microbiome-based clustering, with potential relevance to clinical practice. This study highlights the complementarity of microbial interactions and abundances in downstream analyses and opens new avenues to personalized prediction or stratified medicine with temporal microbiome data.
Collapse
Affiliation(s)
- Behnam Yousefi
- Computational Systems Biomedicine Lab, Institut Pasteur, University Paris City, Paris, France
- École Doctorale Complexite du vivant, Sorbonne University, Paris, France
- BIO3—Laboratory for Systems Medicine, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Federico Melograna
- BIO3—Laboratory for Systems Medicine, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gianluca Galazzo
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Niels van Best
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Institute of Medical Microbiology, Rhine-Westphalia Technical University of Aachen, RWTH University, Aachen, Germany
| | - Monique Mommers
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, Netherlands
| | - Benno Schwikowski
- Computational Systems Biomedicine Lab, Institut Pasteur, University Paris City, Paris, France
| | - Kristel Van Steen
- BIO3—Laboratory for Systems Medicine, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
- BIO3—Laboratory for Systems Genetics, GIGA-R Medical Genomics, University of Lièvzge, Liège, Belgium
| |
Collapse
|
82
|
Wen L, Zhang T, Chen F, Hu L, Dou C, Ding X, Altamirano A, Wei G, Yan Z. Modified Dingchuan Decoction treats cough-variant asthma by suppressing lung inflammation and regulating the lung microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116171. [PMID: 36646156 DOI: 10.1016/j.jep.2023.116171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Dingchuan Decoction (MDD) is a Chinese medicine formula containing 11 materials with cough suppression, asthma relief, and anti-inflammatory effects. AIM OF THE STUDY This study aimed to evaluate the therapeutic effect of MDD on cough-variant asthma (CVA) and to investigate its mechanism of action. MATERIALS AND METHODS The chemical constituents of MDD were analyzed by ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS). A guinea pig CVA model was established using an intramuscular injection of ovalbumin (OVA), combined with an intraperitoneal injection of aluminum hydroxide [Al(OH)3] and nebulized OVA. At the beginning of day 18, the low, medium, and high MDD groups were gavaged with 7.23 g/kg, 14.46 g/kg, and 28.92 g/kg of MDD, respectively, and the positive group was gavaged with 5 mg/kg of prednisone acetate combined with 1 mg/kg of montelukast sodium; the normal and model groups were given an equal volume of distilled water, once a day for 21 days. The cough was induced by 10-3 mol/L capsaicin solution 1 h after the last administration, and the number of coughs and the latency of coughs were evaluated. Hematoxylin and eosin staining (H&E) was used to observe pathological changes in the lungs and airways. The concentration of inflammatory factors in bronchoalveolar lavage fluid (BALF) was measured by enzyme-linked immunosorbent assay (ELISA). We analyzed the lung microbiota using 16 S ribosomal DNA (16 S rDNA) high-throughput sequencing. RESULTS The 38 chemical components were found in MDD, and MDD reduced the number of coughs in guinea pigs with CVA, prolonged cough latency, improved pathological damage to the lungs and airways, regulated inflammatory factor levels in BALF, and modulated the lung microbiota. CONCLUSIONS This study demonstrated that treating CVA with MDD may be related to inhibiting lung inflammation and regulating lung microbiota.
