51
|
Benameur T, Porro C, Twfieg ME, Benameur N, Panaro MA, Filannino FM, Hasan A. Emerging Paradigms in Inflammatory Disease Management: Exploring Bioactive Compounds and the Gut Microbiota. Brain Sci 2023; 13:1226. [PMID: 37626582 PMCID: PMC10452544 DOI: 10.3390/brainsci13081226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The human gut microbiota is a complex ecosystem of mutualistic microorganisms that play a critical role in maintaining human health through their individual interactions and with the host. The normal gastrointestinal microbiota plays a specific physiological function in host immunomodulation, nutrient metabolism, vitamin synthesis, xenobiotic and drug metabolism, maintenance of structural and functional integrity of the gut mucosal barrier, and protection against various pathogens. Inflammation is the innate immune response of living tissues to injury and damage caused by infections, physical and chemical trauma, immunological factors, and genetic derangements. Most diseases are associated with an underlying inflammatory process, with inflammation mediated through the contribution of active immune cells. Current strategies to control inflammatory pathways include pharmaceutical drugs, lifestyle, and dietary changes. However, this remains insufficient. Bioactive compounds (BCs) are nutritional constituents found in small quantities in food and plant extracts that provide numerous health benefits beyond their nutritional value. BCs are known for their antioxidant, antimicrobial, anticarcinogenic, anti-metabolic syndrome, and anti-inflammatory properties. Bioactive compounds have been shown to reduce the destructive effect of inflammation on tissues by inhibiting or modulating the effects of inflammatory mediators, offering hope for patients suffering from chronic inflammatory disorders like atherosclerosis, arthritis, inflammatory bowel diseases, and neurodegenerative diseases. The aim of the present review is to summarise the role of natural bioactive compounds in modulating inflammation and protecting human health, for their safety to preserve gut microbiota and improve their physiology and behaviour.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mohammed-Elfatih Twfieg
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nassima Benameur
- Faculty of Exact Sciences and Sciences of Nature and Life, Research Laboratory of Civil Engineering, Hydraulics, Sustainable Development and Environment (LARGHYDE), Mohamed Khider University, Biskra 07000, Algeria
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | | | - Abeir Hasan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
52
|
Dong B, Qi Y, Sundas H, Yang R, Zhou J, Li Z. Soy protein increases cognitive level in mice by modifying hippocampal nerve growth, oxidative stress, and intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4085-4094. [PMID: 36514948 DOI: 10.1002/jsfa.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Three kinds of diet containing chicken protein isolate (CPI), bovine milk protein isolate (BMPI), and soy protein isolate (SPI), respectively, were designed to investigate the influences of proteins on cognitive levels and related mechanisms in mice. RESULTS A Morris water maze (MWM) test showed that the SPI group had a higher cognitive level than the BMPI group. Immunohistochemical staining and chemical analysis of the hippocampus showed that the SPI group had higher synaptophysin expression, doublecortin-positive cell proportion, superoxide dismutase activity, and lower malondialdehyde content compared with the BMPI group. The same parameters in the CPI group were between those of the BMPI and SPI groups. Microbiome sequencing indicated that the three groups differed significantly at the phylum, genus, and species levels, with higher microbial alpha diversity in the CPI and SPI groups. The association of intestinal microbiota with cognitive improvement was also assessed. The present study suggests that soy protein may increase cognitive function by the gut-brain axis. CONCLUSION In contrast with CPI and BMPI, SPI had a better effect on improving the cognitive level in mice, which was achieved through the regulation of hippocampal neural growth, oxidative stress, and intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beijia Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjin Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hina Sundas
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiqi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jie Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhicheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
53
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
54
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
55
|
Homolak J. Targeting the microbiota-mitochondria crosstalk in neurodegeneration with senotherapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:339-383. [PMID: 37437983 DOI: 10.1016/bs.apcsb.2023.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are a group of age-related disorders characterized by a chronic and progressive loss of function and/or structure of synapses, neurons, and glial cells. The etiopathogenesis of neurodegenerative diseases is characterized by a complex network of intricately intertwined pathophysiological processes that are still not fully understood. Safe and effective disease-modifying treatments are urgently needed, but still not available. Accumulating evidence suggests that gastrointestinal dyshomeostasis and microbial dysbiosis might play an important role in neurodegeneration by acting as either primary or secondary pathophysiological factors. The research on the role of microbiota in neurodegeneration is in its early phase; however, accumulating evidence suggests that dysbiosis might promote neurodegenerative diseases by disrupting mitochondrial function and inducing mitochondrial dysfunction-associated senescence (MiDAS), possibly due to bidirectional crosstalk based on the common evolutionary origin of mitochondria and bacteria. Cellular senescence is an onco-supressive homeostatic mechanism that results in an irreversible cell cycle arrest upon exposure to noxious stimuli. Senescent cells resist apoptosis via senescent cell anti-apoptotic pathways (SCAPs) and transition into a state known as senescence-associated secretory phenotype (SASP) that generates a cytotoxic proinflammatory microenvironment. Cellular senescence results in the adoption of a detrimental vicious cycle driven by dysbiosis, mitochondrial dysfunction, inflammation, and oxidative stress - a pathophysiological positive feedback loop that results in neuroinflammation and neurodegeneration. Detrimental effects of MiDAS might be prevented and abolished by mitochondria-targeted senotherapeutics, a group of drugs specifically designed to alleviate senescence by inhibiting SCAPs (senolytics), or inhibiting SASP (senomorphics).
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
56
|
Mitra S, Munni YA, Dash R, Sadhu T, Barua L, Islam MA, Chowdhury D, Bhattacharjee D, Mazumder K, Moon IS. Gut Microbiota in Autophagy Regulation: New Therapeutic Perspective in Neurodegeneration. Life (Basel) 2023; 13:life13040957. [PMID: 37109487 PMCID: PMC10144697 DOI: 10.3390/life13040957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Gut microbiota and the brain are related via a complex bidirectional interconnective network. Thus, intestinal homeostasis is a crucial factor for the brain, as it can control the environment of the central nervous system and play a significant role in disease progression. The link between neuropsychological behavior or neurodegeneration and gut dysbiosis is well established, but many involved pathways remain unknown. Accumulating studies showed that metabolites derived from gut microbiota are involved in the autophagy activation of various organs, including the brain, one of the major pathways of the protein clearance system that is essential for protein aggregate clearance. On the other hand, some metabolites are evidenced to disrupt the autophagy process, which can be a modulator of neurodegeneration. However, the detailed mechanism of autophagy regulation by gut microbiota remains elusive, and little research only focused on that. Here we tried to evaluate the crosstalk between gut microbiota metabolites and impaired autophagy of the central nervous system in neurodegeneration and the key to future research regarding gut dysbiosis and compromised autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Toma Sadhu
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chittagong 4000, Bangladesh
| | - Largess Barua
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Md. Ariful Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Dipannita Chowdhury
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Debpriya Bhattacharjee
- Faculty of Environment and Natural Sciences, Brandenburg Technical University Cottbus Senftenberg, D-03013 Cottbus, Germany
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
57
|
Gamage HKAH, Robinson KJ, Luu L, Paulsen IT, Laird AS. Machado Joseph disease severity is linked with gut microbiota alterations in transgenic mice. Neurobiol Dis 2023; 179:106051. [PMID: 36822548 DOI: 10.1016/j.nbd.2023.106051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Emerging evidence suggests the presence of bidirectional interactions between the central nervous system and gut microbiota that may contribute to the pathogenesis of neurodegenerative diseases. However, the potential role of gut microbes in forms of spinocerebellar ataxia, such as the fatal neurodegenerative disease Machado Joseph disease (MJD), remains unexplored. Here, we examined whether gut microbiota alterations may be an early disease phenotype of MJD. We profiled the gut microbiota of male and female transgenic MJD mice (CMVMJD135) expressing human ATXN3 with expanded CAG repeats (133-143 CAG) at pre-symptomatic, symptomatic and well-established stages of the disease (7, 11 and 15 weeks of age, respectively). We compared these profiles with the gut microbiota of male and female wild-type (WT) littermate control mice at same ages. Correlation network analyses were employed to explore the relevance of microbiota changes to disease progression. The results demontrated distinct sex-dependent effects in disease development whereby male MJD mice displayed earlier motor impairments than female MJD mice. The gut microbiota community structure and composition also demonstrated sex-specific differences between MJD and WT mice. In both male and female MJD mice, the shifts in the microbiota were present by 7 weeks, before the onset of any symptoms. These pre-symptomatic microbial changes correlated with the severity of neurological impairments present at later stages of the disease. Previous efforts towards developing treatments for MJD have failed to yield meaningful outcomes. Our study reports a novel relationship between the gut microbiota and MJD development and severity. Elucidating how gut microbes are involved in MJD pathogenesis may offer new and efficacious treatment strategies for this currently untreatable disease.
