51
|
Sherwood RI, Maehr R, Mazzoni EO, Melton DA. Wnt signaling specifies and patterns intestinal endoderm. Mech Dev 2011; 128:387-400. [PMID: 21854845 DOI: 10.1016/j.mod.2011.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/11/2011] [Accepted: 07/28/2011] [Indexed: 02/01/2023]
Abstract
Wnt signaling has been implicated in many developmental processes, but its role in early endoderm development is not well understood. Wnt signaling is active in posterior endoderm as early as E7.5. Genetic and chemical activation show that the Wnt pathway acts directly on endoderm to induce the intestinal master regulator Cdx2, shifting global gene away from anterior endoderm and toward a posterior, intestinal program. In a mouse embryonic stem cell differentiation platform that yields pure populations of definitive endoderm, Wnt signaling induces intestinal gene expression in all cells. We have identified a set of genes specific to the anterior small intestine, posterior small intestine, and large intestine during early development, and show that Wnt, through Cdx2, activates large intestinal gene expression at high doses and small intestinal gene expression at lower doses. These findings shed light on the mechanism of embryonic intestinal induction and provide a method to manipulate intestinal development from embryonic stem cells.
Collapse
Affiliation(s)
- Richard I Sherwood
- Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
52
|
Zlobec I, Bihl M, Foerster A, Rufle A, Lugli A. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features. J Pathol 2011; 225:336-43. [PMID: 21660972 DOI: 10.1002/path.2879] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/08/2011] [Accepted: 02/14/2011] [Indexed: 12/19/2022]
Abstract
CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ≥ 4/5 methylated genes), MSI (MSI-H: ≥ 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p < 0.0001) to more proximal tumour location, BRAF mutation, MSI-H, MGMT methylation (p = 0.022), advanced pT classification (p = 0.03), mucinous histology (p = 0.069), and less frequent KRAS mutation (p = 0.067) compared to CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p < 0.0001) and increased numbers of CD8+ intra-epithelial lymphocytes (p < 0.0001) were related to CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H.
Collapse
Affiliation(s)
- Inti Zlobec
- Institute of Pathology, University of Basel, Schoenbeinstrasse 40, 4056, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
53
|
Bauer KM, Hummon AB, Buechler S. Right-side and left-side colon cancer follow different pathways to relapse. Mol Carcinog 2011; 51:411-21. [PMID: 21656576 DOI: 10.1002/mc.20804] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 12/18/2022]
Abstract
There is growing evidence that cancer of the ascending (right-side) colon is different from cancer of the descending (left-side) colon at the molecular level. Using microarray data from 102 right-side colon carcinomas and 95 left-side colon carcinomas we show that different pathways dominate progression to relapse in right-side and left-side colon cancer. Right-side tumors at a high risk for relapse exhibit elevated expression of cell cycle control genes and elevated Wnt signaling. On the other hand, relapse-prone left-side tumors show elevated expression of genes that promote stromal expansion and reduced expression of tumor suppressor genes that initiate Wnt signaling. Single gene prognostic biomarkers are found separately for right-side and left-side disease. In left-side tumors with low expression levels of NADPH oxidase 4 (NOX4) the 5-yr relapse-free survival probability is 0.89 95% CI (0.80-0.99), and in tumors with elevated NOX4 expression the probability is 0.51 95% CI (0.37-0.70). Right-side tumors with elevated expression levels of caudal type homeobox 2 (CDX2) have a 5-yr relapse-free survival probability of 0.88 95% CI (0.80-0.96), and those with low CDX2 expression have a corresponding probability of 0.39 95% CI (0.15-0.78). Both NOX4 and CDX2 are much less prognostic on the opposite sides. This newly identified role of NOX4 in colon cancer is further investigated using the SW620 lymph node metastasis colon adenocarcinoma cell line and RNA interference. We show that NOX4 is expressed in the SW620 cell line and that application of NOX4 siRNA causes a significant reduction in reactive oxidative species production.