Collapse
Affiliation(s)
- Lingmiao Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Tinglan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Fangfang Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lin Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Chongyang Dou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xian Ding
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Alvin Altamirano
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
83
|
Kaur J, Harder CB, Sharma J. Congeneric temperate orchids recruit similar-yet differentially abundant-endophytic bacterial communities that are uncoupled from soil, but linked to host phenology and population size. AMERICAN JOURNAL OF BOTANY 2023; 110:e16168. [PMID: 37052191 DOI: 10.1002/ajb2.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Besides the beneficial plant-fungus symbiosis in mycorrhizal plants, bacteria also enhance plant fitness via tripartite interactions. While bacterial associations are presumably just as important for the obligate mycorrhizal family Orchidaceae, little is known about orchid associating bacteria (OAB). METHODS We examined the OAB communities of two, congeneric, terrestrial orchids, Platanthera cooperi and Platanthera praeclara, which represent widely disparate North American ecosystems. We tested whether they recruit distinct OAB communities, and whether variability in OAB communities can be linked to phenology, population size, or habitat soil. Genomic DNAs from roots of seedling, vegetative, and reproductive plants and from soil were subjected to Illumina sequencing of V4 and V5 regions of the 16S rRNA gene. RESULTS We obtained 809 OAB Zero-radius Operational Taxonomic Units (ZOTUs). Despite an overlap of 209 ZOTUs that accounted for >75% relative abundances of their respective OAB communities, the overall community structures of the two orchids were distinct. Within each orchid, distinctions were detected in the OAB communities of large and small populations and the three phenological stages. The OAB ZOTUs were either absent or present with low abundances in soil associated with both orchids. CONCLUSIONS The two orchids exhibited preferential recruitment of known growth-promoting OAB communities from soil. Their OAB communities also showed considerable overlap despite the large environmental and geographical separation of the two host taxa. Our results lend further support to the emerging evidence that not only the fungi, but root-associated bacteria also have functional importance for orchid ecology.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Christoffer B Harder
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
- Department of Biology, MEMEG, Lund University, Ekologihuset, Sölvegatan, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
84
|
Yue H, Yue W, Jiao S, Kim H, Lee YH, Wei G, Song W, Shu D. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. MICROBIOME 2023; 11:70. [PMID: 37004105 PMCID: PMC10064753 DOI: 10.1186/s40168-023-01513-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/07/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The rhizosphere microbiome, which is shaped by host genotypes, root exudates, and plant domestication, is crucial for sustaining agricultural plant growth. Despite its importance, how plant domestication builds up specific rhizosphere microbiomes and metabolic functions, as well as the importance of these affected rhizobiomes and relevant root exudates in maintaining plant growth, is not well understood. Here, we firstly investigated the rhizosphere bacterial and fungal communities of domestication and wild accessions of tetraploid wheat using amplicon sequencing (16S and ITS) after 9 years of domestication process at the main production sites in China. We then explored the ecological roles of root exudation in shaping rhizosphere microbiome functions by integrating metagenomics and metabolic genomics approaches. Furthermore, we established evident linkages between root morphology traits and keystone taxa based on microbial culture and plant inoculation experiments. RESULTS Our results suggested that plant rhizosphere microbiomes were co-shaped by both host genotypes and domestication status. The wheat genomes contributed more variation in the microbial diversity and composition of rhizosphere bacterial communities than fungal communities, whereas plant domestication status exerted much stronger influences on the fungal communities. In terms of microbial interkingdom association networks, domestication destabilized microbial network and depleted the abundance of keystone fungal taxa. Moreover, we found that domestication shifted the rhizosphere microbiome from slow growing and fungi dominated to fast growing and bacteria dominated, thereby resulting in a shift from fungi-dominated membership with enrichment of carbon fixation genes to bacteria-dominated membership with enrichment of carbon degradation genes. Metagenomics analyses further indicated that wild cultivars of wheat possess higher microbial function diversity than domesticated cultivars. Notably, we found that wild cultivar is able to harness rhizosphere microorganism carrying N transformation (i.e., nitrification, denitrification) and P mineralization pathway, whereas rhizobiomes carrying inorganic N fixation, organic N ammonification, and inorganic P solubilization genes are recruited by the releasing of root exudates from domesticated wheat. More importantly, our metabolite-wide association study indicated that the contrasting functional roles of root exudates and the harnessed keystone microbial taxa with different nutrient acquisition strategies jointly determined the aboveground plant phenotypes. Furthermore, we observed that although domesticated and wild wheats recruited distinct microbial taxa and relevant functions, domestication-induced recruitment of keystone taxa led to a consistent growth regulation of root regardless of wheat domestication status. CONCLUSIONS Our results indicate that plant domestication profoundly influences rhizosphere microbiome assembly and metabolic functions and provide evidence that host plants are able to harness a differentiated ecological role of root-associated keystone microbiomes through the release of root exudates to sustain belowground multi-nutrient cycles and plant growth. These findings provide valuable insights into the mechanisms underlying plant-microbiome interactions and how to harness the rhizosphere microbiome for crop improvement in sustainable agriculture. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Wenjie Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Shuo Jiao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Gehong Wei
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Duntao Shu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
85
|
Aldirawi H, Morales FG. Univariate and Multivariate Statistical Analysis of Microbiome Data: An Overview. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Microbiome data is high dimensional, sparse, compositional, and over-dispersed. Therefore, modeling microbiome data is very challenging and it is an active research area. Microbiome analysis has become a progressing area of research as microorganisms constitute a large part of life. Since many methods of microbiome data analysis have been presented, this review summarizes the challenges, methods used, and the advantages and disadvantages of those methods, to serve as an updated guide for those in the field. This review also compared different methods of analysis to progress the development of newer methods.