Collapse
Affiliation(s)
- Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW 2109, Australia
| | - Katherine J Robinson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Luan Luu
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, NSW 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW 2109, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, NSW 2109, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
58
|
Sharvin BL, Aburto MR, Cryan JF. Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiol Dis 2023; 179:106033. [PMID: 36758820 DOI: 10.1016/j.nbd.2023.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Research in the last decade has unveiled a crucial role for the trillions of microorganisms that reside in the gut in influencing host neurodevelopment across the lifespan via the microbiota-gut-brain axis. Studies have linked alterations in the composition, complexity, and diversity of the gut microbiota to changes in behaviour including abnormal social interactions, cognitive deficits, and anxiety- and depressive-like phenotypes. Moreover, the microbiota has been linked with neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Interestingly, there appears to be specific brain regions governing the neurocircuitry driving higher cognitive function that are susceptible to influence from manipulations to the host microbiome. This review will aim to elucidate the region-specific effects mediated by the gut microbiota, with a focus on translational animal models and some existing human neuroimaging data. Compelling preclinical evidence suggests disruption to normal microbiota-gut-brain signalling can have detrimental effects on the prefrontal cortex, amygdala, hippocampus, hypothalamus, and striatum. Furthermore, human neuroimaging studies have unveiled a role for the microbiota in mediating functional connectivity and structure of specific brain regions that can be traced back to neurocognition and behavioural output. Understanding these microbiota-mediated changes will aid in identifying unique therapeutic targets for treating neurological disorders associated with these regions.
Collapse
Affiliation(s)
- Brendan L Sharvin
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
59
|
Wasser CI, Mercieca EC, Kong G, Hannan AJ, Allford B, McKeown SJ, Stout JC, Glikmann-Johnston Y. A Randomized Controlled Trial of Probiotics Targeting Gut Dysbiosis in Huntington’s Disease. J Huntingtons Dis 2023; 12:43-55. [PMID: 37005888 DOI: 10.3233/jhd-220556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Gastrointestinal symptoms are clinical features of Huntington’s disease (HD), which adversely affect people’s quality of life. We recently reported the first evidence of gut dysbiosis in HD gene expansion carriers (HDGECs). Here, we report on a randomized controlled clinical trial of a 6-week probiotic intervention in HDGECs. Objective: The primary objective was to determine whether probiotics improved gut microbiome composition in terms of richness, evenness, structure, and diversity of functional pathways and enzymes. Exploratory objectives were to determine whether probiotic supplementation improved cognition, mood, and gastrointestinal symptoms. Methods: Forty-one HDGECs, including 19 early manifest and 22 premanifest HDGECs were compared with 36 matched-healthy controls (HCs). Participants were randomly assigned probiotics or placebo and provided fecal samples at baseline and 6-week follow-up, which were sequenced using 16S-V3-V4 rRNA to characterize the gut microbiome. Participants completed a battery of cognitive tests and self-report questionnaires measuring mood and gastrointestinal symptoms. Results: HDGECs had altered gut microbiome diversity when compared to HCs, indicating gut dysbiosis. Probiotic intervention did not ameliorate gut dysbiosis or have any effect on cognition, mood, or gastrointestinal symptoms. Gut microbiome differences between HDGECs and HCs were unchanged across time points, suggesting consistency of gut microbiome differences within groups. Conclusion: Despite the lack of probiotic effects in this trial, the potential utility of the gut as a therapeutic target in HD should continue to be explored given the clinical symptomology, gut dysbiosis, and positive results from probiotics and other gut interventions in similar neurodegenerative diseases.
Collapse
Affiliation(s)
- Cory I Wasser
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Emily-Clare Mercieca
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Brianna Allford
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Sonja J McKeown
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yifat Glikmann-Johnston
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
60
|
Kiriyama Y, Nochi H. Role of Microbiota-Modified Bile Acids in the Regulation of Intracellular Organelles and Neurodegenerative Diseases. Genes (Basel) 2023; 14:825. [PMID: 37107583 PMCID: PMC10137455 DOI: 10.3390/genes14040825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Bile acids (BAs) are amphiphilic steroidal molecules generated from cholesterol in the liver and facilitate the digestion and absorption of fat-soluble substances in the gut. Some BAs in the intestine are modified by the gut microbiota. Because BAs are modified in a variety of ways by different types of bacteria present in the gut microbiota, changes in the gut microbiota can affect the metabolism of BAs in the host. Although most BAs absorbed from the gut are transferred to the liver, some are transferred to the systemic circulation. Furthermore, BAs have also been detected in the brain and are thought to migrate into the brain through the systemic circulation. Although BAs are known to affect a variety of physiological functions by acting as ligands for various nuclear and cell-surface receptors, BAs have also been found to act on mitochondria and autophagy in the cell. This review focuses on the BAs modified by the gut microbiota and their roles in intracellular organelles and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
- Institute of Neuroscience, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
61
|
Chen J, Li H, Zhao T, Chen K, Chen MH, Sun Z, Xu W, Maas K, Lester BM, Cong XS. The Impact of Early Life Experiences and Gut Microbiota on Neurobehavioral Development in Preterm Infants: A Longitudinal Cohort Study. Microorganisms 2023; 11:microorganisms11030814. [PMID: 36985387 PMCID: PMC10056840 DOI: 10.3390/microorganisms11030814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVES The objective of this study is to investigate the impact of early life experiences and gut microbiota on neurobehavioral development in preterm infants during neonatal intensive care unit (NICU) hospitalization. METHODS Preterm infants were followed from NICU admission until their 28th postnatal day or until discharge. Daily stool samples, painful/stressful experiences, feeding patterns, and other clinical and demographic data were collected. Gut microbiota was profiled using 16S rRNA sequencing, and operational taxonomic units (OTUs) were selected to predict the neurobehaviors. The neurobehavioral development was assessed by the Neonatal Neurobehavioral Scale (NNNS) at 36 to 38 weeks of post-menstrual age (PMA). Fifty-five infants who had NNNS measurements were included in the sparse log-contrast regression analysis. RESULTS Preterm infants who experienced a high level of pain/stress during the NICU hospitalization had higher NNNS stress/abstinence scores. Eight operational taxonomic units (OTUs) were identified to be associated with NNNS subscales after controlling demographic and clinical features, feeding patterns, and painful/stressful experiences. These OTUs and taxa belonging to seven genera, i.e., Enterobacteriaceae_unclassified, Escherichia-Shigella, Incertae_Sedis, Veillonella, Enterococcus, Clostridium_sensu_stricto_1, and Streptococcus with five belonging to Firmicutes and two belonging to Proteobacteria phylum. The enriched abundance of Enterobacteriaceae_unclassified (OTU17) and Streptococcus (OTU28) were consistently associated with less optimal neurobehavioral outcomes. The other six OTUs were also associated with infant neurobehavioral responses depending on days at NICU stay. CONCLUSIONS This study explored the dynamic impact of specific OTUs on neurobehavioral development in preterm infants after controlling for early life experiences, i.e., acute and chronic pain/stress and feeding in the NICU. The gut microbiota and acute pain/stressful experiences dynamically impact the neurobehavioral development in preterm infants during their NICU hospitalization.