Collapse
Affiliation(s)
- Kerry M Bauer
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
54
|
Kong J, Crissey MA, Funakoshi S, Kreindler JL, Lynch JP. Ectopic Cdx2 expression in murine esophagus models an intermediate stage in the emergence of Barrett's esophagus. PLoS One 2011; 6:e18280. [PMID: 21494671 PMCID: PMC3071814 DOI: 10.1371/journal.pone.0018280] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 01/27/2023] Open
Abstract
Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm(2) ±343.5 to 508 Ohm*cm(2)±92.48, p = 0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled "Distinctive" cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5'-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mary Ann Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shinsuke Funakoshi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James L. Kreindler
- Division of Pulmonary Medicine, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
55
|
Crissey MAS, Guo RJ, Funakoshi S, Kong J, Liu J, Lynch JP. Cdx2 levels modulate intestinal epithelium maturity and Paneth cell development. Gastroenterology 2011; 140:517-528.e8. [PMID: 21081128 PMCID: PMC3031739 DOI: 10.1053/j.gastro.2010.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 10/09/2010] [Accepted: 11/03/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Caudal-related homeobox protein 2 (Cdx2) is an intestine-specific transcription factor that is important for intestinal development and intestine-specific gene expression. Cdx2 regulates intestinal cell-cell adhesion, proliferation, and the transcriptional activities of Wnt and β-catenin in cell culture systems. We generated transgenic mice that overexpress Cdx2 in the small intestinal and colonic epithelium to investigate the role of Cdx2 in differentiation and function of the intestinal epithelium. METHODS We established 4 different lines of villin-Cdx2 transgenic mice. Intestines were collected from infant, 3-month old, and wild-type mice. Genes of interest and cell lineage markers were examined by polymerase chain reaction and immunohistochemistry. RESULTS Villin-Cdx2 transgenic mice had complex phenotypes that were associated with transgene expression levels. The 2 lines that had the greatest levels of transgene expression had significant, preweaning failure to grow and death; these were the result of early epithelial maturation and alterations in nutrient digestion and absorption. Fat malabsorption was a prominent feature. Other effects associated with the transgene expression included loss of Paneth cell markers, increases in goblet cells, and migration of proliferating, EphB2-expressing cells to the crypt base. Loss of Paneth cell markers was associated with reduced nuclear localization of β-catenin but not homeotic posteriorization of the epithelium by Cdx2. CONCLUSIONS Overexpression of Cdx2 in the small intestine is associated with reduced post-natal growth, early epithelial maturation, alterations in crypt base organization, and changes in Paneth and goblet cell lineages. Cdx2 is a critical regulator not only of intestine-specific genes, but also processes that determine epithelial maturity and function.
Collapse
Affiliation(s)
- Mary Ann S Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Funakoshi S, Kong J, Crissey MA, Dang L, Dang D, Lynch JP. Intestine-specific transcription factor Cdx2 induces E-cadherin function by enhancing the trafficking of E-cadherin to the cell membrane. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1054-67. [PMID: 20671195 PMCID: PMC2993167 DOI: 10.1152/ajpgi.00297.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cdx2 is an intestine-specific transcription factor required for normal intestinal epithelium development. Cdx2 regulates the expression of intestine-specific genes and induces cell adhesion and columnar morphogenesis. Cdx2 also has tumor-suppressor properties, including the reduction of colon cancer cell proliferation and cell invasion, the latter due to its effects on cell adhesion. E-cadherin is a cell adhesion protein required for adherens junction formation and the establishment of intestinal cell polarity. The objective of this study was to elucidate the mechanism by which Cdx2 regulates E-cadherin function. Two colon cancer cell lines were identified in which Cdx2 expression was associated with increased cell-cell adhesion and diminished cell migration. In both cell lines, Cdx2 did not directly alter E-cadherin levels but increased its trafficking to the cell membrane compartment. Cdx2 enhanced this trafficking by altering receptor tyrosine kinase (RTK) activity. Cdx2 expression diminished phosphorylated Abl and phosphorylated Rac levels, which are downstream effectors of RTKs. Specific chemical inhibition or short interfering RNA (shRNA) knockdown of c-Abl kinase phenocopied Cdx2's cell-cell adhesion effects. In Colo 205 cells, Cdx2 reduced PDGF receptor and IGF-I receptor activation. This was mediated by caveolin-1, which was induced by Cdx2. Targeted shRNA knockdown of caveolin-1 restored PDGF receptor and reversed E-cadherin membrane trafficking, despite Cdx2 expression. We conclude that Cdx2 regulates E-cadherin function indirectly by disrupting RTK activity and enhancing E-cadherin trafficking to the cell membrane compartment. This novel mechanism advances Cdx2's prodifferentiation and antitumor properties and suggests that Cdx2 may broadly regulate RTK activity in normal intestinal epithelium by modulating membrane trafficking of proteins.