Collapse
|
86
|
Zhao Y, Yi J, Xiang J, Jia W, Chen A, Chen L, Zheng L, Zhou W, Wu M, Yu Z, Tang J. Exploration of lung mycobiome in the patients with non-small-cell lung cancer. BMC Microbiol 2023; 23:81. [PMID: 36966280 PMCID: PMC10039514 DOI: 10.1186/s12866-023-02790-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/09/2023] [Indexed: 03/27/2023] Open
Abstract
As the Human Microbiome Project (HMP) progresses, the relationship between microbes and human health has been receiving increasing attention. A growing number of reports support the correlation between cancer and microbes. However, most studies have focused on bacteria, rather than fungal communities. In this study, we studied the alteration in lung mycobiome in patients with non-small-cell lung cancer (NSCLC) using metagenomic sequencing and qPCR. The higher fungal diversity and more complex network were observed in the patients with NSCLC. In addition, Alternaria arborescens was found as the most relevant fungus to NSCLC, and the enrichment of it in cancerous tissue was also detected. This study proposes that the changes in fungal communities may be closely related to lung cancer, and provides insights into further exploration the relationship between lung cancer and fungi.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Junqi Yi
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, China
| | - Anqi Chen
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyu Chen
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen Zhou
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Jingqun Tang
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Changsha, Hunan, China.
| |
Collapse
|
87
|
Neumann CJ, Mahnert A, Kumpitsch C, Kiu R, Dalby MJ, Kujawska M, Madl T, Kurath-Koller S, Urlesberger B, Resch B, Hall LJ, Moissl-Eichinger C. Clinical NEC prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nat Commun 2023; 14:1349. [PMID: 36906612 PMCID: PMC10008552 DOI: 10.1038/s41467-023-36825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 03/13/2023] Open
Abstract
Preterm infants with very low birthweight are at serious risk for necrotizing enterocolitis. To functionally analyse the principles of three successful preventive NEC regimens, we characterize fecal samples of 55 infants (<1500 g, n = 383, female = 22) longitudinally (two weeks) with respect to gut microbiome profiles (bacteria, archaea, fungi, viruses; targeted 16S rRNA gene sequencing and shotgun metagenomics), microbial function, virulence factors, antibiotic resistances and metabolic profiles, including human milk oligosaccharides (HMOs) and short-chain fatty acids (German Registry of Clinical Trials, No.: DRKS00009290). Regimens including probiotic Bifidobacterium longum subsp. infantis NCDO 2203 supplementation affect microbiome development globally, pointing toward the genomic potential to convert HMOs. Engraftment of NCDO 2203 is associated with a substantial reduction of microbiome-associated antibiotic resistance as compared to regimens using probiotic Lactobacillus rhamnosus LCR 35 or no supplementation. Crucially, the beneficial effects of Bifidobacterium longum subsp. infantis NCDO 2203 supplementation depends on simultaneous feeding with HMOs. We demonstrate that preventive regimens have the highest impact on development and maturation of the gastrointestinal microbiome, enabling the establishment of a resilient microbial ecosystem that reduces pathogenic threats in at-risk preterm infants.
Collapse
Affiliation(s)
- Charlotte J Neumann
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Raymond Kiu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Matthew J Dalby
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Magdalena Kujawska
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health; Technical University of Munich, Freising, Bavaria, 85354, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Styria, 8010, Austria
- BioTechMed, Graz, Styria, 8010, Austria
| | - Stefan Kurath-Koller
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria
| | - Berndt Urlesberger
- Division of Neonatology; Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Styria, 8036, Austria
| | - Bernhard Resch
- Division of Neonatology; Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria.
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Styria, 8036, Austria.
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health; Technical University of Munich, Freising, Bavaria, 85354, Germany
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria.
- BioTechMed, Graz, Styria, 8010, Austria.