Collapse
Affiliation(s)
- Jie Chen
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA
- School of Nursing, University of Connecticut, Storrs, CT 06269, USA
| | - Hongfei Li
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Tingting Zhao
- School of Nursing, University of Connecticut, Storrs, CT 06269, USA
- School of Nursing, Yale University, Orange, CT 06477, USA
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Zhe Sun
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, USA
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, CT 06269, USA
| | - Kendra Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Storrs, CT 06269, USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Departments of Psychiatry and Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Xiaomei S Cong
- School of Nursing, University of Connecticut, Storrs, CT 06269, USA
- School of Nursing, Yale University, Orange, CT 06477, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
62
|
Majumdar A, Siva Venkatesh IP, Basu A. Short-Chain Fatty Acids in the Microbiota-Gut-Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chem Neurosci 2023; 14:1045-1062. [PMID: 36868874 DOI: 10.1021/acschemneuro.2c00803] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The gut-brain axis (GBA) is the umbrella term to include all bidirectional communication between the brain and gastrointestinal (GI) tract in the mammalian body. Evidence from over two centuries describes a significant role of GI microbiome in health and disease states of the host organism. Short-chain fatty acids (SCFAs), mainly acetate, butyrate, and propionate that are the physiological forms of acetic acid, butyric acid, and propionic acid respectively, are GI bacteria derived metabolites. SCFAs have been reported to influence cellular function in multiple neurodegenerative diseases (NDDs). In addition, the inflammation modulating properties of SCFAs make them suitable therapeutic candidates in neuroinflammatory conditions. This review provides a historical background of the GBA and current knowledge of the GI microbiome and role of individual SCFAs in central nervous system (CNS) disorders. Recently, a few reports have also identified the effects of GI metabolites in the case of viral infections. Among these viruses, the flaviviridae family is associated with neuroinflammation and deterioration of CNS functions. In this context, we additionally introduce SCFA based mechanisms in different viral pathogenesis to understand the former's potential as agents against flaviviral disease.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
63
|
What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington's Disease? Int J Mol Sci 2023; 24:ijms24054477. [PMID: 36901907 PMCID: PMC10003333 DOI: 10.3390/ijms24054477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host's metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington's disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease.
Collapse
|
64
|
Tiwari P, Dwivedi R, Bansal M, Tripathi M, Dada R. Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance. J Clin Med 2023; 12:1650. [PMID: 36836185 PMCID: PMC9965848 DOI: 10.3390/jcm12041650] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In humans, the gut microbiota (GM) are known to play a significant role in the metabolism of nutrients and drugs, immunomodulation, and pathogen defense by inhabiting the gastrointestinal tract (GIT). The role of the GM in the gut-brain axis (GBA) has been documented for different regulatory mechanisms and associated pathways and it shows different behaviors with individualized bacteria. In addition, the GM are known as susceptibility factor for neurological disorders in the central nervous system (CNS), regulating disease progression and being amenable to intervention. Bidirectional transmission between the brain and the GM occurs in the GBA, implying that it performs a significant role in neurocrine, endocrine, and immune-mediated signaling pathways. The GM regulates multiple neurological disorders by supplementing them with prebiotics, probiotics, postbiotics, synbiotics, fecal transplantations, and/or antibiotics. A well-balanced diet is critically important for establishing healthy GM, which can alter the enteric nervous system (ENS) and regulate multiple neurological disorders. Here, we have discussed the function of the GM in the GBA from the gut to the brain and the brain to the gut, the pathways associated with neurology that interacts with the GM, and the various neurological disorders associated with the GM. Furthermore, we have highlighted the recent advances and future prospects of the GBA, which may require addressing research concerns about GM and associated neurological disorders.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Molecular Reproduction and Genetics Facility, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manisha Bansal
- Molecular Reproduction and Genetics Facility, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Molecular Reproduction and Genetics Facility, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
65
|
Nguyen NM, Cho J, Lee C. Gut Microbiota and Alzheimer's Disease: How to Study and Apply Their Relationship. Int J Mol Sci 2023; 24:ijms24044047. [PMID: 36835459 PMCID: PMC9958597 DOI: 10.3390/ijms24044047] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Gut microbiota (GM), the microorganisms in the gastrointestinal tract, contribute to the regulation of brain homeostasis through bidirectional communication between the gut and the brain. GM disturbance has been discovered to be related to various neurological disorders, including Alzheimer's disease (AD). Recently, the microbiota-gut-brain axis (MGBA) has emerged as an enticing subject not only to understand AD pathology but also to provide novel therapeutic strategies for AD. In this review, the general concept of the MGBA and its impacts on the development and progression of AD are described. Then, diverse experimental approaches for studying the roles of GM in AD pathogenesis are presented. Finally, the MGBA-based therapeutic strategies for AD are discussed. This review provides concise guidance for those who wish to obtain a conceptual and methodological understanding of the GM and AD relationship with an emphasis on its practical application.
Collapse
|
66
|
Matheson JAT, Holsinger RMD. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. Int J Mol Sci 2023; 24:1001. [PMID: 36674517 PMCID: PMC9864694 DOI: 10.3390/ijms24021001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are highly prevalent but poorly understood, and with few treatment options despite decades of intense research, attention has recently shifted toward other mediators of neurological disease that may present future targets for therapeutic research. One such mediator is the gut microbiome, which communicates with the brain through the gut-brain axis and has been implicated in various neurological disorders. Alterations in the gut microbiome have been associated with numerous neurological and other diseases, and restoration of the dysbiotic gut has been shown to improve disease conditions. One method of restoring a dysbiotic gut is via fecal microbiota transplantation (FMT), recolonizing the "diseased" gut with normal microbiome. Fecal microbiota transplantation is a treatment method traditionally used for Clostridium difficile infections, but it has recently been used in neurodegenerative disease research as a potential treatment method. This review aims to present a summary of neurodegenerative research that has used FMT, whether as a treatment or to investigate how the microbiome influences pathogenesis.
