51
|
Iimura Y, Mitsuhashi T, Suzuki H, Ueda T, Nishioka K, Otsubo H, Sugano H. Delineation of the epileptogenic zone by Phase-amplitude coupling in patients with Bottom of Sulcus Dysplasia. Seizure 2021; 94:23-25. [PMID: 34837729 DOI: 10.1016/j.seizure.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The removal of the bottom of sulcus dysplasia (BOSD) often includes the gyral crown; however, this method has been controversial. We hypothesized that the epileptogenic zone of the BOSD does not include the gyral crown. To reveal the depth and extent of the epileptogenic zone of the BOSD, we applied the two electrophysiological modalities: (1) the occurrence rate (OR) of high-frequency oscillations (HFOs) and (2) modulation index (MI), reflecting the strength of phase-amplitude coupling between HFOs and slow oscillations. METHODS We investigated the ripples [80-200 Hz] and fast ripples [200-300 Hz]) in HFOs and MI (HFOs [80-300 Hz] and slow oscillations [3-4 Hz]). We opened the sulcus at the BOSD and implanted the subdural electrodes directly over the MRI visible lesion. All patients (n = 3) underwent lesionectomy and the gyral crown was preserved. RESULTS Pathological findings demonstrated focal cortical dysplasia type IIb and seizure freedom was achieved. The OR of the HFOs was not significantly different between the BOSD and the gyral crown. In contrast, the MI between HFOs and slow oscillations in the BOSD was significantly higher than that in the gyral crown. CONCLUSION High MI values distinguished the epileptogenic BOSD from the non-epileptogenic gyral crowns. MI could be a more informative biomarker of epileptogenicity than the OR of HFOs in a subset of patients with the BOSD.
Collapse
Affiliation(s)
- Yasushi Iimura
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Kazuki Nishioka
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan
| | - Hiroshi Otsubo
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Hidenori Sugano
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| |
Collapse
|
52
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
53
|
Shahabi H, Taylor K, Hirfanoglu T, Koneru S, Bingaman W, Kobayashi K, Kobayashi M, Joshi A, Leahy RM, Mosher JC, Bulacio J, Nair D. Effective connectivity differs between focal cortical dysplasia types I and II. Epilepsia 2021; 62:2753-2765. [PMID: 34541666 DOI: 10.1111/epi.17064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether brain connectivity differs between focal cortical dysplasia (FCD) types I and II. METHODS We compared cortico-cortical evoked potentials (CCEPs) as measures of effective brain connectivity in 25 FCD patients with drug-resistant focal epilepsy who underwent intracranial evaluation with stereo-electroencephalography (SEEG). We analyzed the amplitude and latency of CCEP responses following ictal-onset single-pulse electrical stimulation (iSPES). RESULTS In comparison to FCD type II, patients with type I demonstrated significantly larger responses in the electrodes near the ictal-onset zone (<50 mm). These findings persisted when controlling for the location of the epileptogenic zone, as noted in patients with temporal lobe epilepsies, as well as controlling for seizure type, as noted in patients with focal to bilateral tonic-clonic seizures (FBTCS). In type II, the root mean square (RMS) of CCEP responses dropped substantially from the early segment (10-60 ms) to the middle and late segments (60-600 ms). The middle and late CCEP latency segments showed the largest differences between FCD types I and II. SIGNIFICANCE Focal cortical dysplasia type I may have a greater degree of cortical hyperexcitability as compared with FCD type II. In addition, FCD type II displays a more restrictive area of hyperexcitability in both temporal and spatial domains. In patients with FBTCS and type I FCD, the increased amplitudes of RMS in the middle and late CCEP periods appear consistent with the cortico-thalamo-cortical network involvement of FBTCS. The notable differences in degree and extent of hyperexcitability may contribute to the different postsurgical seizure outcomes noted between these two pathological substrates.
Collapse
Affiliation(s)
- Hossein Shahabi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Kenneth Taylor
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tugba Hirfanoglu
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Pediatric Neurology, School of Medicine, Gazi University, Ankara, Turkey
| | - Shreekanth Koneru
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William Bingaman
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Katsuya Kobayashi
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Masako Kobayashi
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anand Joshi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA
| | - John C Mosher
- University of Texas Health Sciences Center, Houston, TX, USA
| | - Juan Bulacio
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dileep Nair
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
54
|
Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, Banne E, Mahajnah M, Hanna JH, Stern S, Carlen PL, Aqeilan RI. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med 2021; 13:e13610. [PMID: 34268881 PMCID: PMC8350905 DOI: 10.15252/emmm.202013610] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are a group of disorders associated with intractable seizures, brain development, and functional abnormalities, and in some cases, premature death. Pathogenic human germline biallelic mutations in tumor suppressor WW domain-containing oxidoreductase (WWOX) are associated with a relatively mild autosomal recessive spinocerebellar ataxia-12 (SCAR12) and a more severe early infantile WWOX-related epileptic encephalopathy (WOREE). In this study, we generated an in vitro model for DEEs, using the devastating WOREE syndrome as a prototype, by establishing brain organoids from CRISPR-engineered human ES cells and from patient-derived iPSCs. Using these models, we discovered dramatic cellular and molecular CNS abnormalities, including neural population changes, cortical differentiation malfunctions, and Wnt pathway and DNA damage response impairment. Furthermore, we provide a proof of concept that ectopic WWOX expression could potentially rescue these phenotypes. Our findings underscore the utility of modeling childhood epileptic encephalopathies using brain organoids and their use as a unique platform to test possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Daniel J Steinberg
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Srinivasarao Repudi
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Afifa Saleem
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
| | | | - Sergey Viukov
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Baraa Abudiab
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Ehud Banne
- Genetics InstituteKaplan Medical CenterHebrew University‐Hadassah Medical SchoolRehovotIsrael
- The Rina Mor Genetic InstituteWolfson Medical CenterHolonIsrael
| | - Muhammad Mahajnah
- Paediatric Neurology and Child Developmental CenterHillel Yaffe Medical CenterHaderaIsrael
- Rappaport Faculty of MedicineThe TechnionHaifaIsrael
| | - Jacob H Hanna
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Peter L Carlen
- Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Krembil Research InstituteUniversity Health NetworkTorontoONCanada
- Departments of Medicine and PhysiologyUniversity of TorontoTorontoONCanada
| | - Rami I Aqeilan
- The Concern Foundation LaboratoriesDepartment of Immunology and Cancer Research‐IMRICThe Lautenberg Center for Immunology and Cancer ResearchHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
55
|
Jayalakshmi S, Vooturi S, Vadapalli R, Madigubba S, Panigrahi M. Predictors of surgical outcome in focal cortical dysplasia and its subtypes. J Neurosurg 2021; 136:512-522. [PMID: 34330093 DOI: 10.3171/2020.12.jns203385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors analyzed predictors of surgical outcome in patients with focal cortical dysplasia (FCD) and its ILAE (International League Against Epilepsy) subtypes after noninvasive multimodal evaluation and calculated time to first seizure. METHODS Data of 355 patients with refractory epilepsy, confirmed FCD pathology, and 2-13 years of postsurgical follow-up were analyzed to determine the predictive roles of clinical, EEG, imaging, and surgical factors that influence seizure freedom. RESULTS The mean ± SD age at surgery was 20.26 ± 12.18 years. In total, 142 (40.0%) patients had daily seizures and 90 (25.3%) had multiple seizure types. MRI showed clear-cut FCD in 289 (81.4%) patients. Pathology suggested type I FCD in 27.3% of patients, type II in 28.4%, and type III in 42.8% of patients. At latest follow-up, 72.1% of patients were seizure free and 11.8% were seizure free and not receiving antiepileptic drugs. Among the subtypes, 88.8% of patients with type III, 69.3% with type II, and 50.5% with type I FCD were seizure free. Multiple seizure types, acute postoperative seizures (APOS), and type I FCD were predictors of persistent seizures, whereas type III FCD was the strongest predictor of seizure freedom. Type I FCD was associated with daily seizures, frontal and multilobar distribution, subtle findings on MRI, incomplete resection, and persistent seizures. Type II and III FCD were associated with clear-cut lesion on MRI, regional interictal and ictal EEG onset pattern, focal pattern on ictal SPECT, complete resection, and seizure freedom. Type III FCD was associated with temporal location, whereas type I and II FCD were associated with extratemporal location. Nearly 80% of patients with persistent seizures, mostly those with type I FCD, had their first seizure within 6 months postsurgery. CONCLUSIONS Long-term seizure freedom after surgery can be achieved in more than two-thirds of patients with FCD after noninvasive multimodal evaluation. Multiple seizure types, type I FCD, and APOS were predictors of persistent seizures. Seizures recurred in about 80% of patients within 6 months postsurgery.
Collapse
Affiliation(s)
| | | | | | | | - Manas Panigrahi
- 4Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad, India
| |
Collapse
|
56
|
Srivastava A, Kumar K, Banerjee J, Tripathi M, Dubey V, Sharma D, Yadav N, Sharma MC, Lalwani S, Doddamani R, Chandra PS, Dixit AB. Transcriptomic profiling of high- and low-spiking regions reveals novel epileptogenic mechanisms in focal cortical dysplasia type II patients. Mol Brain 2021; 14:120. [PMID: 34301297 PMCID: PMC8305866 DOI: 10.1186/s13041-021-00832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of the cerebral cortex with poorly-defined epileptogenic zones (EZs), and poor surgical outcome in FCD is associated with inaccurate localization of the EZ. Hence, identifying novel epileptogenic markers to aid in the localization of EZ in patients with FCD is very much needed. High-throughput gene expression studies of FCD samples have the potential to uncover molecular changes underlying the epileptogenic process and identify novel markers for delineating the EZ. For this purpose, we, for the first time performed RNA sequencing of surgically resected paired tissue samples obtained from electrocorticographically graded high (MAX) and low spiking (MIN) regions of FCD type II patients and autopsy controls. We identified significant changes in the MAX samples of the FCD type II patients when compared to non-epileptic controls, but not in the case of MIN samples. We found significant enrichment for myelination, oligodendrocyte development and differentiation, neuronal and axon ensheathment, phospholipid metabolism, cell adhesion and cytoskeleton, semaphorins, and ion channels in the MAX region. Through the integration of both MAX vs non-epileptic control and MAX vs MIN RNA sequencing (RNA Seq) data, PLP1, PLLP, UGT8, KLK6, SOX10, MOG, MAG, MOBP, ANLN, ERMN, SPP1, CLDN11, TNC, GPR37, SLC12A2, ABCA2, ABCA8, ASPA, P2RX7, CERS2, MAP4K4, TF, CTGF, Semaphorins, Opalin, FGFs, CALB2, and TNC were identified as potential key regulators of multiple pathways related to FCD type II pathology. We have identified novel epileptogenic marker elements that may contribute to epileptogenicity in patients with FCD and could be possible markers for the localization of EZ.