| |
Collapse
|
88
|
Guo M, Wu G, Tan Y, Li Y, Jin X, Qi W, Guo X, Zhang C, Zhu Z, Zhao L. Guild-Level Microbiome Signature Associated with COVID-19 Severity and Prognosis. mBio 2023; 14:e0351922. [PMID: 36744910 PMCID: PMC9973266 DOI: 10.1128/mbio.03519-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) severity has been associated with alterations of the gut microbiota. However, the relationship between gut microbiome alterations and COVID-19 prognosis remains elusive. Here, we performed a genome-resolved metagenomic analysis on fecal samples from 300 in-hospital COVID-19 patients, collected at the time of admission. Among the 2,568 high quality metagenome-assembled genomes (HQMAGs), redundancy analysis identified 33 HQMAGs which showed differential distribution among mild, moderate, and severe/critical severity groups. Co-abundance network analysis determined that the 33 HQMAGs were organized as two competing guilds. Guild 1 harbored more genes for short-chain fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, compared with Guild 2. Based on average abundance difference between the two guilds, the guild-level microbiome index (GMI) classified patients from different severity groups (average AUROC [area under the receiver operating curve] = 0.83). Moreover, age-adjusted partial Spearman's correlation showed that GMIs at admission were correlated with 8 clinical parameters, which are predictors for COVID-19 prognosis, on day 7 in hospital. In addition, GMI at admission was associated with death/discharge outcome of the critical patients. We further validated that GMI was able to consistently classify patients with different COVID-19 symptom severities in different countries and differentiated COVID-19 patients from healthy subjects and pneumonia controls in four independent data sets. Thus, this genome-based guild-level signature may facilitate early identification of hospitalized COVID-19 patients with high risk of more severe outcomes at time of admission. IMPORTANCE Previous reports on the associations between COVID-19 and gut microbiome have been constrained by taxonomic-level analysis and overlook the interaction between microbes. By applying a genome-resolved, reference-free, guild-based metagenomic analysis, we demonstrated that the relationship between gut microbiota and COVID-19 is genome-specific instead of taxon-specific or even species-specific. Moreover, the COVID-19-associated genomes were not independent but formed two competing guilds, with Guild 1 potentially beneficial and Guild 2 potentially more detrimental to the host based on comparative genomic analysis. The dominance of Guild 2 over Guild 1 at time of admission was associated with hospitalized COVID-19 patients at high risk for more severe outcomes. Moreover, the guild-level microbiome signature is not only correlated with the symptom severity of COVID-19 patients, but also differentiates COVID-19 patients from pneumonia controls and healthy subjects across different studies. Here, we showed the possibility of using genome-resolved and guild-level microbiome signatures to identify hospitalized COVID-19 patients with a high risk of more severe outcomes at the time of admission.
Collapse
Affiliation(s)
- Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai, China
| | - Yan Li
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jin
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weiqiang Qi
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences and Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, New Jersey, USA
| |
Collapse
|
89
|
Pushpakumara BLDU, Tandon K, Willis A, Verbruggen H. Unravelling microalgal-bacterial interactions in aquatic ecosystems through 16S rRNA gene-based co-occurrence networks. Sci Rep 2023; 13:2743. [PMID: 36797257 PMCID: PMC9935533 DOI: 10.1038/s41598-023-27816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Interactions between microalgae and bacteria can directly influence the global biogeochemical cycles but the majority of such interactions remain unknown. 16S rRNA gene-based co-occurrence networks have potential to help identify microalgal-bacterial interactions. Here, we used data from 10 Earth microbiome projects to identify potential microalgal-bacterial associations in aquatic ecosystems. A high degree of clustering was observed in microalgal-bacterial modules, indicating densely connected neighbourhoods. Proteobacteria and Bacteroidetes predominantly co-occurred with microalgae and represented hubs of most modules. Our results also indicated that species-specificity may be a global characteristic of microalgal associated microbiomes. Several previously known associations were recovered from our network modules, validating that biologically meaningful results can be inferred using this approach. A range of previously unknown associations were recognised such as co-occurrences of Bacillariophyta with uncultured Planctomycetes OM190 and Deltaproteobacteria order NB1-j. Planctomycetes and Verrucomicrobia were identified as key associates of microalgae due to their frequent co-occurrences with several microalgal taxa. Despite no clear taxonomic pattern, bacterial associates appeared functionally similar across different environments. To summarise, we demonstrated the potential of 16S rRNA gene-based co-occurrence networks as a hypothesis-generating framework to guide more focused research on microalgal-bacterial associations.
Collapse
Affiliation(s)
| | - Kshitij Tandon
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Hobart, TAS, 7000, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
90
|
Gupta Y, Ernst AL, Vorobyev A, Beltsiou F, Zillikens D, Bieber K, Sanna-Cherchi S, Christiano AM, Sadik CD, Ludwig RJ, Sezin T. Impact of diet and host genetics on the murine intestinal mycobiome. Nat Commun 2023; 14:834. [PMID: 36788222 PMCID: PMC9929102 DOI: 10.1038/s41467-023-36479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The mammalian gut is home to a diverse microbial ecosystem, whose composition affects various physiological traits of the host. Next-generation sequencing-based metagenomic approaches demonstrated how the interplay of host genetics, bacteria, and environmental factors shape complex traits and clinical outcomes. However, the role of fungi in these complex interactions remains understudied. Here, using 228 males and 363 females from an advanced-intercross mouse line, we provide evidence that fungi are regulated by host genetics. In addition, we map quantitative trait loci associated with various fungal species to single genes in mice using whole genome sequencing and genotyping. Moreover, we show that diet and its' interaction with host genetics alter the composition of fungi in outbred mice, and identify fungal indicator species associated with different dietary regimes. Collectively, in this work, we uncover an association of the intestinal fungal community with host genetics and a regulatory role of diet in this ecological niche.