Collapse
Affiliation(s)
- Julie-Anne T. Matheson
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
67
|
Bhat SA, Ahamad S, Dar NJ, Siddique YH, Nazir A. The Emerging Landscape of Natural Small-molecule Therapeutics for Huntington's Disease. Curr Neuropharmacol 2023; 21:867-889. [PMID: 36797612 PMCID: PMC10227909 DOI: 10.2174/1570159x21666230216104621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 02/18/2023] Open
Abstract
Huntington's disease (HD) is a rare and fatal neurodegenerative disorder with no diseasemodifying therapeutics. HD is characterized by extensive neuronal loss and is caused by the inherited expansion of the huntingtin (HTT) gene that encodes a toxic mutant HTT (mHTT) protein having expanded polyglutamine (polyQ) residues. Current HD therapeutics only offer symptomatic relief. In fact, Food and Drug Administration (FDA) approved two synthetic small-molecule VMAT2 inhibitors, tetrabenazine (1) and deutetrabenazine (2), for managing HD chorea and various other diseases in clinical trials. Therefore, the landscape of drug discovery programs for HD is evolving to discover disease- modifying HD therapeutics. Likewise, numerous natural products are being evaluated at different stages of clinical development and have shown the potential to ameliorate HD pathology. The inherent anti-inflammatory and antioxidant properties of natural products mitigate the mHTT-induced oxidative stress and neuroinflammation, improve mitochondrial functions, and augment the anti-apoptotic and pro-autophagic mechanisms for increased survival of neurons in HD. In this review, we have discussed HD pathogenesis and summarized the anti-HD clinical and pre-clinical natural products, focusing on their therapeutic effects and neuroprotective mechanism/s.
Collapse
Affiliation(s)
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Nawab John Dar
- School of Medicine, UT Health San Antonio, Texas, TX, USA
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, U.P., India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
68
|
Dutta S, Duttaroy AK. Gut Microbiome and Its Metabolites in Ageing. EVIDENCE-BASED FUNCTIONAL FOODS FOR PREVENTION OF AGE-RELATED DISEASES 2023:183-204. [DOI: 10.1007/978-981-99-0534-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
69
|
Mahjoub Y, Martino D. Immunology and microbiome: Implications for motor systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:135-157. [PMID: 37562867 DOI: 10.1016/b978-0-323-98818-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Immune-inflammatory mechanisms seem to play a relevant role in neurodegenerative disorders affecting motor systems, particularly Parkinson's disease, where activity changes in inflammatory cells and evidence of neuroinflammation in experimental models and patients is available. Amyotrophic lateral sclerosis is also characterized by neuroinflammatory changes that involve primarily glial cells, both microglia and astrocytes, as well as systemic immune dysregulation associated with more rapid progression. Similarly, the exploration of gut dysbiosis in these two prototypical neurodegenerative motor disorders is advancing rapidly. Altered composition of gut microbial constituents and related metabolic and putative functional pathways is supporting a pathophysiological link that is currently explored in preclinical, germ-free animal models. Less compelling, but still intriguing, evidence suggests that motor neurodevelopmental disorders, e.g., Tourette syndrome, are associated with abnormal trajectories of maturation that include also immune system development. Microglia has a key role also in these disorders, and new therapeutic avenues aiming at its modulation are exciting prospects. Preclinical and clinical research on the role of gut dysbiosis in Tourette syndrome and related behavioral disorders is still in its infancy, but early findings support the rationale to delve deeper into its contribution to neural and immune maturation abnormalities in its spectrum.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
70
|
Bile acids and neurological disease. Pharmacol Ther 2022; 240:108311. [PMID: 36400238 DOI: 10.1016/j.pharmthera.2022.108311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
This review will focus on how bile acids are being used in clinical trials to treat neurological diseases due to their central involvement with the gut-liver-brain axis and their physiological and pathophysiological roles in both normal brain function and multiple neurological diseases. The synthesis of primary and secondary bile acids species and how the regulation of the bile acid pool may differ between the gut and brain is discussed. The expression of several bile acid receptors in brain and their currently known functions along with the tools available to manipulate them pharmacologically are examined, together with discussion of the interaction of bile acids with the gut microbiome and their lesser-known effects upon brain glucose and lipid metabolism. How dysregulation of the gut microbiome, aging and sex differences may lead to disruption of bile acid signalling and possible causal roles in a number of neurological disorders are also considered. Finally, we discuss how pharmacological treatments targeting bile acid receptors are currently being tested in an array of clinical trials for several different neurodegenerative diseases.
Collapse
|
71
|
Hannan AJ. Chorea me a river: depression in Huntington's disease as an exemplar of precision medicine. Brain Commun 2022; 4:fcac294. [PMID: 36440099 PMCID: PMC9683389 DOI: 10.1093/braincomms/fcac294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
This scientific commentary refers to 'Different depression: motivational anhedonia governs antidepressant efficacy in Huntington's disease' by McLauchlan et al. (https://doi.org/10.1093/braincomms/fcac278).
Collapse
Affiliation(s)
- Anthony J Hannan
- Correspondence to: Prof. Anthony J. Hannan, Florey Institute of
Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia.
E-mail:
| |
Collapse
|
72
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
73
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
74
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
75
|
McGovern KA, Durham WJ, Wright TJ, Dillon EL, Randolph KM, Danesi CP, Urban RJ, Sheffield-Moore M. Impact of Adjunct Testosterone on Cancer-Related Fatigue: An Ancillary Analysis from a Controlled Randomized Trial. Curr Oncol 2022; 29:8340-8356. [PMID: 36354718 PMCID: PMC9689748 DOI: 10.3390/curroncol29110658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Many cancer patients undergoing treatment experience cancer-related fatigue (CRF). Inflammatory markers are correlated with CRF but are not routinely targeted for treatment. We previously demonstrated in an NIH-funded placebo-controlled, double-blind, randomized clinical trial (NCT00878995, closed to follow-up) that seven weekly injections of 100 mg adjunct testosterone preserved lean body mass in cancer patients undergoing standard-of-care treatment in a hospital setting. Because testosterone therapy can reduce circulating proinflammatory cytokines, we conducted an ancillary analysis to determine if this testosterone treatment reduced inflammatory burden and improved CRF symptoms and health-related quality of life. Randomization was computer-generated and managed by the pharmacy, which dispensed testosterone and placebo in opaque syringes to the administering study personnel. A total of 24 patients were randomized (14 placebo, 10 testosterone), and 21 were included in the primary analysis (11 placebo, 10 testosterone). Testosterone therapy did not ameliorate CRF symptoms (placebo to testosterone difference in predicted mean multidimensional fatigue symptom inventory scores: -5.6, 95% CI: -24.6 to 13.3), improve inflammatory markers, or preserve health-related quality of life and functional measures of performance in late-stage cancer patients.