Collapse
Affiliation(s)
| | - Krishan Kumar
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | - Devina Sharma
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India
| | - Nitin Yadav
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - P Sarat Chandra
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India.
| | - Aparna Banerjee Dixit
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
57
|
Highly consistent temporal lobe interictal spike networks revealed from foramen ovale electrodes. Clin Neurophysiol 2021; 132:2065-2074. [PMID: 34284241 DOI: 10.1016/j.clinph.2021.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A major challenge that limits understanding and treatment of epileptic events from mesial temporal structures comes from our inability to detect and map interictal networks reproducibly using scalp electrodes. Here, we developed a novel approach to map interictal spike networks and demonstrate their relationships to seizure onset and lesions in patients with foramen ovale electrode implantations. METHODS We applied the direct Directed Transfer Function to reveal interictal spike propagation from bilateral foramen ovale electrodes on 10 consecutive patients and co-registered spatially with both seizure onset zones and temporal lobe lesions. RESULTS Highly reproducible, yet unique interictal spike networks were seen for each patient (correlation: 0.93 ± 0.13). Interictal spikes spread in both anterior and posterior directions within each temporal lobe, often reverberating between sites. Spikes propagated to the opposite temporal lobe predominantly through posterior pathways. Patients with structural lesions (N = 4), including tumors and sclerosis, developed reproducible spike networks adjacent to their lesions that were highly lateralized compared to patients without lesions. Only 5% of mesial temporal lobe spikes were time-locked with scalp electrode spikes. Our preliminary observation on two lesional patients suggested that along with lesion location, Interictal spike networks also partially co-registered with seizure onset zones suggesting interrelationship between seizure onset and a subset of spike networks. CONCLUSIONS This is the first demonstration of patient-specific, reproducible interictal spike networks in mesial temporal structures that are closely linked to both temporal lobe lesions and seizure onset zones. SIGNIFICANCE Interictal spike connectivity is a novel approach to map epileptic networks that could help advance invasive and non-invasive epilepsy treatments.
Collapse
|
58
|
Blumcke I, Cendes F, Miyata H, Thom M, Aronica E, Najm I. Toward a refined genotype-phenotype classification scheme for the international consensus classification of Focal Cortical Dysplasia. Brain Pathol 2021; 31:e12956. [PMID: 34196989 PMCID: PMC8412090 DOI: 10.1111/bpa.12956] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Focal Cortical Dysplasia (FCD) is the most common cause of drug-resistant focal epilepsy in children and young adults. The diagnosis of currently defined FCD subtypes relies on a histopathological assessment of surgical brain tissue. The many ongoing challenges in the diagnosis of FCD and their various subtypes mandate, however, continuous research and consensus agreement to develop a reliable classification scheme. Advanced neuroimaging and genetic studies have proven to augment the diagnosis of FCD subtypes and should be considered for an integrated clinico-pathological and molecular classification. In this review, we will discuss the histopathological foundation of the current FCD classification and potential advancements when using genetic analysis of somatic brain mutations in neurosurgically resected brain specimens and postprocessing of presurgical neuroimaging data. Combining clinical, imaging, histopathology, and molecular studies will help to define the disease spectrum better and finally unveil FCD-specific treatment options.
Collapse
Affiliation(s)
- Ingmar Blumcke
- Department of NeuropathologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Epilepsy CenterCleveland Clinic FoundationClevelandOHUSA
| | - Fernando Cendes
- Department of NeurologyUniversity of Campinas—UNICAMPCampinasSPBrazil
| | - Hajime Miyata
- Department of NeuropathologyResearch Institute for Brain and Blood VesselsAkita Cerebrospinal and Cardiovascular CenterAkitaJapan
| | - Maria Thom
- Department of NeuropathologyInstitute of Neurology, University College LondonLondonUK
| | - Eleonora Aronica
- Department of (Neuro)PathologyAmsterdam UMCUniversity of AmsterdamAmsterdam
- Stichting Epilepsie Instellingen Nederland (SEINHeemstedeThe Netherlands
| | - Imad Najm
- Epilepsy CenterCleveland Clinic FoundationClevelandOHUSA
| |
Collapse
|
59
|
Rácz A, Becker AJ, Quesada CM, Borger V, Vatter H, Surges R, Elger CE. Post-Surgical Outcome and Its Determining Factors in Patients Operated on With Focal Cortical Dysplasia Type II-A Retrospective Monocenter Study. Front Neurol 2021; 12:666056. [PMID: 34177771 PMCID: PMC8220082 DOI: 10.3389/fneur.2021.666056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
Purpose: Focal cortical dysplasias (FCDs) are a frequent cause of drug-resistant focal epilepsies. These lesions are in many cases amenable to epilepsy surgery. We examined 12-month and long-term post-surgical outcomes and its predictors including positive family history of epilepsy. Methods: Twelve-month and long-term outcomes regarding seizure control after epilepsy surgery in patients operated on with FCD type II between 2002 and 2019 in the Epilepsy Center of Bonn were evaluated based on patient records and telephone interviews. Results: Overall, 102 patients fulfilled the inclusion criteria. Seventy-one percent of patients at 12 months of follow-up (FU) and 54% of patients at the last available FU (63 ± 5.00 months, median 46.5 months) achieved complete seizure freedom (Engel class IA), and 84 and 69% of patients, respectively, displayed Engel class I outcome. From the examined variables [histopathology: FCD IIA vs. IIB, lobar lesion location: frontal vs. non-frontal, family history for epilepsy, focal to bilateral tonic–clonic seizures (FTBTCS) in case history, completeness of resection, age at epilepsy onset, age at surgery, duration of epilepsy], outcomes at 12 months were determined by interactions of age at onset, duration of epilepsy, age at surgery, extent of resection, and lesion location. Long-term post-surgical outcome was primarily influenced by the extent of resection and history of FTBTCS. Positive family history for epilepsy had a marginal influence on long-term outcomes only. Conclusion: Resective epilepsy surgery in patients with FCD II yields very good outcomes both at 12-month and long-term follow-ups. Complete lesion resection and the absence of FTBTCS prior to surgery are associated with a better outcome.
Collapse
Affiliation(s)
- Attila Rácz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Carlos M Quesada
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
60
|
Kassiri J, Elliott C, Liu N, Mailo J, Rajapakse T, Schmitt L, Wheatley M, Sinclair DB. Neuroimaging in pediatric temporal lobe epilepsy: Does neuroimaging accurately predict pathology and surgical outcome? Epilepsy Res 2021; 175:106680. [PMID: 34102391 DOI: 10.1016/j.eplepsyres.2021.106680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Temporal lobe epilepsy (TLE) in children is considered different from that in adults. As such, characterizing the structural lesions present in pediatric patients with TLE and their association with long-term seizure control is important. Here, we aimed to assess the concordance between preoperative imaging and postoperative histopathological diagnoses and their associations with seizure outcomes in pediatric patients with TLE undergoing temporal lobe surgery. We retrospectively reviewed the charts of pediatric patients with TLE who underwent surgical treatment between 1988 and 2020 as a part of the Comprehensive Epilepsy Program at the University of Alberta. Demographic, age at seizure onset, age at surgery, preoperative electroencephalography (EEG), long-term video EEG, imaging (magnetic resonance imaging [MRI] and computed tomography), neuropathology, and long-term seizure outcome data were acquired and analyzed. One hundred and seventeen patients underwent surgery for refractory TLE; the preoperative MRI diagnosis was concordant with the histopathological diagnosis in 76 % of cases. Tumors were identified with high accuracy (91 %). Mesial temporal sclerosis (MTS) was strongly associated with an excellent outcome after surgery (94 %). Patients with normal imaging results or non-specific pathologies were more likely to experience poor seizure outcomes after surgery (50 %). The radiological identification of lesions was associated with good long-term seizure outcomes, whereas normal MRI results were associated with significantly poorer long-term seizure outcomes. An accurate preoperative MRI is essential to epilepsy surgery since it impacts all stages of management; these results will thereafter help inform practitioners' efforts to predict seizure outcome.
Collapse
Affiliation(s)
- Janani Kassiri
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada.
| | - Cameron Elliott
- Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| | - Natarie Liu
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| | - Janette Mailo
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Thilinie Rajapakse
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Schmitt
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew Wheatley
- Division of Neurosurgery, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| | - D Barry Sinclair
- Division of Pediatric Neurology, University of Alberta, Edmonton, Alberta, Canada; Comprehensive Epilepsy Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
61
|
Convolutional neural networks to identify malformations of cortical development: A feasibility study. Seizure 2021; 91:81-90. [PMID: 34130195 DOI: 10.1016/j.seizure.2021.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To develop and test a deep learning model to automatically detect malformations of cortical development (MCD). METHODS We trained a deep learning model to distinguish between diffuse cortical malformation (CM), periventricular nodular heterotopia (PVNH), and normal magnetic resonance imaging (MRI). We trained 4 different convolutional neural network (CNN) architectures. We used batch normalization, global average pooling, dropout layers, transfer learning, and data augmentation to minimize overfitting. RESULTS There were 45 subjects (866 images) with a normal MRI, 52 subjects (790 images) with CM, and 32 subjects (750 images) with PVNH. There was no subject overlap between the training, validation, and test sets. The InceptionResNetV2 architecture performed best in the validation set in all models and was evaluated in the test set with the following results: 1) the model distinguishing between CM and normal MRI yielded an area under the curve (AUC) of 0.89 and accuracy of 0.81; 2) the model distinguishing between PVNH and normal MRI yielded an AUC of 0.90 and accuracy of 0.84; 3) the model distinguishing between the three classes (CM, PVNH, and normal MRI) yielded an AUC of 0.88 and accuracy of 0.74. Visualization with gradient-weighted class activation maps and saliency maps showed that the deep learning models classified images based on relevant areas within each image. SIGNIFICANCE This study showed that CNNs can detect MCD at a clinically useful performance level with a fully automated workflow without image feature selection.
Collapse
|
62
|
Blümcke I, Coras R, Busch RM, Morita-Sherman M, Lal D, Prayson R, Cendes F, Lopes-Cendes I, Rogerio F, Almeida VS, Rocha CS, Sim NS, Lee JH, Kim SH, Baulac S, Baldassari S, Adle-Biassette H, Walsh CA, Bizzotto S, Doan RN, Morillo KS, Aronica E, Mühlebner A, Becker A, Cienfuegos J, Garbelli R, Giannini C, Honavar M, Jacques TS, Thom M, Mahadevan A, Miyata H, Niehusmann P, Sarnat HB, Söylemezoglu F, Najm I. Toward a better definition of focal cortical dysplasia: An iterative histopathological and genetic agreement trial. Epilepsia 2021; 62:1416-1428. [PMID: 33949696 DOI: 10.1111/epi.16899] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. METHODS Four web-based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD-relevant genes in paired brain and blood samples from the same 22 epilepsy patients. RESULTS Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. SIGNIFICANCE The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype-phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype-phenotype diagnosis in the near future.