Collapse
Affiliation(s)
- Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Lara Ernst
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Foteini Beltsiou
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | - Tanya Sezin
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
91
|
Sharma A, Junge O, Szymczak S, Rühlemann MC, Enderle J, Schreiber S, Laudes M, Franke A, Lieb W, Krawczak M, Dempfle A. Network-based quantitative trait linkage analysis of microbiome composition in inflammatory bowel disease families. Front Genet 2023; 14:1048312. [PMID: 36755569 PMCID: PMC9901208 DOI: 10.3389/fgene.2023.1048312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by a dysbiosis of the gut microbiome that results from the interaction of the constituting taxa with one another, and with the host. At the same time, host genetic variation is associated with both IBD risk and microbiome composition. Methods: In the present study, we defined quantitative traits (QTs) from modules identified in microbial co-occurrence networks to measure the inter-individual consistency of microbial abundance and subjected these QTs to a genome-wide quantitative trait locus (QTL) linkage analysis. Results: Four microbial network modules were consistently identified in two cohorts of healthy individuals, but three of the corresponding QTs differed significantly between IBD patients and unaffected individuals. The QTL linkage analysis was performed in a sub-sample of the Kiel IBD family cohort (IBD-KC), an ongoing study of 256 German families comprising 455 IBD patients and 575 first- and second-degree, non-affected relatives. The analysis revealed five chromosomal regions linked to one of three microbial module QTs, namely on chromosomes 3 (spanning 10.79 cM) and 11 (6.69 cM) for the first module, chr9 (0.13 cM) and chr16 (1.20 cM) for the second module, and chr13 (19.98 cM) for the third module. None of these loci have been implicated in a microbial phenotype before. Discussion: Our study illustrates the benefit of combining network and family-based linkage analysis to identify novel genetic drivers of microbiome composition in a specific disease context.
Collapse
Affiliation(s)
- Arunabh Sharma
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Olaf Junge
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Silke Szymczak
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Malte Christoph Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Janna Enderle
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany,Department of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Matthias Laudes
- Institute of Diabetology and Clinical Metabolic Research, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany,*Correspondence: Astrid Dempfle,
| |
Collapse
|
92
|
Kim H, Seo J, Park T, Seo K, Cho HW, Chun JL, Kim KH. Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Sci Rep 2023; 13:723. [PMID: 36639715 PMCID: PMC9839755 DOI: 10.1038/s41598-023-27846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Canine obesity is a major health concern that predisposes dogs to various disorders. The fecal microbiome has been attracting attention because of their impact on energy efficiency and metabolic disorders of host. However, little is known about specific microbial interactions, and how these may be affected by obesity in dogs. The objective of this study was to investigate the differences in fecal microbiome and specific microbial networks between obese and normal dogs. A total of 20 beagle dogs (males = 12, body weight [BW]: 10.5 ± 1.08 kg; females = 8, BW: 11.3 ± 1.71 kg; all 2-year-old) were fed to meet the maintenance energy requirements for 18 weeks. Then, 12 beagle dogs were selected based on body condition score (BCS) and divided into two groups: high BCS group (HBCS; BCS range: 7-9, males = 4, females = 2) and normal BCS group (NBCS; BCS range: 4-6, males = 4, females = 2). In the final week of the experiment, fecal samples were collected directly from the rectum, before breakfast, for analyzing the fecal microbiome using 16S rRNA gene amplicon sequencing. The HBCS group had a significantly higher final BW than the NBCS group (P < 0.01). The relative abundances of Faecalibacterium, Phascolarctobacterium, Megamonas, Bacteroides, Mucispirillum, and an unclassified genus within Ruminococcaceae were significantly higher in the HBCS group than those in the NBCS group (P < 0.05). Furthermore, some Kyoto Encyclopedia of Genes and Genomes (KEGG) modules related to amino acid biosynthesis and B vitamins biosynthesis were enriched in the HBCS group (P < 0.10), whereas those related to carbohydrate metabolism were enriched in the NBCS group (P < 0.10). Microbial network analysis revealed distinct co-occurrence and mutually exclusive interactions between the HBCS and NBCS groups. In conclusion, several genera related to short-chain fatty acid production were enriched in the HBCS group. The enriched KEGG modules in the HBCS group enhanced energy efficiency through cross-feeding between auxotrophs and prototrophs. However, further studies are needed to investigate how specific networks can be interpreted in the context of fermentation characteristics in the lower gut and obesity in dogs.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