Collapse
Affiliation(s)
- Kristen A. McGovern
- Department of Internal Medicine, The University of Texas Medical Branch (UTMB), 301 University Blvd., Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Guo Y, Wang S, Chao X, Li D, Wang Y, Guo Q, Chen T. Multi-omics studies reveal ameliorating effects of physical exercise on neurodegenerative diseases. Front Aging Neurosci 2022; 14:1026688. [PMID: 36389059 PMCID: PMC9659972 DOI: 10.3389/fnagi.2022.1026688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, are heavy burdens to global health and economic development worldwide. Mounting evidence suggests that exercise, a type of non-invasive intervention, has a positive impact on the life quality of elderly with neurodegenerative diseases. X-omics are powerful tools for mapping global biochemical changes in disease and treatment. METHOD Three major databases were searched related to current studies in exercise intervention on neurodegenerative diseases using omics tools, including metabolomics, metagenomics, genomics, transcriptomics, and proteomics. RESULT We summarized the omics features and potential mechanisms associated with exercise and neurodegenerative diseases in the current studies. Three main mechanisms by which exercise affects neurodegenerative diseases were summed up, including adult neurogenesis, brain-derived neurotrophic factor (BDNF) signaling, and short-chain fatty acids (SCFAs) metabolism. CONCLUSION Overall, there is compelling evidence that exercise intervention is a feasible way of preventing the onset and alleviating the severity of neurodegenerative diseases. These studies highlight the importance of exercise as a complementary approach to the treatment and intervention of neurodegenerative diseases in addition to traditional treatments. More mechanisms on exercise interventions for neurodegenerative diseases, the specification of exercise prescriptions, and differentiated exercise programs should be explored so that they can actually be applied to the clinic.
Collapse
Affiliation(s)
- Yuhuai Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaowen Chao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ding Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
77
|
Kumar D, Ashraf GM, Hassan MI. Therapeutic Integrity of Microbiome-based Medicines in Neurodegenerative Disorders. Curr Neuropharmacol 2022; 20:2014-2018. [PMID: 35156584 PMCID: PMC9886841 DOI: 10.2174/1570159x20666220214113816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; ,Address correspondence to this author at the Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; E-mail:
| |
Collapse
|
78
|
Does the Gut Microbial Metabolome Really Matter? The Connection between GUT Metabolome and Neurological Disorders. Nutrients 2022; 14:nu14193967. [PMID: 36235622 PMCID: PMC9571089 DOI: 10.3390/nu14193967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Herein we gathered updated knowledge regarding the alterations of gut microbiota (dysbiosis) and its correlation with human neurodegenerative and brain-related diseases, e.g., Alzheimer’s and Parkinson’s. This review underlines the importance of gut-derived metabolites and gut metabolic status as the main players in gut-brain crosstalk and their implications on the severity of neural conditions. Scientific evidence indicates that the administration of probiotic bacteria exerts beneficial and protective effects as reduced systemic inflammation, neuroinflammation, and inhibited neurodegeneration. The experimental results performed on animals, but also human clinical trials, show the importance of designing a novel microbiota-based probiotic dietary supplementation with the aim to prevent or ease the symptoms of Alzheimer’s and Parkinson’s diseases or other forms of dementia or neurodegeneration.
Collapse
|
79
|
di Vito R, Conte C, Traina G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells 2022; 11:cells11162617. [PMID: 36010692 PMCID: PMC9406415 DOI: 10.3390/cells11162617] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, tight junction proteins (TJPs) maintain the integrity of the intestinal barrier. Dysbiosis and increased intestinal permeability are observed in several diseases, such as inflammatory bowel disease. Many studies highlight the role of probiotics in preventing intestinal barrier dysfunction. The present study aims to investigate the effects of a commercially available probiotic formulation of L. rhamnosus LR 32, B. lactis BL 04, and B. longum BB 536 (Serobioma, Bromatech s.r.l., Milan, Italy) on TJPs and the integrity of the intestinal epithelial barrier, and the ability of this formulation to prevent lipopolysaccharide-induced, inflammation-associated damage. An in vitro model of the intestinal barrier was developed using a Caco-2 cell monolayer. The mRNA expression levels of the TJ genes were analyzed using real-time PCR. Changes in the amounts of proteins were assessed with Western blotting. The effect of Serobioma on the intestinal epithelial barrier function was assessed using transepithelial electrical resistance (TEER) measurements. The probiotic formulation tested in this study modulates the expression of TJPs and prevents inflammatory damage. Our findings provide new insights into the mechanisms by which probiotics are able to prevent damage to the gut epithelial barrier.
Collapse
|
80
|
The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol Neurobiol 2022; 59:6684-6700. [DOI: 10.1007/s12035-022-02990-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
81
|
Singh A, Agrawal N. Metabolism in Huntington's disease: a major contributor to pathology. Metab Brain Dis 2022; 37:1757-1771. [PMID: 34704220 DOI: 10.1007/s11011-021-00844-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a progressively debilitating neurodegenerative disease exhibiting autosomal-dominant inheritance. It is caused by an unstable expansion in the CAG repeat tract of HD gene, which transforms the disease-specific Huntingtin protein (HTT) to a mutant form (mHTT). The profound neuronal death in cortico-striatal circuits led to its identification and characterisation as a neurodegenerative disease. However, equally disturbing are the concomitant whole-body manifestations affecting nearly every organ of the diseased individuals, at varying extents. Altered central and peripheral metabolism of energy, proteins, nucleic acids, lipids and carbohydrates encompass the gross pathology of the disease. Intense fluctuation of body weight, glucose homeostasis and organ-specific subcellular abnormalities are being increasingly recognised in HD. Many of these metabolic abnormalities exist years before the neuropathological manifestations such as chorea, cognitive decline and behavioural abnormalities develop, and prove to be reliable predictors of the disease progression. In this review, we provide a consolidated overview of the central and peripheral metabolic abnormalities associated with HD, as evidenced from clinical and experimental studies. Additionally, we have discussed the potential of metabolic biomolecules to translate into efficient biomarkers for the disease onset as well as progression. Finally, we provide a brief outlook on the efficacy of existing therapies targeting metabolic remediation. While it is clear that components of altered metabolic pathways can mark many aspects of the disease, it is only conceivable that combinatorial therapies aiming for neuronal protection in consort with metabolic upliftment will prove to be more efficient than the existing symptomatic treatment options.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
82
|
Liu MM, Zhou N, Jiang N, Lu KM, Wu CF, Bao JK. Neuroprotective Effects of Oligosaccharides From Periplaneta Americana on Parkinson’s Disease Models In Vitro and In Vivo. Front Pharmacol 2022; 13:936818. [PMID: 35924055 PMCID: PMC9340460 DOI: 10.3389/fphar.2022.936818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is one of the neurodegenerative diseases that is characterized by obvious motor and some nonmotor symptoms. Various therapeutics failed in the effective treatment of PD because of impaired neurological function in the brain and various complications. Periplaneta Americana oligosaccharides (OPA), the main active ingredients extracted from the medicine residues of Periplaneta Americana (P. Americana), have been reported to exert anti-inflammatory effects. The purpose of this study was to evaluate the possible mechanisms of OPA against 1-methyl-4-phenylpyridinium (MPP+)-induced apotosis in SH-SY5Y cells and its potential neuroprotective effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD subacute model mice. The data demonstrated that OPA significantly reversed the MPP+-induced decrease in SH-SY5Y cell viability, reduced the proportion of apoptotic cells, and protected SH-SY5Y cells from apoptosis in a dose-dependent manner by regulating the expression of apoptosis-related genes. Furthermore, OPA also alleviated the motor dysfunction of PD model mice, prevented the loss of tyrosine hydroxylase positive cells, suppressed the apoptosis of substantia nigra cells, and improved the dysbiosis of gut microbiota in vivo, suggesting that OPA demonstrated a significantly neuroprotective effect on PD model mice. These results indicated that OPA might be the possibility of PD therapeutics with economic utility and high safety.