Collapse
Affiliation(s)
- Ingmar Blümcke
- Department of Neuropathology, University Hospital, Erlangen, Germany.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Roland Coras
- Department of Neuropathology, University Hospital, Erlangen, Germany
| | - Robyn M Busch
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurology, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Dennis Lal
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Sao Paulo, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, University of Campinas, Sao Paulo, Brazil
| | - Fabio Rogerio
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Pathology, University of Campinas, Sao Paulo, Brazil
| | - Vanessa S Almeida
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, University of Campinas, Sao Paulo, Brazil
| | - Cristiane S Rocha
- Brazilian Institute of Neuroscience and Neurotechnology, Sao Paulo, Brazil.,Department of Medical Genetics and Genomic Medicine, University of Campinas, Sao Paulo, Brazil
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,SoVarGen, Inc., Daejeon, Korea
| | - Se Hoon Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Stephanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Homa Adle-Biassette
- Pathological Anatomy Service, Public Hospital Network of Paris, Paris, France.,NeuroDiderot, Inserm U1141, University of Paris, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Sara Bizzotto
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine S Morillo
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, location Academic Medical Center, Amsterdam, the Netherlands.,Epilepsy Institutes of the Netherlands Foundation, Heemstede, the Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, location Academic Medical Center, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Jesus Cienfuegos
- Department of Anatomic Pathology, International Center for Epilepsy Surgery, Humanitas Medical Group Hospital, Mexico City, Mexico.,Department of Anatomic Pathology, Angels Mexico Hospital, Mexico City, Mexico
| | - Rita Garbelli
- Epilepsy Unit, Carlo Besta Neurological Institute, Scientific Institute for Research and Health Care Foundation, Milan, Italy
| | - Caterina Giannini
- Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biomedical and Neuromotor Science,, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Mrinalini Honavar
- Department of Anatomic Pathology, Pedro Hispano Hospital, Matosinhos, Portugal
| | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Programme, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Histopathology, Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, London, UK
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Pitt Niehusmann
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Harvey B Sarnat
- Department of Paediatrics, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Department of Pathology (Neuropathology),, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Figen Söylemezoglu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
63
|
Pruitt R, Bonda D, Kakare S, Kothare S, Rodgers S. Laser interstitial thermal therapy for gyrus rectus cortical dysplasia in a child: a technical note. Childs Nerv Syst 2021; 37:1747-1751. [PMID: 33825977 DOI: 10.1007/s00381-021-05147-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Laser interstitial thermal therapy (LITT) has become a popular tool in the treatment of tumors and epilepsy. While most commonly used for the treatment of mesial temporal lobe epilepsy, it can be used as a minimally invasive option for the treatment of any seizure focus but has very rarely been discussed in the setting of cortical dysplasia. Here, we discuss the case of a 5-year-old girl with medically refractory epilepsy secondary to a right medial orbital gyrus and gyrus rectus cortical dysplasia successfully treated with LITT. After confirmation of seizure focus using stereo electroencephalography (SEEG), the patient underwent thermal ablation of the focus through an eyebrow incision with use of a single laser fiber. She has been seizure-free 6 months postoperatively, only on one anti-seizure medication, with normal EEG. The use of LITT in this case was successful because of the cylindrical shape of the cortical dysplasia, making it easily accessible via a single laser fiber in the absence of a yet to develop fontal sinus. While open resection would have also been appropriate, the use of LITT provided a minimally invasive alternative approach that allowed for an excellent outcome with limited risks.
Collapse
Affiliation(s)
- Rachel Pruitt
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - David Bonda
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Shefali Kakare
- Division of Neurology, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Sanjeev Kothare
- Division of Neurology, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Shaun Rodgers
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA. .,Division of Neurosurgery, Cohen Children's Medical Center, MD 410 Lakeville Rd, New Hyde Park, NY, 11042, USA.
| |
Collapse
|
64
|
Uva L, Aracri P, Forcaia G, de Curtis M. Mapping region-specific seizure-like patterns in the in vitro isolated guinea pig brain. Exp Neurol 2021; 342:113727. [PMID: 33930392 DOI: 10.1016/j.expneurol.2021.113727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Specific neurophysiological seizure patterns in patients with focal epilepsy depend on cerebral location and the underlying neuropathology. Location-specific patterns have been also reported in experimental models. Two focal seizure patterns, named p-type and l-type, typical of neocortical and mesial temporal regions were identified in both patients explored with intracerebral EEG and in animal models. These two patterns were recorded in the olfactory regions and in the entorhinal cortex after either 4AP or BMI administration. Here we mapped epileptiform activities in other cortices to verify the existence of specific epileptiform patterns. Field potentials were simultaneously recorded at multiple locations in olfactory, limbic and neocortical regions of the isolated guinea pig brain after arterial administration of either 4AP or BMI. Most neocortical areas did not generate new distinctive focal seizure-like event (SLE), beside the p-type and l-type patterns. Spiking activity was typically recorded after BMI in all new analyzed regions, whereas SLEs were commonly observed during 4AP perfusion. We confirmed the presence of reproducible region-specific epileptiform patterns in all explored cortical areas and demonstrated that strongly inter-connected areas generate similar SLEs. Our study suggests that p- and l-type SLE represent the most common focal seizure patterns during acute manipulations with pro-epileptic compounds.
Collapse
Affiliation(s)
- Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Amadeo 42, 20133 Milano, Italy.
| | - Patrizia Aracri
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Amadeo 42, 20133 Milano, Italy
| | - Greta Forcaia
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Amadeo 42, 20133 Milano, Italy.
| |
Collapse
|
65
|
Abstract
INTRODUCTION Focal cortical dysplasias (FCDs) represent the most common etiology in pediatric drug-resistant focal epilepsies undergoing surgical treatment. The localization, extent and histopathological features of FCDs are considerably variable. Somatic mosaic mutations of genes that encode proteins in the PI3K-AKTmTOR pathway, which also includes the tuberous sclerosis associated genes TSC1 and TSC2, have been implicated in FCD type II in a substantial subset of patients. Surgery is the principal therapeutic option for FCD-related epilepsy. Advanced neurophysiological and neuroimaging techniques have improved surgical outcome and reduced the risk of postsurgical deficits. Pharmacological MTOR inhibitors are being tested in clinical trials and might represent an example of personalized treatment of epilepsy based on the known mechanisms of disease, used alone or in combination with surgery. AREAS COVERED This review will critically analyze the advances in the diagnosis and treatment of FCDs, with a special focus on the novel therapeutic options prompted by a better understanding of their pathophysiology. EXPERT OPINION Focal cortical dysplasia is a main cause of drug-resistant epilepsy, especially in children. Novel, personalized approaches are needed to more effectively treat FCD-related epilepsy and its cognitive consequences.
Collapse
Affiliation(s)
- Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Children's Hospital Meyer-University of Florence, Florence, Italy
| |
Collapse
|
66
|
Surgical outcome and prognostic factors in epilepsy patients with MR-negative focal cortical dysplasia. PLoS One 2021; 16:e0249929. [PMID: 33852634 PMCID: PMC8046256 DOI: 10.1371/journal.pone.0249929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Objective Focal cortical dysplasia (FCD) represents a heterogeneous group of disorders of the cortical formation and is one of the most common causes of epilepsy. Magnetic resonance imaging (MRI) is the modality of choice for detecting structural lesions, and the surgical prognosis in patients with MR lesions is favorable. However, the surgical prognosis of patients with MR-negative FCD is unknown. We aimed to evaluate the long-term surgical outcomes and prognostic factors in MR-negative FCD patients through comprehensive presurgical data. Methods We retrospectively reviewed data from 719 drug-resistant epilepsy patients who underwent resective surgery and selected cases in which surgical specimens were pathologically confirmed as FCD Type I or II. If the epileptogenic focus and surgical specimens were obtained from brain areas with a normal MRI appearance, they were classified as MR-negative FCD. Surgical outcomes were evaluated at 2 and 5 years, and clinical, neurophysiological, and neuroimaging data of MR-negative FCD were compared to those of MR-positive FCD. Results Finally, 47 MR-negative and 34 MR-positive FCD patients were enrolled in the study. The seizure-free rate after surgery (Engel classification I) at postoperative 2 year was 59.5% and 64.7% in the MR-negative and positive FCD groups, respectively (p = 0.81). This rate decreased to 57.5% and 44.4% in the MR-negative and positive FCD groups (p = 0.43) at postoperative 5 years. MR-negative FCD showed a higher proportion of FCD type I (87.2% vs. 50.0%, p = 0.001) than MR-positive FCD. Unilobar cerebral perfusion distribution (odds ratio, OR 5.41) and concordance of interictal epileptiform discharges (OR 5.10) were significantly associated with good surgical outcomes in MR-negative FCD. Conclusion In this study, MR-negative and positive FCD patients had a comparable surgical prognosis, suggesting that comprehensive presurgical evaluations, including multimodal neuroimaging studies, are crucial for obtaining excellent surgical outcomes even in epilepsy patients with MR-negative FCD.
Collapse
|
67
|
Thomas DL, Pierson CR. Neuropathology of Surgically Managed Epilepsy Specimens. Neurosurgery 2021; 88:1-14. [PMID: 33231262 DOI: 10.1093/neuros/nyaa366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/08/2020] [Indexed: 11/14/2022] Open
Abstract
Epilepsy is characterized as recurrent seizures, and it is one of the most prevalent disorders of the human nervous system. A large and diverse profile of different syndromes and conditions can cause perturbations in neural networks that are associated with epilepsy. Advances in neuroimaging and electrophysiological monitoring have enhanced our ability to localize the neuropathological lesions that alter the neural networks giving rise to epilepsy, whereas advances in surgical management have resulted in excellent seizure control in many patients following resections. Histopathologic study using a variety of special stains, molecular analysis, and functional studies of these resected tissues has facilitated the neuropathological characterization of these lesions. Here, we review the neuropathology of common structural lesions that cause epilepsy and are amenable to neurosurgical resection, such as hippocampal sclerosis, focal cortical dysplasia, and its associated principal lesions, including long-term epilepsy-associated tumors, as well as other malformations of cortical development and Rasmussen encephalitis.
Collapse
Affiliation(s)
- Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio.,Division of Anatomy, Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
68
|
Surgical Outcome in Extratemporal Epilepsies Based on Multimodal Pre-Surgical Evaluation and Sequential Intraoperative Electrocorticography. Behav Sci (Basel) 2021; 11:bs11030030. [PMID: 33806277 PMCID: PMC7998314 DOI: 10.3390/bs11030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/28/2023] Open
Abstract
Objective: to present the postsurgical outcome of extratemporal epilepsy (ExTLE) patients submitted to preoperative multimodal evaluation and intraoperative sequential electrocorticography (ECoG). Subjects and methods: thirty-four pharmaco-resistant patients with lesional and non-lesional ExTLE underwent comprehensive pre-surgical evaluation including multimodal neuroimaging such as ictal and interictal perfusion single photon emission computed tomography (SPECT) scans, subtraction of ictal and interictal SPECT co-registered with magnetic resonance imaging (SISCOM) and electroencephalography (EEG) source imaging (ESI) of ictal epileptic activity. Surgical procedures were tailored by sequential intraoperative ECoG, and absolute spike frequency (ASF) was calculated in the pre- and post-resection ECoG. Postoperative clinical outcome assessment for each patient was carried out one year after surgery using Engel scores. Results: frontal and occipital resection were the most common surgical techniques applied. In addition, surgical resection encroaching upon eloquent cortex was accomplished in 41% of the ExTLE patients. Pre-surgical magnetic resonance imaging (MRI) did not indicate a distinct lesion in 47% of the cases. In the latter number of subjects, SISCOM and ESI of ictal epileptic activity made it possible to estimate the epileptogenic zone. After one- year follow up, 55.8% of the patients was categorized as Engel class I–II. In this study, there was no difference in the clinical outcome between lesional and non lesional ExTLE patients. About 43.7% of patients without lesion were also seizure- free, p = 0.15 (Fischer exact test). Patients with satisfactory seizure outcome showed lower absolute spike frequency in the pre-resection intraoperative ECoG than those with unsatisfactory seizure outcome, (Mann– Whitney U test, p = 0.005). Conclusions: this study has shown that multimodal pre-surgical evaluation based, particularly, on data from SISCOM and ESI alongside sequential intraoperative ECoG, allow seizure control to be achieved in patients with pharmacoresistant ExTLE epilepsy.