Collapse
Affiliation(s)
- Shinsuke Funakoshi
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Jianping Kong
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Mary Ann Crissey
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Long Dang
- 2Division of Hematology/Oncology, Department of Internal Medicine, University of Florida, Gainesville, Florida; and
| | - Duyen Dang
- 3Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John P. Lynch
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
57
|
Savory JGA, Mansfield M, St Louis C, Lohnes D. Cdx4 is a Cdx2 target gene. Mech Dev 2010; 128:41-8. [PMID: 20933081 DOI: 10.1016/j.mod.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/31/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
The products of the Cdx genes, Cdx1, Cdx2 and Cdx4, play multiple roles in early vertebrate development, and have been proposed to serve to relay signaling information from Wnt, RA and FGF pathways to orchestrate events related to anterior-posterior vertebral patterning and axial elongation. In addition, Cdx1 and Cdx2 have been reported to both autoregulate and to be subject to cross regulation by other family members. We have now found that Cdx4 expression is significantly down regulated in Cdx2(-/-) mutants suggesting previously unrecognized cross-regulatory interactions. Moreover, we have previously shown that Cdx4 is a direct target of the canonical Wnt signaling pathway, and that Cdx1 physically interacts with LEF/TCF members in an autoregulatory loop. We therefore investigated the means by which Cdx2 impacted on Cdx4 expression and assessed potential interaction between Cdx2 and canonical Wnt signaling on the Cdx4 promoter. We found that the Cdx4 promoter was regulated by Cdx2 in transient transfection assays. Electrophoretic mobility shift assays showed that Cdx2 bound to predicted Cdx response elements in the Cdx4 promoter which, when mutated, significantly reduced activity. Consistent with these data, chromatin immunoprecipitation assays from embryos demonstrated occupancy of the Cdx4 promoter by Cdx2 in vivo. However, we failed to observe an interaction between Cdx2 and components of the canonical Wnt signaling pathway. These findings suggest that, while both canonical Wnt and Cdx2 can regulate the activity of the Cdx4 promoter, they appear to operate through distinct mechanisms.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
58
|
Joo JH, Taxter TJ, Munguba GC, Kim YH, Dhaduvai K, Dunn NW, Degan WJ, Oh SP, Sugrue SP. Pinin modulates expression of an intestinal homeobox gene, Cdx2, and plays an essential role for small intestinal morphogenesis. Dev Biol 2010; 345:191-203. [PMID: 20637749 PMCID: PMC2949054 DOI: 10.1016/j.ydbio.2010.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/29/2023]
Abstract
Pinin (Pnn), a nuclear speckle-associated protein, has been shown to function in maintenance of epithelial integrity through altering expression of several key adhesion molecules. Here we demonstrate that Pnn plays a crucial role in small intestinal development by influencing expression of an intestinal homeobox gene, Cdx2. Conditional inactivation of Pnn within intestinal epithelia resulted in significant downregulation of a caudal type homeobox gene, Cdx2, leading to obvious villus dysmorphogenesis and severely disrupted epithelial differentiation. Additionally, in Pnn-deficient small intestine, we observed upregulated Tcf/Lef reporter activity, as well as misregulated expression/distribution of beta-catenin and Tcf4. Since regulation of Cdx gene expression has been closely linked to Wnt/beta-catenin signaling activity, we explored the possibility of Pnn's interaction with beta-catenin, a major effector of the canonical Wnt signaling pathway. Co-immunoprecipitation assays revealed that Pnn, together with its interaction partner CtBP2, a transcriptional co-repressor, was in a complex with beta-catenin. Moreover, both of these proteins were found to be recruited to the proximal promoter area of Cdx2. Taken together, our results suggest that Pnn is essential for tight regulation of Wnt signaling and Cdx2 expression during small intestinal development.
Collapse
Affiliation(s)
- Jeong-Hoon Joo
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Timothy J. Taxter
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Gustavo C. Munguba
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Yong H. Kim
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Kanthi Dhaduvai
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Nicholas W. Dunn
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - William J. Degan
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - S. Paul Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Stephen P. Sugrue
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
59
|
Boyd M, Hansen M, Jensen TGK, Perearnau A, Olsen AK, Bram LL, Bak M, Tommerup N, Olsen J, Troelsen JT. Genome-wide analysis of CDX2 binding in intestinal epithelial cells (Caco-2). J Biol Chem 2010; 285:25115-25. [PMID: 20551321 DOI: 10.1074/jbc.m109.089516] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The CDX2 transcription factor is known to play a crucial role in inhibiting proliferation, promoting differentiation and the expression of intestinal specific genes in intestinal cells. The overall effect of CDX2 in intestinal cells has previously been investigated in conditional knock-out mice, revealing a critical role of CDX2 in the formation of the normal intestinal identity. The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. The ChIP-seq technique combines chromatin immunoprecipitation (ChIP) with next generation sequencing resulting in a high throughput experimental method of identifying direct targets of specific transcription factors. The method was applied to CDX2, leading to the identification of the direct binding of CDX2 to several known and novel target genes in the intestinal cell. Examination of the transcript levels of selected genes verified the regulatory role of CDX2 binding. The results place CDX2 as a key node in a transcription factor network controlling the proliferation and differentiation of intestinal cells.
Collapse
Affiliation(s)
- Mette Boyd
- Department of Cellular and Molecular Medicine, Panum Institute, Building 6.4, University of Copenhagen, Blegdamsvej 3. 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|