Collapse
Affiliation(s)
- Miao-Miao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Nan Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Na Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kai-Min Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Chuan-Fang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Chuan-Fang Wu, ; Jin-Ku Bao,
| | - Jin-Ku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Chuan-Fang Wu, ; Jin-Ku Bao,
| |
Collapse
|
83
|
Gubert C, Choo JM, Love CJ, Kodikara S, Masson BA, Liew JJM, Wang Y, Kong G, Narayana VK, Renoir T, Lê Cao KA, Rogers GB, Hannan AJ. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice. Brain Commun 2022; 4:fcac205. [PMID: 36035436 PMCID: PMC9400176 DOI: 10.1093/braincomms/fcac205] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Huntington’s disease is a neurodegenerative disorder involving psychiatric, cognitive and motor symptoms. Huntington’s disease is caused by a tandem-repeat expansion in the huntingtin gene, which is widely expressed throughout the brain and body, including the gastrointestinal system. There are currently no effective disease-modifying treatments available for this fatal disorder. Despite recent evidence of gut microbiome disruption in preclinical and clinical Huntington’s disease, its potential as a target for therapeutic interventions has not been explored. The microbiota–gut–brain axis provides a potential pathway through which changes in the gut could modulate brain function, including cognition. We now show that faecal microbiota transplant (FMT) from wild-type into Huntington’s disease mice positively modulates cognitive outcomes, particularly in females. In Huntington’s disease male mice, we revealed an inefficiency of FMT engraftment, which is potentially due to the more pronounced changes in the structure, composition and instability of the gut microbial community, and the imbalance in acetate and gut immune profiles found in these mice. This study demonstrates a role for gut microbiome modulation in ameliorating cognitive deficits modelling dementia in Huntington’s disease. Our findings pave the way for the development of future therapeutic approaches, including FMT and other forms of gut microbiome modulation, as potential clinical interventions for Huntington’s disease.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute , Adelaide, SA 5001 , Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University , Bedford Park, SA 5042 , Australia
| | - Chloe J Love
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Saritha Kodikara
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Bethany A Masson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Jamie J M Liew
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Yiwen Wang
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Vinod K Narayana
- Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Kim Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne , Parkville, VIC 3010 , Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute , Adelaide, SA 5001 , Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University , Bedford Park, SA 5042 , Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne , Parkville, VIC 3010 , Australia
- Department of Anatomy and Neuroscience, University of Melbourne , Parkville, VIC 3010 , Australia
| |
Collapse
|
84
|
Chongtham A, Yoo JH, Chin TM, Akingbesote ND, Huda A, Marsh JL, Khoshnan A. Gut Bacteria Regulate the Pathogenesis of Huntington's Disease in Drosophila Model. Front Neurosci 2022; 16:902205. [PMID: 35757549 PMCID: PMC9215115 DOI: 10.3389/fnins.2022.902205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Changes in the composition of gut microbiota are implicated in the pathogenesis of several neurodegenerative disorders. Here, we investigated whether gut bacteria affect the progression of Huntington’s disease (HD) in transgenic Drosophila melanogaster (fruit fly) models expressing full-length or N-terminal fragments of human mutant huntingtin (HTT) protein. We find that elimination of commensal gut bacteria by antibiotics reduces the aggregation of amyloidogenic N-terminal fragments of HTT and delays the development of motor defects. Conversely, colonization of HD flies with Escherichia coli (E. coli), a known pathobiont of human gut with links to neurodegeneration and other morbidities, accelerates HTT aggregation, aggravates immobility, and shortens lifespan. Similar to antibiotics, treatment of HD flies with small compounds such as luteolin, a flavone, or crocin a beta-carotenoid, ameliorates disease phenotypes, and promotes survival. Crocin prevents colonization of E. coli in the gut and alters the levels of commensal bacteria, which may be linked to its protective effects. The opposing effects of E. coli and crocin on HTT aggregation, motor defects, and survival in transgenic Drosophila models support the involvement of gut-brain networks in the pathogenesis of HD.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Jung Hyun Yoo
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Theodore M Chin
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Ngozi D Akingbesote
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Ainul Huda
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - J Lawrence Marsh
- Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ali Khoshnan
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
85
|
The Gut Microbiome-Brain Crosstalk in Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10071486. [PMID: 35884791 PMCID: PMC9312830 DOI: 10.3390/biomedicines10071486] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
The gut–brain axis (GBA) is a complex interactive network linking the gut to the brain. It involves the bidirectional communication between the gastrointestinal and the central nervous system, mediated by endocrinological, immunological, and neural signals. Perturbations of the GBA have been reported in many neurodegenerative diseases, suggesting a possible role in disease pathogenesis, making it a potential therapeutic target. The gut microbiome is a pivotal component of the GBA, and alterations in its composition have been linked to GBA dysfunction and CNS inflammation and degeneration. The gut microbiome might influence the homeostasis of the central nervous system homeostasis through the modulation of the immune system and, more directly, the production of molecules and metabolites. Small clinical and preclinical trials, in which microbial composition was manipulated using dietary changes, fecal microbiome transplantation, and probiotic supplements, have provided promising outcomes. However, results are not always consistent, and large-scale randomized control trials are lacking. Here, we give an overview of how the gut microbiome influences the GBA and could contribute to disease pathogenesis in neurodegenerative diseases.
Collapse
|
86
|
Minuti A, Brufani F, Menculini G, Moretti P, Tortorella A. The complex relationship between gut microbiota dysregulation and mood disorders: A narrative review. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100044. [PMID: 36685764 PMCID: PMC9846469 DOI: 10.1016/j.crneur.2022.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/09/2022] [Accepted: 06/01/2022] [Indexed: 01/25/2023] Open
Abstract
Gut microbiota regulates neurotransmission, neurogenesis, neuroinflammation, and neuroendocrine signaling. The aim of the present review is to analyze the literature concerning gut microbiota dysregulation and mood symptoms, with the specific hypothesis that such alterations play a role in the onset of mood disorders. Here, in fact, we review recent research focusing on how gut microbiota dysregulation influences the onset of mood disorders and on possible pathophysiological mechanisms involved in this interaction. We pay specific attention to the relationship between gut microbiota dysregulation and inflammatory state, Th17 differentiation, neuroactive factors, and TRP metabolism. The association between gut microbiota dysregulation and mood disorders is critically analyzed under a clinical point of view, also focusing on the emergence of mood symptoms in the context of medical conditions. These latter correlations may enable an interdisciplinary perspective in the clinical approach to such symptoms, as well as new treatment strategies, such as nutritional interventions, psychobiotics, antibiotics, as well as fecal microbiota transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Tortorella
- Corresponding author. Department of Psychiatry University of Perugia, Piazza Severi 1, Perugia, Italy.
| |
Collapse
|
87
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
88
|
Bao Z, Zhang Z, Zhou G, Zhang A, Shao A, Zhou F. Novel Mechanisms and Therapeutic Targets for Ischemic Stroke: A Focus on Gut Microbiota. Front Cell Neurosci 2022; 16:871720. [PMID: 35656406 PMCID: PMC9152006 DOI: 10.3389/fncel.2022.871720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is the most common type of stroke with limited treatment options. Although the pathological mechanisms and potential therapeutic targets of ischemic stroke have been comprehensively studied, no effective therapies were translated into clinical practice. Gut microbiota is a complex and diverse dynamic metabolic ecological balance network in the body, including a large number of bacteria, archaea, and eukaryotes. The composition, quantity and distribution in gut microbiota are found to be associated with the pathogenesis of many diseases, such as individual immune abnormalities, metabolic disorders, and neurodegeneration. New insight suggests that ischemic stroke may lead to changes in the gut microbiota and the alterations of gut microbiota may determine stroke outcomes in turn. The link between gut microbiota and stroke is expected to provide new perspectives for ischemic stroke treatment. In this review, we discuss the gut microbiota alterations during ischemic stroke and gut microbiota-related stroke pathophysiology and complications. Finally, we highlight the role of the gut microbiota as a potential therapeutic target for ischemic stroke and summarize the microbiome-based treatment options that can improve the recovery of stroke patients.