Collapse
|
69
|
Wiwattanadittakul N, Suwannachote S, You X, Cohen NT, Tran T, Phuackchantuck R, Tsuchida TN, Depositario-Cabacar DF, Zelleke T, Schreiber JM, Conry JA, Kao A, Bartolini L, Oluigbo C, Almira-Suarez MI, Havens K, Whitehead MT, Gaillard WD. Spatiotemporal distribution and age of seizure onset in a pediatric epilepsy surgery cohort with cortical dysplasia. Epilepsy Res 2021; 172:106598. [PMID: 33711709 DOI: 10.1016/j.eplepsyres.2021.106598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Focal Cortical Dysplasias (CD) are a common etiology of refractory pediatric epilepsy and are amenable to epilepsy surgery. We investigated the association of lesion volume and location to age of seizure onset among children with CD who underwent epilepsy surgery. METHODS A retrospective study of epilepsy surgery patients with pathologically-confirmed CD. Regions of interest (ROI) determined preoperative lesion volumes on 1.5 T and 3 T T2 and SPGR MRIs, and location in 7 distributed neural networks. Descriptive and inferential statistics were used. RESULTS Fifty-five patients were identified: 35 girls (56.5 %). Median age of seizure onset: 19.0 months (range 0.02 months - 16.0 years). Median age of surgery: 7.8 years (range 2.89 months - 24.45 years). CD were frontal (n = 21, 38 %); temporal (n = 15, 27 %); parietal (n = 10, 18 %); occipital (n = 3, 5%); multilobar (n = 6, 11 %). Frontal FCD had seizure onset < 1-year-old (P = 0.10); temporal lobe CD seizure onset was more likely > 5-years-old (P= 0.06). Median lesion volume for CD was 23.23 cm3 (range: 1.87-591.73 cm3). Larger CD lesions were associated with earlier epilepsy (P = 0.01, r = -0.16). We did not find that lesions proximal to early maturing cortical regions were associated with earlier seizure onset. We found an association with CD location in the default mode network (DMN) and age onset < 5years old (P = 0.03). Age of seizure onset was negatively correlated with percent of CD overlapping motor cortex (P = 0.001, r =-0.794) but not with CD overlap of the visual cortex (P = 0.35). There was no effect of CD type on age of epilepsy onset. SIGNIFICANCE Larger CD lesions are associated with earlier onset epilepsy. CD most commonly occurs within the DMN and Limbic network, and DMN is associated with seizure onset before 5-years-old. Percent of CD overlapping motor cortex correlates with earlier seizure onset. These observations may reflect patterns of brain maturation or regional differences in clinical expression of seizures.
Collapse
Affiliation(s)
- Natrujee Wiwattanadittakul
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Sirorat Suwannachote
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA; Department of Pediatrics, Queen Sirikit National Institute of Child Health, Rungsit University, Bangkok, Thailand
| | - Xiaozhen You
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Nathan T Cohen
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA.
| | - Tan Tran
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Rochana Phuackchantuck
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tammy N Tsuchida
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Dewi F Depositario-Cabacar
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Tesfaye Zelleke
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - John M Schreiber
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Joan A Conry
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Amy Kao
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Luca Bartolini
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA; Department of Pediatrics, Brown University, Rhode Island, USA
| | - Chima Oluigbo
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - M Isabel Almira-Suarez
- Department of Pathology, Children's National Hospital & George Washington University School of Medicine, Washington DC, USA
| | - Kathryn Havens
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - Matthew T Whitehead
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| | - William Davis Gaillard
- Center for Neuroscience, Children's National Hospital, George Washington University School of Medicine, Washington DC, USA
| |
Collapse
|
70
|
Berger A, Cohen N, Fahoum F, Medvedovsky M, Meller A, Ekstein D, Benifla M, Aizenstein O, Fried I, Gazit T, Strauss I. Preoperative localization of seizure onset zones by magnetic source imaging, EEG-correlated functional MRI, and their combination. J Neurosurg 2021; 134:1037-1043. [PMID: 32413858 DOI: 10.3171/2020.3.jns192794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Preoperative localization of seizure onset zones (SOZs) is an evolving field in the treatment of refractory epilepsy. Both magnetic source imaging (MSI), and the more recent EEG-correlated functional MRI (EEG-fMRI), have shown applicability in assisting surgical planning. The purpose of this study was to evaluate the capability of each method and their combination in localizing the seizure onset lobe (SL). METHODS The study included 14 patients who underwent both MSI and EEG-fMRI before undergoing implantation of intracranial EEG (icEEG) as part of the presurgical planning of the resection of an epileptogenic zone (EZ) during the years 2012-2018. The estimated location of the SL by each method was compared with the location determined by icEEG. Identification rates of the SL were compared between the different methods. RESULTS MSI and EEG-fMRI showed similar identification rates of SL locations in relation to icEEG results (88% ± 31% and 73% ± 42%, respectively; p = 0.281). The additive use of the coverage lobes of both methods correctly identified 100% of the SL, significantly higher than EEG-fMRI alone (p = 0.039) and nonsignificantly higher than MSI (p = 0.180). False-identification rates of the additive coverage lobes were significantly higher than MSI (p = 0.026) and EEG-fMRI (p = 0.027). The intersecting lobes of both methods showed the lowest false identification rate (13% ± 6%, p = 0.01). CONCLUSIONS Both MSI and EEG-fMRI can assist in the presurgical evaluation of patients with refractory epilepsy. The additive use of both tests confers a high identification rate in finding the SL. This combination can help in focusing implantation of icEEG electrodes targeting the SOZ.
Collapse
Affiliation(s)
- Assaf Berger
- 1Department of Neurosurgery
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Noa Cohen
- 2Sagol Brain Institute
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Firas Fahoum
- 3Department of Neurology, and
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Mordekhay Medvedovsky
- 4Department of Neurology, Hadassah Medical Center, Jerusalem
- 8Hebrew University Hadassah Medical School, Jerusalem; and
| | - Aaron Meller
- 2Sagol Brain Institute
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Dana Ekstein
- 4Department of Neurology, Hadassah Medical Center, Jerusalem
- 8Hebrew University Hadassah Medical School, Jerusalem; and
| | - Mony Benifla
- 5Department of Neurosurgery, Rambam Health Care Campus, Haifa
- 9Rappaport Faculty of Medicine-Technion, Haifa, Israel
| | - Orna Aizenstein
- 6Department of Radiology, Tel Aviv Medical Center, Tel Aviv
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Itzhak Fried
- 1Department of Neurosurgery
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Tomer Gazit
- 2Sagol Brain Institute
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| | - Ido Strauss
- 1Department of Neurosurgery
- 7Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv
| |
Collapse
|
71
|
Deidda G, Crunelli V, Di Giovanni G. 5-HT/GABA interaction in epilepsy. PROGRESS IN BRAIN RESEARCH 2021; 259:265-286. [PMID: 33541679 DOI: 10.1016/bs.pbr.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epilepsy is a neurological condition characterized by synchronous neuronal oscillations (seizures) in the electroencephalogram. Seizures are classified in focal or generalized (depending on the brain territory interested during seizures), and in convulsive and/or not convulsive (depending on the presence or not of involuntary movements). The current pharmacological treatments are mainly based on GABA modulation although different neurotransmitters are also involved in epilepsy, including serotonin. However despite much extensive progress in the understanding of epilepsy mechanisms, still, a percentage of people with epilepsy are pharmaco-resistant calling for the need for new therapeutic targets. Here we review preclinical and human evidence showing that serotonin modulates epilepsy that this likely happens via a major modulation/interaction with GABA.
Collapse
Affiliation(s)
- Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Vincenzo Crunelli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
72
|
Rampp S, Rössler K, Hamer H, Illek M, Buchfelder M, Doerfler A, Pieper T, Hartlieb T, Kudernatsch M, Koelble K, Peixoto-Santos JE, Blümcke I, Coras R. Dysmorphic neurons as cellular source for phase-amplitude coupling in Focal Cortical Dysplasia Type II. Clin Neurophysiol 2021; 132:782-792. [PMID: 33571886 DOI: 10.1016/j.clinph.2021.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Reliable localization of the epileptogenic zone is necessary for successful epilepsy surgery. Neurophysiological biomarkers include ictal onsets and interictal spikes. Furthermore, the epileptic network shows oscillations with potential localization value and pathomechanistic implications. The cellular origin of such markers in invasive EEG in vivo remains to be clarified. METHODS In the presented pilot study, surgical brain samples and invasive EEG recordings of seven patients with surgically treated Focal Cortical Dysplasia (FCD) type II were coregistered using a novel protocol. Dysmorphic neurons and balloon cells were immunohistochemically quantified. Evaluated markers included seizure onset, spikes, and oscillatory activity in delta, theta, gamma and ripple frequency bands, as well as sample entropy and phase-amplitude coupling between delta, theta, alpha and beta phase and gamma amplitude. RESULTS Correlations between histopathology and neurophysiology provided evidence for a contribution of dysmorphic neurons to interictal spikes, fast gamma activity and ripples. Furthermore, seizure onset and phase-amplitude coupling in areas with dysmorphic neurons suggests preserved connectivity is related to seizure initiation. Balloon cells showed no association. CONCLUSIONS Phase-amplitude coupling, spikes, fast gamma and ripples are related to the density of dysmorphic neurons and localize the seizure onset zone. SIGNIFICANCE The results of our pilot study provide a new powerful tool to address the cellular source of abnormal neurophysiology signals to leverage current and novel biomarkers for the localization of epileptic activity in the human brain.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Germany; Department of Neurosurgery, University Hospital Halle, Germany.
| | - Karl Rössler
- Department of Neurosurgery, University Hospital Erlangen, Germany; Department of Neurosurgery, University Hospital Vienna, Austria
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Germany
| | - Margit Illek
- Department of Neurosurgery, University Hospital Erlangen, Germany
| | | | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Germany
| | - Tom Pieper
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Germany
| | - Till Hartlieb
- Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Germany
| | - Manfred Kudernatsch
- Epilepsy Center and Department of Neurosurgery, Schön Klinik Vogtareuth, Germany; Research Institute, Rehabilitation, Transition, Palliation, PMU Salzburg, Salzburg, Austria
| | - Konrad Koelble
- Department of Neuropathology, University Hospital Erlangen, Germany
| | - Jose Eduardo Peixoto-Santos
- Department of Neuropathology, University Hospital Erlangen, Germany; Department of Neurology and Neurosurgery, Paulista School of Medicine, UNIFESP, Brazil
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Germany
| |
Collapse
|
73
|
Focal cortical dysplasia with prolonged ictal asystole, a case report. Clin Neurophysiol Pract 2021; 6:10-15. [PMID: 33426383 PMCID: PMC7779374 DOI: 10.1016/j.cnp.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Focal cortical dysplasia causes refractory epilepsy with falls and syncope. FCD is known for ictal bradycardia and ictal asystole. Diagnosis and localization of the epileptogenic zone and ictal asystole can be made with simultaneous VEEG and EKG.