93
|
Wang R, Cui L, Li J, Li W. Factors driving the halophyte rhizosphere bacterial communities in coastal salt marshes. Front Microbiol 2023; 14:1127958. [PMID: 36910212 PMCID: PMC9992437 DOI: 10.3389/fmicb.2023.1127958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Root-associated microorganisms promote plant growth and provide protection from stresses. Halophytes are the fundamental components maintaining ecosystem functions of coastal salt marshes; however, it is not clear how their microbiome are structured across large spatial scales. Here, we investigated the rhizosphere bacterial communities of typical coastal halophyte species (Phragmites australis and Suaeda salsa) in temperate and subtropical salt marshes across 1,100 km in eastern China. Methods The sampling sites were located from 30.33 to 40.90°N and 119.24 to 121.79°E across east China. A total of 36 plots were investigated in the Liaohe River Estuary, the Yellow River Estuary, Yancheng, and Hangzhou Bay in August 2020. We collected shoot, root, and rhizosphere soil samples. the number of pakchoi leaves, total fresh and dry weight of the seedlings was counted. The soil properties, plant functional traits, the genome sequencing, and metabolomics assay were detected. Results The results showed that soil nutrients (total organic carbon, dissolved organic carbon, total nitrogen, soluble sugars, and organic acids) are high in the temperate marsh, while root exudates (measured by metabolite expressions) are significantly higher in the subtropical marsh. We observed higher bacterial alpha diversity, more complex network structure, and more negative connections in the temperate salt marsh, which suggested intense competition among bacterial groups. Variation partitioning analysis showed that climatic, edaphic, and root exudates had the greatest effects on the bacteria in the salt marsh, especially for abundant and moderate subcommunities. Random forest modeling further confirmed this but showed that plant species had a limited effect. Conclutions Taken together, the results of this study revealed soil properties (chemical properties) and root exudates (metabolites) had the greatest influence on the bacterial community of salt marsh, especially for abundant and moderate taxa. Our results provided novel insights into the biogeography of halophyte microbiome in coastal wetlands and can be beneficial for policymakers in decision-making on the management of coastal wetlands.
Collapse
Affiliation(s)
- Rumiao Wang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Lijuan Cui
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Jing Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| | - Wei Li
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing Key Laboratory of Wetland Ecological Function and Restoration, Beijing, China
| |
Collapse
|
94
|
Shaffer M, Thurimella K, Sterrett JD, Lozupone CA. SCNIC: Sparse correlation network investigation for compositional data. Mol Ecol Resour 2023; 23:312-325. [PMID: 36001047 PMCID: PMC9744196 DOI: 10.1111/1755-0998.13704] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Microbiome studies are often limited by a lack of statistical power due to small sample sizes and a large number of features. This problem is exacerbated in correlative studies of multi-omic datasets. Statistical power can be increased by finding and summarizing modules of correlated observations, which is one dimensionality reduction method. Additionally, modules provide biological insight as correlated groups of microbes can have relationships among themselves. To address these challenges, we developed SCNIC: Sparse Cooccurrence Network Investigation for compositional data. SCNIC is open-source software that can generate correlation networks and detect and summarize modules of highly correlated features. Modules can be formed using either the Louvain Modularity Maximization (LMM) algorithm or a Shared Minimum Distance algorithm (SMD) that we newly describe here and relate to LMM using simulated data. We applied SCNIC to two published datasets and we achieved increased statistical power and identified microbes that not only differed across groups, but also correlated strongly with each other, suggesting shared environmental drivers or cooperative relationships among them. SCNIC provides an easy way to generate correlation networks, identify modules of correlated features and summarize them for downstream statistical analysis. Although SCNIC was designed considering properties of microbiome data, such as compositionality and sparsity, it can be applied to a variety of data types including metabolomics data and used to integrate multiple data types. SCNIC allows for the identification of functional microbial relationships at scale while increasing statistical power through feature reduction.