Collapse
|
89
|
Zapanta K, Schroeder ET, Fisher BE. Rethinking Parkinson Disease: Exploring Gut-Brain Interactions and the Potential Role of Exercise. Phys Ther 2022; 102:6535135. [PMID: 35225349 DOI: 10.1093/ptj/pzac022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022]
Abstract
UNLABELLED Although Parkinson disease (PD) has traditionally been considered a disease of the central nervous system, a bidirectional communication system known as the gut-brain axis can influence PD pathogenesis. The dual-hit hypothesis proposed that PD is due to peripheral dysregulations to the gut microbiota, known as dysbiosis. Since then, further investigation has shown that there are multiple pathological sources associated with PD. However, dysbiosis plays a critical role in the disease process. Substantial evidence has identified that cardinal motor symptoms of PD and disease progression are associated with dysbiosis. In other neurodegenerative disorders, dysbiosis has been linked to cognition. Non-PD research has shown that exercise can effectively restore the gut microbiota. Likewise, exercise has become a well-established strategy to improve cognitive and motor function in PD. However, despite the interaction between the gut and brain, and the exercise benefits on gut health, no research to date has considered the effects of exercise on the gut microbiota in PD. Therefore, the purpose of this Perspective is to explore whether exercise benefits observed in PD could partly be due to restorations to the gut microbiota. First, we will review the gut-brain axis and its influence on motor and cognitive function. Next, we will outline evidence regarding exercise-induced restoration of the gut microbiota in non-PD populations. Finally, we will summarize benefits of exercise on motor-cognitive function in PD, proposing that benefits of exercise seen in PD might actually be due to restorations to the gut microbiota. By positing the gut microbiota as a moderator of exercise improvements to motor and cognitive function, we aim to provide a new perspective for physical therapists to prioritize exercise regimens for individuals with PD that can specifically restore the gut microbiota to better improve PD symptoms and prognosis. IMPACT This Perspective raises awareness that dysregulations to the gut microbiota have recently been attributed to PD symptoms and pathology and that exercise can be an effective therapeutic strategy to improve gut health in individuals with PD. LAY SUMMARY People with PD have been found to have reduced microbial diversity in their gut, which can play an important role in the progression of the disease. Physical therapists can design therapeutic exercises that might help improve gut health in people with PD.
Collapse
Affiliation(s)
- Kaylie Zapanta
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - E Todd Schroeder
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA.,Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
90
|
Talman LS, Pfeiffer RF. Movement Disorders and the Gut: A Review. Mov Disord Clin Pract 2022; 9:418-428. [PMID: 35586541 PMCID: PMC9092751 DOI: 10.1002/mdc3.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022] Open
Abstract
There is a close link between multiple movement disorders and gastrointestinal dysfunction. Gastrointestinal symptoms may precede the development of the neurologic syndrome or may arise following the neurologic presentation. This review will provide an overview of gastrointestinal accompaniments to several well-known as well as lesser known movement disorders. It will also highlight several disorders which may not be considered primary movement disorders but have an overlapping presentation of both gastrointestinal and movement abnormalities.
Collapse
Affiliation(s)
- Lauren S. Talman
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Ronald F. Pfeiffer
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
91
|
Kong G, Lê Cao KA, Hannan AJ. Alterations in the Gut Fungal Community in a Mouse Model of Huntington's Disease. Microbiol Spectr 2022; 10:e0219221. [PMID: 35262396 PMCID: PMC9045163 DOI: 10.1128/spectrum.02192-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a trinucleotide expansion in the HTT gene, which is expressed throughout the brain and body, including the gut epithelium and enteric nervous system. Afflicted individuals suffer from progressive impairments in motor, psychiatric, and cognitive faculties, as well as peripheral deficits, including the alteration of the gut microbiome. However, studies characterizing the gut microbiome in HD have focused entirely on the bacterial component, while the fungal community (mycobiome) has been overlooked. The gut mycobiome has gained recognition for its role in host homeostasis and maintenance of the gut epithelial barrier. We aimed to characterize the gut mycobiome profile in HD using fecal samples collected from the R6/1 transgenic mouse model (and wild-type littermate controls) from 4 to 12 weeks of age, corresponding to presymptomatic through to early disease stages. Shotgun sequencing was performed on fecal DNA samples, followed by metagenomic analyses. The HD gut mycobiome beta diversity was significantly different from that of wild-type littermates at 12 weeks of age, while no genotype differences were observed at the earlier time points. Similarly, greater alpha diversity was observed in the HD mice by 12 weeks of age. Key taxa, including Malassezia restricta, Yarrowia lipolytica, and Aspergillus species, were identified as having a negative association with HD. Furthermore, integration of the bacterial and fungal data sets at 12 weeks of age identified negative correlations between the HD-associated fungal species and Lactobacillus reuteri. These findings provide new insights into gut microbiome alterations in HD and may help identify novel therapeutic targets. IMPORTANCE Huntington's disease (HD) is a fatal neurodegenerative disorder affecting both the mind and body. We have recently discovered that gut bacteria are disrupted in HD. The present study provides the first evidence of an altered gut fungal community (mycobiome) in HD. The genomes of many thousands of gut microbes were sequenced and used to assess "metagenomics" in particular the different types of fungal species in the HD versus control gut, in a mouse model. At an early disease stage, before the onset of symptoms, the overall gut mycobiome structure (array of fungi) in HD mice was distinct from that of their wild-type littermates. Alterations of multiple key fungi species were identified as being associated with the onset of disease symptoms, some of which showed strong correlations with the gut bacterial community. This study highlights the potential role of gut fungi in HD and may facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
92
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
93
|
Martínez-Lazcano JC, González-Guevara E, Boll C, Cárdenas G. Gut dysbiosis and homocysteine: a couple for boosting neurotoxicity in Huntington disease. Rev Neurosci 2022; 33:819-827. [PMID: 35411760 DOI: 10.1515/revneuro-2021-0164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
Huntington's disease (HD), a neurodegenerative disorder caused by an expansion of the huntingtin triplet (Htt), is clinically characterized by cognitive and neuropsychiatric alterations. Although these alterations appear to be related to mutant Htt (mHtt)-induced neurotoxicity, several other factors are involved. The gut microbiota is a known modulator of brain-gut communication and when altered (dysbiosis), several complaints can be developed including gastrointestinal dysfunction which may have a negative impact on cognition, behavior, and other mental functions in HD through several mechanisms, including increased levels of lipopolysaccharide, proinflammatory cytokines and immune cell response, as well as alterations in Ca2+ signaling, resulting in both increased intestinal and blood-brain barrier (BBB) permeability. Recently, the presence of dysbiosis has been described in both transgenic mouse models and HD patients. A bidirectional influence between host brain tissues and the gut microbiota has been observed. On the one hand, the host diet influences the composition and function of microbiota; and on the other hand, microbiota products can affect BBB permeability, synaptogenesis, and the regulation of neurotransmitters and neurotrophic factors, which has a direct effect on host metabolism and brain function. This review summarizes the available evidence on the pathogenic synergism of dysbiosis and homocysteine, and their role in the transgression of BBB integrity and their potential neurotoxicity of HD.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| | - Catherine Boll