Introduction Cortical dysplasia carries significant morbidities such as seizures and delayed milestones. Focal cortical dysplasia (FCD) causes refractory epilepsy with various seizure types depending on the location and extent of the dysplasia. FCD in the temporal region and the insular cortex may cause ictal bradycardia (IB) and ictal asystole (IA). Video EEG (VEEG) with simultaneous EKG recording can better diagnose these cardiac abnormalities in FCD. We describe a case of refractory epilepsy. The patient’s clinical seizures were usually followed by syncope. VEEG revealed frequent seizures some of which were associated with prolonged ictal asystole. Results A 15 years old female was admitted to an epilepsy monitoring unit for VEEG. There were widespread fast abnormal discharges known as FREDs with a frequency of 16–20 Hz. She developed numerous habitual seizures and syncope. Some of these were associated with an EKG change in the form of asystole. The cardiac workup was normal. MRI revealed abnormalities in bilateral insular, temporal, and right parietal lobes. Conclusion This case highlights the significance of:Fast rhythmic epileptiform discharges (FREDs) in cortical dysplasia. Role of video-EEG monitoring. Prolonged asystole and the potential role of cardiac intervention in the form of cardiac pacing and cardioneuroablation in decreasing syncope.
Collapse
|
74
|
Khoo HM, Hall JA, Dubeau F, Tani N, Oshino S, Fujita Y, Gotman J, Kishima H. Technical Aspects of SEEG and Its Interpretation in the Delineation of the Epileptogenic Zone. Neurol Med Chir (Tokyo) 2020; 60:565-580. [PMID: 33162469 PMCID: PMC7803703 DOI: 10.2176/nmc.st.2020-0176] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stereo-electroencephalography (SEEG) has gained global popularity in recent years. In Japan, a country in which invasive studies using subdural electrodes (SDEs) have been the mainstream, SEEG has been approved for insurance coverage in 2020 and is expected to gain in popularity. Some concepts supporting SEEG methodology are fundamentally different from that of SDE studies. Clinicians interested in utilizing SEEG in their practice should be aware of those aspects in which they differ. Success in utilizing the SEEG methodology relies heavily on the construction of an a priori hypothesis regarding the putative seizure onset zone (SOZ) and propagation. This article covers the technical and theoretical aspects of SEEG, including the surgical techniques and precautions, hypothesis construction, and the interpretation of the recording, all with the aim of providing an introductory guide to SEEG.
Collapse
Affiliation(s)
- Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Francois Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Yuya Fujita
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
75
|
Hassankhani A, Stein JM, Haboosheh AG, Vossough A, Loevner LA, Nabavizadeh SA. Anatomical Variations, Mimics, and Pitfalls in Imaging of Patients with Epilepsy. J Neuroimaging 2020; 31:20-34. [PMID: 33314527 DOI: 10.1111/jon.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022] Open
Abstract
Epilepsy is among one of the most common neurologic disorders. The role of magnetic resonance imaging (MRI) in the diagnosis and management of patients with epilepsy is well established, and most patients with epilepsy are likely to undergo at least one or more MRI examinations in the course of their disease. Recent advances in high-field MRI have enabled high resolution in vivo visualization of small and intricate anatomic structures that are of great importance in the assessment of seizure disorders. Familiarity with normal anatomic variations is essential in the accurate diagnosis and image interpretation, as these variations may be mistaken for epileptogenic foci, leading to unnecessary follow-up imaging, or worse, unnecessary treatment. After a brief overview of normal imaging anatomy of the mesial temporal lobe, this article will review a few important common and uncommon anatomic variations, mimics, and pitfalls that may be encountered in the imaging evaluation of patients with epilepsy.
Collapse
Affiliation(s)
- Alvand Hassankhani
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joel M Stein
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Amit G Haboosheh
- Department of Radiology, Hadassah Ein Karem Hospital, Jerusalem, Israel
| | - Arastoo Vossough
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Laurie A Loevner
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Seyed Ali Nabavizadeh
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
76
|
Focal cortical dysplasia: etiology, epileptogenesis, classification, clinical presentation, imaging, and management. Childs Nerv Syst 2020; 36:2939-2947. [PMID: 32766946 DOI: 10.1007/s00381-020-04851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Focal cortical dysplasia (FCD) is the most prevalent cause of intractable epilepsy in children. It was first described by Taylor et al. in 1971. In 2011, the International League against Epilepsy described an international consensus of classification for FCD. However, the exact mechanism causing this pathology remains unclear. The diagnosis and recognition of FCD increase with the advances in neuroradiology and electrophysiology. FOCUS OF REVIEW In this paper, we discuss the literature regarding management of FCD with a focus on etiology, pathophysiology, classification, clinical presentation, and imaging modalities. We will also discuss certain variables affecting surgical outcome of patients with FCD. CONCLUSION Based on our review findings, it is concluded that surgical management with complete resection of the lesion following preoperative localization of the epileptogenic zone in patients with FCD subtypes can provide a seizure-free outcome.
Collapse
|
77
|
Youngerman BE, Save AV, McKhann GM. Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy for Epilepsy: Systematic Review of Technique, Indications, and Outcomes. Neurosurgery 2020; 86:E366-E382. [PMID: 31980831 DOI: 10.1093/neuros/nyz556] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND For patients with focal drug-resistant epilepsy (DRE), surgical resection of the epileptogenic zone (EZ) may offer seizure freedom and benefits for quality of life. Yet, concerns remain regarding invasiveness, morbidity, and neurocognitive side effects. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive option for stereotactic ablation rather than resection of the EZ. OBJECTIVE To provide an introduction to MRgLITT for epilepsy, including historical development, surgical technique, and role in therapy. METHODS The development of MRgLITT is briefly recounted. A systematic review identified reported techniques and indication-specific outcomes of MRgLITT for DRE in human studies regardless of sample size or follow-up duration. Potential advantages and disadvantages compared to available alternatives for each indication are assessed in an unstructured review. RESULTS Techniques and outcomes are reported for mesial temporal lobe epilepsy, hypothalamic hamartoma, focal cortical dysplasia, nonlesional epilepsy, tuberous sclerosis, periventricular nodular heterotopia, cerebral cavernous malformations, poststroke epilepsy, temporal encephalocele, and corpus callosotomy. CONCLUSION MRgLITT offers access to foci virtually anywhere in the brain with minimal disruption of the overlying cortex and white matter, promising fewer neurological side effects and less surgical morbidity and pain. Compared to other ablative techniques, MRgLITT offers immediate, discrete lesions with real-time monitoring of temperature beyond the fiber tip for damage estimates and off-target injury prevention. Applications of MRgLITT for epilepsy are growing rapidly and, although more evidence of safety and efficacy is needed, there are potential advantages for some patients.
Collapse
Affiliation(s)
- Brett E Youngerman
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Akshay V Save
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
78
|
Abstract
The intracranial electroencephalogram (iEEG) is essential in decision making for epilepsy surgery. Although localization of epileptogenic brain regions by means of iEEG has been the gold standard for surgical decision-making for more than 70 years, established guidelines for what constitutes genuine iEEG epileptic activity and what is normal brain activity are not available. This review provides a summary of the current state of knowledge and understanding on normal iEEG entities and variants, the effects of sleep on regional and lobar iEEG, iEEG patterns of interictal and ictal epileptic activity and their relation to well-described epileptogenic pathologies and surgical outcome.
Collapse
|
79
|
Jackson HN, Gadgil N, Pan IW, Clarke DF, Wagner KM, Cronkite CA, Lam S. Sociodemographic Factors in Pediatric Epilepsy Surgery. Pediatr Neurol 2020; 107:71-76. [PMID: 32284204 DOI: 10.1016/j.pediatrneurol.2019.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Despite documented efficacy of surgical treatment in carefully selected patients, surgery is delayed and/or underutilized in both adult and children with focal onset epilepsy. The reasons for surgical delay are often assumed or theorized, and studies have predominantly targeted the adult population. To focus on a more targeted pediatric population and to determine identifiable reasons for intervention, this study aimed to investigate time to epilepsy surgery among pediatric patients with medically intractable epilepsy associated with focal cortical dysplasia and to identify sociodemographic and clinical associations in time to epilepsy surgery. METHODS We reviewed 96 consecutive pediatric patients who underwent surgery for medically intractable epilepsy with a diagnosis of focal cortical dysplasia. Descriptive statistics, univariate and multivariate analyses were conducted to study the association of sociodemographic variables of patients with focal cortical dysplasia and time to epilepsy surgery and postoperative seizure control. RESULTS We identified that non-white patients on average had a longer duration of epilepsy before surgery and traveled shorter distances for care. Non-white patients were more likely to have government-funded insurance. Patients who traveled the shortest distance to the surgical center underwent epilepsy surgery at an older age. CONCLUSIONS Sociodemographic factors of travel distance, insurance, and race influenced time to epilepsy surgery for children with focal cortical dysplasia. Further research is warranted to target barriers in access to subspecialty care and develop ways to identify earlier the patients who may benefit from evaluation and deployment of surgical intervention.
Collapse
Affiliation(s)
- Hudin N Jackson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - I-Wen Pan
- Division of Cancer Prevention and Population Sciences, Department of Health Services Research, MD Anderson Cancer Center, Houston, Texas
| | - Dave F Clarke
- Division of Pediatric Neurology, Department of Neurology, Dell Medical School University of Texas at Austin, Austin, Texas
| | - Kathryn M Wagner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | | | - Sandi Lam
- Division of Pediatric Neurosurgery, Ann and Robert H Lurie Children's Hospital, Chicago, Illinois; Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
80
|
Lee M, Kim EJ, Woo DC, Shim WH, Yum MS. In vivo MRI Successfully Reveals the Malformation of Cortical Development in Infant Rats. Front Neurosci 2020; 14:510. [PMID: 32508585 PMCID: PMC7251149 DOI: 10.3389/fnins.2020.00510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Objective: Malformations of cortical development (MCDs) are major causes of intractable epilepsies. To characterize the early neuroimaging findings of MCDs, we tried to identify the MRI features consistent with pathological findings in an infant rat MCD model, prenatally exposed to methylazoxymethanol (MAM), by using newly developed MRI techniques. Methods: At gestational day 15, two doses of MAM (15 mg/kg intraperitoneally) or normal saline were injected into pregnant rats. The offspring underwent in vivo MRI, including glutamate chemical exchange saturation transfer (GluCEST), 1H-MR spectroscopy, and diffusion tensor imaging, at postnatal day (P) 15 using a 7T small-animal imaging system. Another set of prenatally MAM-exposed rats were sacrificed for histological staining. Results: At P15, the retrosplenial cortex (RSC) of rats with MCDs showed decreased neuronal nuclei, parvalbumin, and reelin expressions. Moreover, dendritic arborization of pyramidal cells in the RSC significantly decreased in infant rats with MCDs. In vivo MRI showed significantly decreased GluCEST (%) in the RSC of rats with MCDs (p = 0.000) and a significant correlation between GluCEST (%) and RSC thickness (r = 0.685, p = 0.003). The rats with MCDs showed reduced glutamate (p = 0.002), N-acetylaspartate (p = 0.002), and macromolecule and lipid levels (p = 0.027) and significantly reduced fractional anisotropy values in the RSC. Conclusion: In vivo MRI revealed reduced neuronal population and dendritic arborization in the RSC of infant rats with MCDs during the early postnatal period. These pathological changes of the cortex could serve as clinical imaging biomarkers of MCDs in infants.