Collapse
Affiliation(s)
- Michael Shaffer
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kumar Thurimella
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - John D. Sterrett
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Catherine A. Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
95
|
Wang B, Wang X, Wang Z, Zhu K, Wu W. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress. Front Microbiol 2023; 14:1102547. [PMID: 36891384 PMCID: PMC9987714 DOI: 10.3389/fmicb.2023.1102547] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Soil salinization is a serious abiotic stress for grapevines. The rhizosphere microbiota of plants can help counter the negative effects caused by salt stress, but the distinction between rhizosphere microbes of salt-tolerant and salt-sensitive varieties remains unclear. Methods This study employed metagenomic sequencing to explore the rhizosphere microbial community of grapevine rootstocks 101-14 (salt tolerant) and 5BB (salt sensitive) with or without salt stress. Results and Discussion Compared to the control (treated with ddH2O), salt stress induced greater changes in the rhizosphere microbiota of 101-14 than in that of 5BB. The relative abundances of more plant growth-promoting bacteria, including Planctomycetes, Bacteroidetes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes, Chloroflexi, and Firmicutes, were increased in 101-14 under salt stress, whereas only the relative abundances of four phyla (Actinobacteria, Gemmatimonadetes, Chloroflexi, and Cyanobacteria) were increased in 5BB under salt stress while those of three phyla (Acidobacteria, Verrucomicrobia, and Firmicutes) were depleted. The differentially enriched functions (KEGG level 2) in 101-14 were mainly associated with pathways related to cell motility; folding, sorting, and degradation functions; glycan biosynthesis and metabolism; xenobiotics biodegradation and metabolism; and metabolism of cofactors and vitamins, whereas only the translation function was differentially enriched in 5BB. Under salt stress, the rhizosphere microbiota functions of 101-14 and 5BB differed greatly, especially pathways related to metabolism. Further analysis revealed that pathways associated with sulfur and glutathione metabolism as well as bacterial chemotaxis were uniquely enriched in 101-14 under salt stress and therefore might play vital roles in the mitigation of salt stress on grapevines. In addition, the abundance of various sulfur cycle-related genes, including genes involved in assimilatory sulfate reduction (cysNC, cysQ, sat, and sir), sulfur reduction (fsr), SOX systems (soxB), sulfur oxidation (sqr), organic sulfur transformation (tpa, mdh, gdh, and betC), increased significantly in 101-14 after treatment with NaCl; these genes might mitigate the harmful effects of salt on grapevine. In short, the study findings indicate that both the composition and functions of the rhizosphere microbial community contribute to the enhanced tolerance of some grapevines to salt stress.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Zhuangwei Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Kefeng Zhu
- Department of Technology Commercialization, Jiangsu Academy of Agricultural Sciences, Nanjing City, Jiangsu Province, China.,Huaian Herong Ecological Agriculture Co., Ltd, Huaian City, Jiangsu Province, China
| | - Weimin Wu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| |
Collapse
|
96
|
Differential Effect of Vaginal Microbiota on Spontaneous Preterm Birth among Chinese Pregnant Women. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3536108. [PMID: 36506912 PMCID: PMC9731763 DOI: 10.1155/2022/3536108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Objective The effect of vaginal microbiota on spontaneous preterm birth (sPTB) has not been fully addressed, and few studies have explored the associations between vaginal taxa and sPTB in the gestational diabetes mellitus (GDM) and non-GDM groups, respectively. Study Design. To minimize external interference, a total of 41 pregnant women with sPTB and 308 controls (pregnant women without sPTB) from same regain were enrolled in this case-cohort study. Controls were randomly selected at baseline. With the exception of GDM, other characteristics were not significantly different between the two groups. Vaginal swabs were collected at early second trimester. Using 16S amplicon sequencing, the main bioinformatics analysis was performed on the platform of QIIME 2. Vaginal microbiota traits of the sPTB group were compared with controls. Finally, the effects of binary taxa on sPTB in the GDM group and the non-GDM group were analyzed, respectively. Results The proportion of GDM in the sPTB (19.51%) was higher than the controls (7.47%, P = 0.018). The vaginal microbiota of pregnant women with sPTB exhibited higher alpha diversity metrics (observed features, P = 0.001; Faith's phylogenetic diversity, P = 0.013) and different beta diversity metrics (unweighted UniFrac, P = 0.006; Jaccard's distance, P = 0.004), compared with controls. The presence of Lactobacillus paragasseri/gasseri (aOR: 3.12, 95% CI: 1.24-7.84), Streptococcus (aOR: 3.58, 95% CI: 1.68-7.65), or Proteobacteria (aOR: 3.39, 95% CI: 1.55-7.39) was associated with an increased risk of sPTB in the non-GDM group (P < 0.05). However, the relative abundance of novel L. mulieris (a new species of the L. delbrueckii group) was associated with a decreased risk of sPTB (false discovery rate, 0.10) in all pregnant women. Conclusion GDM may modify the association of vaginal taxa with sPTB, suggesting that maternal GDM should be considered when using vaginal taxa to identify pregnant women at high risk of sPTB.
Collapse
|
97
|
Mäklin T, Thorpe HA, Pöntinen AK, Gladstone RA, Shao Y, Pesonen M, McNally A, Johnsen PJ, Samuelsen Ø, Lawley TD, Honkela A, Corander J. Strong pathogen competition in neonatal gut colonisation. Nat Commun 2022; 13:7417. [PMID: 36456554 PMCID: PMC9715557 DOI: 10.1038/s41467-022-35178-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.