- Laboratorio de Investigación clínica, Clínica de Ataxias y Coreas, Enfermedades Neurodegenerativas Raras, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología y Enfermedades Neuro-Infecciosas, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| |
Collapse
|
94
|
Shoubridge AP, Choo JM, Martin AM, Keating DJ, Wong ML, Licinio J, Rogers GB. The gut microbiome and mental health: advances in research and emerging priorities. Mol Psychiatry 2022; 27:1908-1919. [PMID: 35236957 DOI: 10.1038/s41380-022-01479-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Collapse
Affiliation(s)
- Andrew P Shoubridge
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jocelyn M Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia.,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Alyce M Martin
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Damien J Keating
- Neuroscience, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210, USA.,Department of Psychiatry, Flinders University College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Geraint B Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA, 5001, Australia. .,Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
95
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
Affiliation(s)
| | - Carole Nicco
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Souhaila Al Khodor
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Annalisa Terranegra
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Chantal Pichon
- Center for Molecular Biophysics CNRS UPR 4301, University of Orléans, Orléans, France
| | - Peter Konturek
- Teaching Hospital of the University of Jena, Jena, Germany
| | - Marvin Edeas
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
96
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
97
|
Korf JM, Ganesh BP, McCullough LD. Gut dysbiosis and age-related neurological diseases in females. Neurobiol Dis 2022; 168:105695. [PMID: 35307514 PMCID: PMC9631958 DOI: 10.1016/j.nbd.2022.105695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022] Open
Abstract
Historically, females have been underrepresented in biological research. With increased interest in the gut microbiome and the gut-brain axis, it is important for researchers to pursue studies that consider sex as a biological variable. The composition of the gut microbiome is influenced by environmental factors, disease, diet, and varies with age and by sex. Detrimental changes in the gut microbiome, referred to as dysbiosis, is believed to influence the development and progression of age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and stroke. Many are investigating the changes in microbial populations in order or to better understand the role of the gut immunity and the microbiome in neurodegenerative diseases, many of which the exact etiology remains elusive, and no cures exist. Others are working to find diagnostic markers for earlier detection, or to therapeutically modulate microbial populations using probiotics. However, while all these diseases present in reproductively senescent females, most studies only use male animals for their experimental design. Reproductively senescent females have been shown to have differences in disease progression, inflammatory responses, and microbiota composition, therefore, for research to be translational to affected populations it is necessary for appropriate models to be used. This review discusses factors that influence the gut microbiome and the gut brain axis in females, and highlights studies that have investigated the role of dysbiosis in age-related neurodegenerative disorders that have included females in their study design.
Collapse
Affiliation(s)
- Janelle M Korf
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA.
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77370, USA.
| |
Collapse
|
98
|
Zhu Y, Li Y, Zhang Q, Song Y, Wang L, Zhu Z. Interactions Between Intestinal Microbiota and Neural Mitochondria: A New Perspective on Communicating Pathway From Gut to Brain. Front Microbiol 2022; 13:798917. [PMID: 35283843 PMCID: PMC8908256 DOI: 10.3389/fmicb.2022.798917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies shown that neurological diseases are associated with neural mitochondrial dysfunctions and microbiome composition alterations. Since mitochondria emerged from bacterial ancestors during endosymbiosis, mitochondria, and bacteria had analogous genomic characteristics, similar bioactive compounds and comparable energy metabolism pathways. Therefore, it is necessary to rationalize the interactions of intestinal microbiota with neural mitochondria. Recent studies have identified neural mitochondrial dysfunction as a critical pathogenic factor for the onset and progress of multiple neurological disorders, in which the non-negligible role of altered gut flora composition was increasingly noticed. Here, we proposed a new perspective of intestinal microbiota – neural mitochondria interaction as a communicating channel from gut to brain, which could help to extend the vision of gut-brain axis regulation and provide additional research directions on treatment and prevention of responsive neurological disorders.
Collapse
Affiliation(s)
- Yao Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Medical Technology College, Xuzhou Medical University, Xuzhou, China
| | - Qiang Zhang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Liang Wang,
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Zuobin Zhu,
| |
Collapse
|
99
|
Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B, Chai H, Wang W, Cheng P. Implications of Gut Microbiota in Neurodegenerative Diseases. Front Immunol 2022; 13:785644. [PMID: 35237258 PMCID: PMC8882587 DOI: 10.3389/fimmu.2022.785644] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The morbidity associated with neurodegenerative diseases (NDs) is increasing, posing a threat to the mental and physical quality of life of humans. The crucial effect of microbiota on brain physiological processes is mediated through a bidirectional interaction, termed as the gut–brain axis (GBA), which is being investigated in studies. Many clinical and laboratory trials have indicated the importance of microbiota in the development of NDs via various microbial molecules that transmit from the gut to the brain across the GBA or nervous system. In this review, we summarize the implications of gut microbiota in ND, which will be beneficial for understanding the etiology and progression of NDs that may in turn help in developing ND interventions and clinical treatments for these diseases.
Collapse
Affiliation(s)
- Haoming Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yijia Chen
- School of Life Science, Fudan University, Shanghai, China
| | - Zifan Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gaijie Xie
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingming Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Boyu Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongxia Chai
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Wei Wang, ; Ping Cheng,
| | - Ping Cheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- *Correspondence: Wei Wang, ; Ping Cheng,
| |
Collapse
|
100
|
Gene-environment-gut interactions in Huntington's disease mice are associated with environmental modulation of the gut microbiome. iScience 2022; 25:103687. [PMID: 35059604 PMCID: PMC8760441 DOI: 10.1016/j.isci.2021.103687] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gut dysbiosis in Huntington's disease (HD) has recently been reported using microbiome profiling in R6/1 HD mice and replicated in clinical HD. In HD mice, environmental enrichment (EE) and exercise (EX) were shown to have therapeutic impacts on the brain and associated symptoms. We hypothesize that these housing interventions modulate the gut microbiome, configuring one of the mechanisms that mediate their therapeutic effects observed in HD. We exposed R6/1 mice to a protocol of either EE or EX, relative to standard-housed control conditions, before the onset of gut dysbiosis and motor deficits. We characterized gut structure and function, as well as gut microbiome profiling using 16S rRNA sequencing. Multivariate analysis identified specific orders, namely Bacteroidales, Lachnospirales and Oscillospirales, as the main bacterial signatures that discriminate between housing conditions. Our findings suggest a promising role for the gut microbiome in mediating the effects of EE and EX exposures, and possibly other environmental interventions, in HD mice. Gastrointestinal structure and motility are intact at an early stage in a HD mouse model There is sexual dimorphism in the presentation of the HD gut dysbiosis phenotype Bacteroidales, Lachnospirales and Oscillospirales bacteria are affected by experience Environmental enrichment and exercise may modulate HD via the microbiota-gut-brain axis
Collapse
|