Collapse
Affiliation(s)
- Minyoung Lee
- Department of Pediatrics, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Eun-Jin Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Woo-Hyun Shim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Radiology, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
81
|
Sleep related epilepsy in focal cortical dysplasia type 2: Insights from sleep recordings in presurgical evaluation. Clin Neurophysiol 2020; 131:609-615. [DOI: 10.1016/j.clinph.2019.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023]
|
82
|
Sepúlveda MM, Rojas GM, Faure E, Pardo CR, Las Heras F, Okuma C, Cordovez J, de la Iglesia-Vayá M, Molina-Mateo J, Gálvez M. Visual analysis of automated segmentation in the diagnosis of focal cortical dysplasias with magnetic resonance imaging. Epilepsy Behav 2020; 102:106684. [PMID: 31778880 DOI: 10.1016/j.yebeh.2019.106684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/12/2019] [Accepted: 11/02/2019] [Indexed: 01/19/2023]
Abstract
Focal cortical dysplasias (FCDs) are a frequent cause of epilepsy. It has been reported that up to 40% of them cannot be visualized with conventional magnetic resonance imaging (MRI). The main objective of this work was to evaluate by means of a retrospective descriptive observational study whether the automated brain segmentation is useful for detecting FCD. One hundred and fifty-five patients, who underwent surgery between the years 2009 and 2016, were reviewed. Twenty patients with FCD confirmed by histology and a preoperative segmentation study, with ages ranging from 3 to 43 years (14 men), were analyzed. Three expert neuroradiologists visually analyzed conventional and advanced MRI with automated segmentation. They were classified into positive and negative concerning visualization of FCD by consensus. Of the 20 patients evaluated with conventional MRI, 12 were positive for FCD. Of the negative studies for FCD with conventional MRI, 2 (25%) were positive when they were analyzed with automated segmentation. In 13 of the 20 patients (with positive segmentation for FCD), cortical thickening was observed in 5 (38.5%), while pseudothickening was observed in the rest of patients (8, 61.5%) in the anatomical region of the brain corresponding to the dysplasia. This work demonstrated that automated brain segmentation helps to increase detection of FCDs that are unable to be visualized in conventional MRI images.
Collapse
Affiliation(s)
| | - Gonzalo M Rojas
- Laboratory for Advanced Medical Image Processing, Department of Radiology, Clínica las Condes, Santiago, Chile; Health Innovation Center, Clínica las Condes, Santiago, Chile; Advanced Center for Epilepsy, Clínica la Condes, Santiago, Chile.
| | - Evelyng Faure
- Department of Radiology, Clínica las Condes, Santiago, Chile; Advanced Center for Epilepsy, Clínica la Condes, Santiago, Chile
| | - Claudio R Pardo
- Department of Radiology, Clínica las Condes, Santiago, Chile
| | - Facundo Las Heras
- Department of Pathological Anatomy, Clínica las Condes, Santiago, Chile
| | - Cecilia Okuma
- Department of Radiology, Clínica las Condes, Santiago, Chile
| | - Jorge Cordovez
- Department of Radiology, Clínica las Condes, Santiago, Chile
| | - María de la Iglesia-Vayá
- Regional Ministry of Health in Valencia Region, Valencia, Spain; Join Unit FISABIO-CIPF, Valencia, Spain
| | - José Molina-Mateo
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Marcelo Gálvez
- Department of Radiology, Clínica las Condes, Santiago, Chile; Health Innovation Center, Clínica las Condes, Santiago, Chile; Advanced Center for Epilepsy, Clínica la Condes, Santiago, Chile; Academic Direction, Clinica Las Condes, Santiago, Chile
| |
Collapse
|
83
|
|
84
|
Neal A, Ostrowsky-Coste K, Jung J, Lagarde S, Maillard L, Kahane P, Touraine R, Catenoix H, Montavont A, Isnard J, Arzimanoglou A, Bartolomei F, Guenot M, Rheims S. Epileptogenicity in tuberous sclerosis complex: A stereoelectroencephalographic study. Epilepsia 2019; 61:81-95. [PMID: 31860139 DOI: 10.1111/epi.16410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE In tuberous sclerosis complex (TSC)-associated drug-resistant epilepsy, the optimal invasive electroencephalographic (EEG) and operative approach remains unclear. We examined the role of stereo-EEG in TSC and used stereo-EEG data to investigate tuber and surrounding cortex epileptogenicity. METHODS We analyzed 18 patients with TSC who underwent stereo-EEG (seven adults). One hundred ten seizures were analyzed with the epileptogenicity index (EI). In 13 patients with adequate tuber sampling, five anatomical regions of interest (ROIs) were defined: dominant tuber (tuber with highest median EI), perituber cortex, secondary tuber (tuber with second highest median EI), nearby cortex (normal-appearing cortex in the same lobe as dominant tuber), and distant cortex (in other lobes). At the seizure level, epileptogenicity of ROIs was examined by comparing the highest EI recorded within each anatomical region. At the patient level, epileptogenic zone (EZ) organization was separated into focal tuber (EZ confined to dominant tuber) and complex (all other patterns). RESULTS The most epileptogenic ROI was the dominant tuber, with higher EI than perituber cortex, secondary tuber, nearby cortex, and distant cortex (P < .001). A focal tuber EZ organization was identified in seven patients. This group had 80% Engel IA postsurgical outcome and distinct dominant tuber characteristics: continuous interictal discharges (IEDs; 100%), fluid-attenuated inversion recovery (FLAIR) hypointense center (86%), center-to-rim EI gradient, and stimulation-induced seizures (71%). In contrast, six patients had a complex EZ organization, characterized by nearby cortex as the most epileptogenic region and 40% Engel IA outcome. At the intratuber level, the combination of FLAIR hypointense center, continuous IEDs, and stimulation-induced seizures offered 98% specificity for a focal tuber EZ organization. SIGNIFICANCE Tubers with focal EZ organization have a striking similarity to type II focal cortical dysplasia. The presence of distinct EZ organizations has significant implications for EZ hypothesis generation, invasive EEG approach, and resection strategy.
Collapse
Affiliation(s)
- Andrew Neal
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France.,Department of Neuroscience, Faculty of Medicine, Nursing, and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karine Ostrowsky-Coste
- Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France.,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional Neurology, Member of the ERN EpiCARE Lyon University Hospital, Lyon, France
| | - Julien Jung
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Stanislas Lagarde
- Epileptology Department, Public Assistance Hospitals of Marseille, National Institute of Health and Medical Research, Institute of Systems Neuroscience, Timone Hospital, Aix Marseille University, Marseille, France
| | - Louis Maillard
- Neurology Department, University Hospital of Nancy, Nancy, France
| | - Philippe Kahane
- Department of Neurology, Grenoble-Alpes University Hospital, Grenoble Institute of Neurosciences, National Institute of Health and Medical Research U1216, Grenoble Alpes University, Grenoble, France
| | - Renaud Touraine
- Department of Genetics, University Hospital Center-North Hospital, Saint Etienne, France
| | - Helene Catenoix
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Alexandra Montavont
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Jean Isnard
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Alexis Arzimanoglou
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Pediatric Clinical Epileptology, Sleep Disorders, and Functional Neurology, Member of the ERN EpiCARE Lyon University Hospital, Lyon, France
| | - Fabrice Bartolomei
- Epileptology Department, Public Assistance Hospitals of Marseille, National Institute of Health and Medical Research, Institute of Systems Neuroscience, Timone Hospital, Aix Marseille University, Marseille, France
| | - Marc Guenot
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurosurgery, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France
| | - Sylvain Rheims
- National Institute of Health and Medical Research U1028/National Center for Scientific Research, Mixed Unit of Research 5292, Lyon Neuroscience Research Center, Lyon, France.,Department of Functional Neurology and Epileptology, Member of the ERN EpiCARE Lyon University Hospital and Lyon 1 University, Lyon, France.,Idée Epilepsy Institute, Lyon, France
| |
Collapse
|
85
|
Hillmann P, Fabbro D. PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. Int J Mol Sci 2019; 20:E5792. [PMID: 31752127 PMCID: PMC6888641 DOI: 10.3390/ijms20225792] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway has been implicated as a cancer target. Big pharma players and small companies have been developing small molecule inhibitors of PI3K and/or mTOR since the 1990s. Although four inhibitors have been approved, many open questions regarding tolerability, patient selection, sensitivity markers, development of resistances, and toxicological challenges still need to be addressed. Besides clear oncological indications, PI3K and mTOR inhibitors have been suggested for treating a plethora of different diseases. In particular, genetically induced PI3K/mTOR pathway activation causes rare disorders, known as overgrowth syndromes, like PTEN (phosphatase and tensin homolog) hamartomas, tuberous sclerosis complex (TSC), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-related overgrowth spectrum (PROS), and activated PI3-Kinase delta syndrome (PI3KCD, APDS). Some of those disorders likeTSC or hemimegalencephaly, which are one of the PROS disorders, also belong to a group of diseases called mTORopathies. This group of syndromes presents with additional neurological manifestations associated with epilepsy and other neuropsychiatric symptoms induced by neuronal mTOR pathway hyperactivation. While PI3K and mTOR inhibitors have been and still are intensively tested in oncology indications, their use in genetically defined syndromes and mTORopathies appear to be promising avenues for a pharmacological intervention.