Collapse
Affiliation(s)
- Tommi Mäklin
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Harry A. Thorpe
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Anna K. Pöntinen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Rebecca A. Gladstone
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Yan Shao
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Maiju Pesonen
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Alan McNally
- grid.6572.60000 0004 1936 7486Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Pål J. Johnsen
- grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- grid.412244.50000 0004 4689 5540Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway ,grid.10919.300000000122595234Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Trevor D. Lawley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK
| | - Antti Honkela
- grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Oslo, Norway ,grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire UK ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
98
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Park T, Seo J, Lee Y, Bae D, Lee SS. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front Vet Sci 2022; 9:985824. [PMID: 36467635 PMCID: PMC9709288 DOI: 10.3389/fvets.2022.985824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/26/2022] [Indexed: 06/27/2024] Open
Abstract
A series of in vitro batch culture incubations were carried out to investigate changes in rumen fermentation characteristics, methane (CH4) production, and microbial composition in response to supplementation with five different red seaweed species (Amphiroa anceps, AANC; Asparagopsis taxiformis, ATAX; Chondracanthus tenellus, CTEN; Grateloupia elliptica, GELL; and Gracilaria parvispora, GPAR). Prior to the incubations, the total flavonoid and polyphenol content of the red seaweed extracts was quantified. The incubated substrate consisted of timothy hay and corn grain [60:40 dry matter (DM) basis]. Treatments were substrate mixtures without seaweed extract (CON) or substrate mixtures supplemented with 0.25 mg/mL of red seaweed extract. Samples were incubated for 6, 12, 24, 36, and 48 h. Each sample was incubated in triplicates in three separate runs. In vitro DM degradability, fermentation parameters (i.e., pH, volatile fatty acids, and ammonia nitrogen), total gas production, and CH4 production were analyzed for all time points. Microbial composition was analyzed using 16S rRNA amplicon sequencing after 24 h of incubation. The highest CH4 reduction (mL/g DM, mL/g digested DM, and % of total gas production) was observed in ATAX (51.3, 50.1, and 51.5%, respectively, compared to CON; P < 0.001) after 12 h of incubation. The other red seaweed extracts reduced the CH4 production (mL/g DM; P < 0.001) in the range of 4.6-35.0% compared to CON after 24 h of incubation. After 24 h of incubation, supplementation with red seaweed extracts tended to increase the molar proportion of propionate (P = 0.057) and decreased the acetate to propionate ratio (P = 0.033) compared to the CON. Abundances of the genus Methanobrevibacter and total methanogens were reduced (P = 0.050 and P = 0.016) by red seaweed extract supplementation. The linear discriminant analysis effect size (P < 0.05, LDA ≥ 2.0) showed that UG Succinivibrionaceae, Anaeroplasma, and UG Ruminococcaceae, which are associated with higher propionate production, starch degradation, and amylase activity were relatively more abundant in red seaweed extracts than in the CON. Our results suggest that supplementation with red seaweed extracts altered the microbiota, leading to the acceleration of propionate production and reduction in CH4 production.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Shin Ja Lee
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| | - Hyun Sang Kim
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Jun Sik Eom
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development of Administration (RDA), Jeonju, South Korea
| | - Dongryeoul Bae
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
99
|
A distinct clade of Bifidobacterium longum in the gut of Bangladeshi children thrives during weaning. Cell 2022; 185:4280-4297.e12. [PMID: 36323316 DOI: 10.1016/j.cell.2022.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.
Collapse
|
100
|
Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians. Nat Commun 2022; 13:6044. [PMID: 36229545 PMCID: PMC9561172 DOI: 10.1038/s41467-022-33782-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Despite extensive efforts to address it, the vastness of uncharacterized 'dark matter' microbial genetic diversity can impact short-read sequencing based metagenomic studies. Population-specific biases in genomic reference databases can further compound this problem. Leveraging advances in hybrid assembly (using short and long reads) and Hi-C technologies in a cross-sectional survey, we deeply characterized 109 gut microbiomes from three ethnicities in Singapore to comprehensively reconstruct 4497 medium and high-quality metagenome assembled genomes, 1708 of which were missing in short-read only analysis and with >28× N50 improvement. Species-level clustering identified 70 (>10% of total) novel gut species out of 685, improved reference genomes for 363 species (53% of total), and discovered 3413 strains unique to these populations. Among the top 10 most abundant gut bacteria in our study, one of the species and >80% of strains were unrepresented in existing databases. Annotation of biosynthetic gene clusters (BGCs) uncovered more than 27,000 BGCs with a large fraction (36-88%) unrepresented in current databases, and with several unique clusters predicted to produce bacteriocins that could significantly alter microbiome community structure. These results reveal significant uncharacterized gut microbial diversity in Southeast Asian populations and highlight the utility of hybrid metagenomic references for bioprospecting and disease-focused studies.
Collapse
|