Collapse
Affiliation(s)
| | - Doriano Fabbro
- PIQUR Therapeutics, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| |
Collapse
|
86
|
Bartolini E, Cosottini M, Costagli M, Barba C, Tassi L, Spreafico R, Garbelli R, Biagi L, Buccoliero A, Giordano F, Guerrini R. Ultra-High-Field Targeted Imaging of Focal Cortical Dysplasia: The Intracortical Black Line Sign in Type IIb. AJNR Am J Neuroradiol 2019; 40:2137-2142. [PMID: 31727747 DOI: 10.3174/ajnr.a6298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Conventional MR imaging has limitations in detecting focal cortical dysplasia. We assessed the added value of 7T in patients with histologically proved focal cortical dysplasia to highlight correlations between neuropathology and ultra-high-field imaging. MATERIALS AND METHODS Between 2013 and 2019, we performed a standardized 7T MR imaging protocol in patients with drug-resistant focal epilepsy. We focused on 12 patients in whom postsurgical histopathology revealed focal cortical dysplasia and explored the diagnostic yield of preoperative 7T versus 1.5/3T MR imaging and the correlations of imaging findings with histopathology. We also assessed the relationship between epilepsy surgery outcome and the completeness of surgical removal of the MR imaging-visible structural abnormality. RESULTS We observed clear abnormalities in 10/12 patients using 7T versus 9/12 revealed by 1.5/3T MR imaging. In patients with focal cortical dysplasia I, 7T MR imaging did not disclose morphologic abnormalities (n = 0/2). In patients with focal cortical dysplasia II, 7T uncovered morphologic signs that were not visible on clinical imaging in 1 patient with focal cortical dysplasia IIa (n = 1/4) and in all those with focal cortical dysplasia IIb (n = 6/6). T2*WI provided the highest added value, disclosing a peculiar intracortical hypointense band (black line) in 5/6 patients with focal cortical dysplasia IIb. The complete removal of the black line was associated with good postsurgical outcome (n = 4/5), while its incomplete removal yielded unsatisfactory results (n = 1/5). CONCLUSIONS The high sensitivity of 7T T2*-weighted images provides an additional tool in defining potential morphologic markers of high epileptogenicity within the dysplastic tissue of focal cortical dysplasia IIb and will likely help to more precisely plan epilepsy surgery and explain surgical failures.
Collapse
Affiliation(s)
- E Bartolini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini).,Neurology Unit (E.B.), USL Centro Toscana, Nuovo Ospedale Santo Stefano, Prato, Italy
| | - M Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery (M. Cosottini), University of Pisa, Pisa, Italy
| | - M Costagli
- IMAGO7 Research Foundation (M. Costagli), Pisa, Italy
| | - C Barba
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - L Tassi
- Epilepsy Surgery Centre C. Munari (L.T.), Ospedale Niguarda, Milano, Italy
| | - R Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - R Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - L Biagi
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| | - A Buccoliero
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - F Giordano
- Neurogenetics and Neurobiology Unit and Laboratories, and Pediatric Neurosurgery Unit (F.G.), Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - R Guerrini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini) .,Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| |
Collapse
|
87
|
Di Giacomo R, Uribe-San-Martin R, Mai R, Francione S, Nobili L, Sartori I, Gozzo F, Pelliccia V, Onofrj M, Lo Russo G, de Curtis M, Tassi L. Stereo-EEG ictal/interictal patterns and underlying pathologies. Seizure 2019; 72:54-60. [DOI: 10.1016/j.seizure.2019.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
|
88
|
Miller ZA, Spina S, Pakvasa M, Rosenberg L, Watson C, Mandelli ML, Paredes MF, Joie RL, Rabinovici GD, Rosen HJ, Grinberg LT, Huang EJ, Miller BL, Seeley WW, Gorno-Tempini ML. Cortical developmental abnormalities in logopenic variant primary progressive aphasia with dyslexia. Brain Commun 2019; 1:fcz027. [PMID: 32699834 PMCID: PMC7364264 DOI: 10.1093/braincomms/fcz027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
An increased prevalence of dyslexia has been observed in individuals diagnosed with primary progressive aphasia, most notably the logopenic variant primary progressive aphasia. The underlying pathology most commonly associated with logopenic variant primary progressive aphasia is Alzheimer's disease. In this clinical case report series, we describe the neuropathological findings of three patients with logopenic variant primary progressive aphasia and developmental dyslexia, each demonstrating a pattern of cerebrocortical microdysgenesis, reminiscent of findings first reported in dyslexic individuals, alongside expected Alzheimer's disease pathology. Neurodevelopmental and most severe Alzheimer's disease pathological changes overlapped within perisylvian brain regions, areas associated with phonological deficits in both logopenic variant primary progressive aphasia and dyslexia. These three cases with pathological findings support the hypothesis that early-life neurodevelopmental changes might influence later-life susceptibility to neurodegenerative disease and could contribute to non-amnestic, early age-of-onset presentations of Alzheimer's disease. Larger studies investigating neurobiological vulnerability across the lifespan are needed.
Collapse
Affiliation(s)
- Zachary A Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Mikhail Pakvasa
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lynne Rosenberg
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Christa Watson
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
89
|
Akeret K, Bellut D, Huppertz HJ, Ramantani G, König K, Serra C, Regli L, Krayenbühl N. Ultrasonographic features of focal cortical dysplasia and their relevance for epilepsy surgery. Neurosurg Focus 2019; 45:E5. [PMID: 30173618 DOI: 10.3171/2018.6.focus18221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Surgery has proven to be the best therapeutic option for drug-refractory cases of focal cortical dysplasia (FCD)-associated epilepsy. Seizure outcome primarily depends on the completeness of resection, rendering the intraoperative FCD identification and delineation particularly important. This study aims to assess the diagnostic yield of intraoperative ultrasound (IOUS) in surgery for FCD-associated drug-refractory epilepsy. METHODS The authors prospectively enrolled 15 consecutive patients with drug-refractory epilepsy who underwent an IOUS-assisted microsurgical resection of a radiologically suspected FCD between January 2013 and July 2016. The findings of IOUS were compared with those of presurgical MRI postprocessing and the sonographic characteristics were analyzed in relation to the histopathological findings. The authors investigated the added value of IOUS in achieving completeness of resection and improving postsurgical seizure outcome. RESULTS The neurosurgeon was able to identify the dysplastic tissue by IOUS in all cases. The visualization of FCD type I was more challenging compared to FCD II and the demarcation of its borders was less clear. Postsurgical MRI showed residual dysplasia in 2 of the 3 patients with FCD type I. In all FCD type II cases, IOUS allowed for a clear intraoperative visualization and demarcation, strongly correlating with presurgical MRI postprocessing. Postsurgical MRI confirmed complete resection in all FCD type II cases. Sonographic features correlated with the histopathological classification of dysplasia (sonographic abnormalities increase continuously in the following order: FCD IA/IB, FCD IC, FCD IIA, FCD IIB). In 1 patient with IOUS features atypical for FCD, histopathological investigation showed nonspecific gliosis. CONCLUSIONS Morphological features of FCD, as identified by IOUS, correlate well with advanced presurgical imaging. The resolution of IOUS was superior to MRI in all FCD types. The appreciation of distinct sonographic features on IOUS allows the intraoperative differentiation between FCD and non-FCD lesions as well as the discrimination of different histological subtypes of FCD. Sonographic demarcation depends on the underlying degree of dysplasia. IOUS allows for more tailored resections by facilitating the delineation of the dysplastic tissue.
Collapse
Affiliation(s)
- Kevin Akeret
- 1Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich
| | - David Bellut
- 1Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich
| | | | - Georgia Ramantani
- 3Division of Pediatric Neurology, University Children's Hospital, Zurich; and.,4Swiss Epilepsy Clinic, Klinik Lengg AG, Zurich, Switzerland
| | - Kristina König
- 4Swiss Epilepsy Clinic, Klinik Lengg AG, Zurich, Switzerland
| | - Carlo Serra
- 1Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich
| | - Luca Regli
- 1Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich
| | - Niklaus Krayenbühl
- 1Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich.,2Division of Pediatric Neurosurgery, University Children's Hospital, Zurich
| |
Collapse
|
90
|
Garganis K, Kokkinos V, Zountsas B, Dinopoulos A, Coras R, Blümcke I. Temporal lobe "plus" epilepsy associated with oligodendroglial hyperplasia (MOGHE). Acta Neurol Scand 2019; 140:296-300. [PMID: 31231790 DOI: 10.1111/ane.13142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mild malformation of cortical dysplasia (mMCD) with oligodendroglial hyperplasia (MOGHE) is an epilepsy-related pathologic entity highlighted in post-surgical specimens of frontal lobe epilepsy (FLE) patients. AIMS OF THE STUDY We present two temporal lobe epilepsy (TLE) cases with MOGHE and discuss clinical, neurophysiological, and neuroimaging features that may be indicative of surgical outcome. METHODS We identified two cases with MOGHE out of 30 temporal lobe epilepsy (TLE) surgical patient cohort, whose pathological distribution spared the hippocampal structures. RESULTS The TLE cases shared common features with the FLE series in terms of patient profiles, MRI findings and post-surgical outcome. TLE plus seizure semiology combined with extratemporal scalp electroencephalographic (EEG) and electrocorticographic (ECoG) epileptiform elements at a distance from the imaging lesion were suggestive of an underlying multifocal pathology. CONCLUSIONS MOGHE pathology has to be considered in the decision-making process for TLE epilepsy surgery when this constellation of features is met.
Collapse
Affiliation(s)
- Kyriakos Garganis
- Epilepsy Center of Thessaloniki “St. Luke's” Hospital Thessaloniki Greece
| | - Vasileios Kokkinos
- Epilepsy Center of Thessaloniki “St. Luke's” Hospital Thessaloniki Greece
- Department of Neurological Surgery University of Pittsburgh Pittsburgh PA USA
| | - Basilios Zountsas
- Epilepsy Center of Thessaloniki “St. Luke's” Hospital Thessaloniki Greece
| | - Argirios Dinopoulos
- Third Department of Pediatrics, “Attikon” University Hospital National & Kapodistrian University of Athens Athens Greece
| | - Roland Coras
- Neuropathologisches Institut Universikätsklinikum Erlangen Germany
| | - Ingmar Blümcke
- Neuropathologisches Institut Universikätsklinikum Erlangen Germany
| |
Collapse
|
91
|
Bonini F, McGonigal A, Scavarda D, Carron R, Régis J, Dufour H, Péragut JC, Laguitton V, Villeneuve N, Chauvel P, Giusiano B, Trébuchon A, Bartolomei F. Predictive Factors of Surgical Outcome in Frontal Lobe Epilepsy Explored with Stereoelectroencephalography. Neurosurgery 2019; 83:217-225. [PMID: 28673029 DOI: 10.1093/neuros/nyx342] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resective surgery established treatment for pharmacoresistant frontal lobe epilepsy (FLE), but seizure outcome and prognostic indicators are poorly characterized and vary between studies. OBJECTIVE To study long-term seizure outcome and identify prognostic factors. METHODS We retrospectively analyzed 42 FLE patients having undergone surgical resection, mostly preceded by invasive recordings with stereoelectroencephalography (SEEG). Postsurgical outcome up to 10-yr follow-up and prognostic indicators were analyzed using Kaplan-Meier analysis and multivariate and conditional inference procedures. RESULTS At the time of last follow-up, 57.1% of patients were seizure-free. The estimated chance of seizure freedom was 67% (95% confidence interval [CI]: 54-83) at 6 mo, 59% (95% CI: 46-76) at 1 yr, 53% (95% CI: 40-71) at 2 yr, and 46% (95% CI: 32-66) at 5 yr. Most relapses (83%) occurred within the first 12 mo. Multivariate analysis showed that completeness of resection of the epileptogenic zone (EZ) as defined by SEEG was the main predictor of seizure outcome. According to conditional inference trees, in patients with complete resection of the EZ, focal cortical dysplasia as etiology and focal EZ were positive prognostic indicators. No difference in outcome was found in patients with positive vs negative magnetic resonance imaging. CONCLUSION Surgical resection in drug-resistant FLE can be a successful therapeutic approach, even in the absence of neuroradiologically visible lesions. SEEG may be highly useful in both nonlesional and lesional FLE cases, because complete resection of the EZ as defined by SEEG is associated with better prognosis.
Collapse
Affiliation(s)
- Francesca Bonini
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Aileen McGonigal
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Didier Scavarda
- APHM, Timone Hospital, Paedia-tric Neurosurgery Department, Marse-ille, France
| | - Romain Carron
- APHM, Timone Hospital, Functional and Stereotactical Neuro-surgery Department, Marseille, France
| | - Jean Régis
- APHM, Timone Hospital, Functional and Stereotactical Neuro-surgery Department, Marseille, France
| | - Henry Dufour
- APHM, Timone Hospital, Neurosurgery Department, Marseille, France
| | - Jean-Claude Péragut
- APHM, Timone Hospital, Functional and Stereotactical Neuro-surgery Department, Marseille, France
| | | | - Nathalie Villeneuve
- Hôpital Henri Gastaut, Marseille, France.,Service de Neuropédiatrie, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Patrick Chauvel
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Bernard Giusiano
- Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Agnès Trébuchon
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Clinical Ne-urophysiology and Epileptology De-partment, Marseille, France.,Aix-Mar-seille Université, Institut de Neuroscience des Systèmes, INSERM UMR_S 1106, Marseille, France
| |
Collapse
|
92
|
Farhat S, Darwish H, Nasreddine W, Salame J, Beydoun A. A Surgical Case of Complete Resection of the Focal Cortical and Subcortical Dysplasia in the Motor Cortex. World Neurosurg 2019; 132:93-98. [PMID: 31491580 DOI: 10.1016/j.wneu.2019.08.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Focal cortical dysplasias (FCDs) are highly epileptogenic and frequently associated with medically refractory focal epilepsy. FCDs are frequently located in the frontal lobe, making its complete resection highly challenging when in proximity to the motor cortex. CASE DESCRIPTION We report a case of a 25-year-old woman with medically refractory epilepsy secondary to a focal cortical dysplasia in the motor cortex and extending deeply into the subcortical white matter. A detailed presurgical evaluation and invasive electroencephalographic monitoring performed at our epilepsy monitoring unit, along with the use of motor mapping, functional magnetic resonance imaging, diffusion tensor imaging, and the Stealth navigation system resulted in the complete resection of the lesion without a permanent postoperative motor deficit. The patient remained seizure-free at a 63-month follow-up while being maintained on a single antiepileptic drug. CONCLUSION A detailed presurgical evaluation, accurate mapping of the functional and dysplastic cortex, and a well-planned tailored and complete surgical resection of the cortical dysplasia can result in a favorable outcome with relatively little risk of postoperative neurologic deficit.
Collapse
Affiliation(s)
- Sahar Farhat
- Comprehensive Epilepsy Program, Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Houssein Darwish
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Nasreddine
- Comprehensive Epilepsy Program, Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joseph Salame
- Department of Neurosurgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmad Beydoun
- Comprehensive Epilepsy Program, Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
93
|
Focal cortical dysplasia II-related seizures originate from the bottom of the dysplastic sulcus: A stereoelectroencephalography study. Clin Neurophysiol 2019; 130:1596-1603. [DOI: 10.1016/j.clinph.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/19/2019] [Indexed: 12/29/2022]
|
94
|
Kobow K, Ziemann M, Kaipananickal H, Khurana I, Mühlebner A, Feucht M, Hainfellner JA, Czech T, Aronica E, Pieper T, Holthausen H, Kudernatsch M, Hamer H, Kasper BS, Rössler K, Conti V, Guerrini R, Coras R, Blümcke I, El-Osta A, Kaspi A. Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia 2019; 60:1091-1103. [PMID: 31074842 PMCID: PMC6635741 DOI: 10.1111/epi.14934] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022]
Abstract
Objectives Focal cortical dysplasia (FCD) is a major cause of drug‐resistant focal epilepsy in children, and the clinicopathological classification remains a challenging issue in daily practice. With the recent progress in DNA methylation–based classification of human brain tumors we examined whether genomic DNA methylation and gene expression analysis can be used to also distinguish human FCD subtypes. Methods DNA methylomes and transcriptomes were generated from massive parallel sequencing in 15 surgical FCD specimens, matched with 5 epilepsy and 6 nonepilepsy controls. Results Differential hierarchical cluster analysis of DNA methylation distinguished major FCD subtypes (ie, Ia, IIa, and IIb) from patients with temporal lobe epilepsy patients and nonepileptic controls. Targeted panel sequencing identified a novel likely pathogenic variant in DEPDC5 in a patient with FCD type IIa. However, no enrichment of differential DNA methylation or gene expression was observed in mechanistic target of rapamycin (mTOR) pathway–related genes. Significance Our studies extend the evidence for disease‐specific methylation signatures toward focal epilepsies in favor of an integrated clinicopathologic and molecular classification system of FCD subtypes incorporating genomic methylation.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Harikrishnan Kaipananickal
- Epigenetics in Human Health and Disease, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Angelika Mühlebner
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria.,Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | | | - Thomas Czech
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Tom Pieper
- Department of Neuropaediatrics and Neurological Rehabilitation, Epilepsy Centre for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | - Hans Holthausen
- Department of Neuropaediatrics and Neurological Rehabilitation, Epilepsy Centre for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Schoen Clinic Vogtareuth, Vogtareuth, Germany
| | - Hajo Hamer
- Department of Neurology, Erlangen Epilepsy Center, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Burkhard S Kasper
- Department of Neurology, Erlangen Epilepsy Center, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong City, Hong Kong SAR
| | - Antony Kaspi
- Epigenetics in Human Health and Disease, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
95
|
Lagarde S, Scholly J, Popa I, Valenti-Hirsch MP, Trebuchon A, McGonigal A, Milh M, Staack AM, Lannes B, Lhermitte B, Proust F, Benmekhbi M, Scavarda D, Carron R, Figarella-Branger D, Hirsch E, Bartolomei F. Can histologically normal epileptogenic zone share common electrophysiological phenotypes with focal cortical dysplasia? SEEG-based study in MRI-negative epileptic patients. J Neurol 2019; 266:1907-1918. [DOI: 10.1007/s00415-019-09339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
|
96
|
Malformazioni dello sviluppo corticale. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
97
|
Choi SA, Kim KJ. The Surgical and Cognitive Outcomes of Focal Cortical Dysplasia. J Korean Neurosurg Soc 2019; 62:321-327. [PMID: 31085958 PMCID: PMC6514316 DOI: 10.3340/jkns.2019.0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/26/2019] [Indexed: 11/27/2022] Open
Abstract
Focal cortical dysplasia (FCD) is the major cause of intractable focal epilepsy in childhood leading to epilepsy surgery. The overall seizure freedom after surgery ranges between 50–75% at 2 years after surgery and the long-term seizure freedom remain relatively stable. Seizure outcome after surgery depends on a various factors such as pathologic etiologies, extent of lesion, and types of surgery. Therefore, seizure outcome after surgery for FCD should be analyzed carefully considering cohorts’ characteristics. Studies of pediatric epilepsy surgery emphasize the early surgical intervention for a better cognition. Early surgical intervention and cessation of seizure activity are important for children with intractable epilepsy. However, there are limited data on the cognitive outcome after surgery in pediatric FCD, requiring further investigation. This paper reviews the seizure and cognitive outcomes of epilepsy surgery for FCD in children. Several prognostic factors influencing seizure outcome after surgery will be discussed in detail.
Collapse
Affiliation(s)
- Sun Ah Choi
- Department of Pediatrics, Dankook University Hospital, Cheonan, Korea.,Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
98
|
Topgaard D. Diffusion tensor distribution imaging. NMR IN BIOMEDICINE 2019; 32:e4066. [PMID: 30730586 PMCID: PMC6593682 DOI: 10.1002/nbm.4066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 05/30/2023]
Abstract
Conventional diffusion MRI yields voxel-averaged parameters that suffer from ambiguities for heterogeneous anisotropic materials such as brain tissue. Using principles from solid-state NMR spectroscopy, we have previously introduced the shape of the diffusion encoding tensor as a separate acquisition dimension that disentangles isotropic and anisotropic contributions to the observed diffusivities, thereby allowing for unconstrained data inversion into diffusion tensor distributions with "size," "shape," and orientation dimensions. Here we combine our recent non-parametric data inversion algorithm and data acquisition protocol with an imaging pulse sequence to demonstrate spatial mapping of diffusion tensor distributions using a previously developed composite phantom with multiple isotropic and anisotropic components. We propose a compact format for visualizing two-dimensional arrays of the distributions, new scalar parameters quantifying intra-voxel heterogeneity, and a binning procedure giving maps of all relevant parameters for each of the components resolved in the multidimensional distribution space.
Collapse
Affiliation(s)
- Daniel Topgaard
- Physical Chemistry, Department of ChemistryLund UniversityLundSweden
| |
Collapse
|
99
|
|
100
|
Shamir I, Tomer O, Baratz Z, Tsarfaty G, Faraggi M, Horowitz A, Assaf Y. A framework for cortical laminar composition analysis using low-resolution T1 MRI images. Brain Struct Funct 2019; 224:1457-1467. [PMID: 30783759 DOI: 10.1007/s00429-019-01848-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
The layer composition of the cerebral cortex represents a unique anatomical fingerprint of brain development, function, connectivity, and pathology. Historically, the cortical layers were investigated solely ex-vivo using histological means, but recent magnetic resonance imaging (MRI) studies suggest that T1 relaxation images can be utilized to separate the layers. Despite technological advancements in the field of high-resolution MRI, accurate estimation of whole-brain cortical laminar composition has remained limited due to partial volume effects, leaving some layers far beyond the image resolution. In this study, we offer a simple and accurate method for cortical laminar composition analysis, resolving partial volume effects and cortical curvature heterogeneity. We use a low-resolution 3T MRI echo planar imaging inversion recovery (EPI IR) scan protocol that provides fast acquisition (~ 12 min) and enables extraction of multiple T1 relaxation time components per voxel, which are assigned to types of brain tissue and utilized to extract the subvoxel composition of six T1 layers. While previous investigation of the layers required the estimation of cortical normals or smoothing of layer widths (similar to VBM), here we developed a sphere-based approach to explore the inner mesoscale architecture of the cortex. Our novel algorithm conducts spatial analysis using volumetric sampling of a system of virtual spheres dispersed throughout the entire cortical space. The methodology offers a robust and powerful framework for quantification and visualization of the cortical laminar structure on the cortical surface, providing a basis for quantitative investigation of its role in cognition, physiology and pathology.
Collapse
Affiliation(s)
- Ittai Shamir
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Omri Tomer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Baratz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Maya Faraggi
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Assaf Horowitz
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|