51
|
Morishita A, Masaki T. miRNA in hepatocellular carcinoma. Hepatol Res 2015; 45:128-41. [PMID: 25040738 DOI: 10.1111/hepr.12386] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Despite improvements in HCC therapy, the prognosis for HCC patients remains poor due to a high incidence of recurrence. An improved understanding of the pathogenesis of HCC development would facilitate the development of more effective outcomes for the diagnosis and treatment of HCC at earlier stages. miRNA are small, endogenous, non-coding, ssRNA that are 21-30 nucleotides in length and modulate the expression of various target genes at the post-transcriptional and translational levels. Aberrant expression of miRNA is common in various human malignancies and modulates cancer-associated genomic regions or fragile sites. As for the relationship between miRNA and HCC, several studies have demonstrated that the aberrant expression of specific miRNA can be detected in HCC cells and tissues. However, little is known about the mechanisms of miRNA-related cell proliferation and development. In this review, we summarize the central and potential roles of miRNA in the pathogenesis of HCC and elucidate new possibilities that may be useful as diagnostic and prognostic markers, as well as novel therapeutic targets in HCC.
Collapse
Affiliation(s)
- Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| |
Collapse
|
52
|
Zhang Q, Liu H, Soukup GA, He DZZ. Identifying microRNAs involved in aging of the lateral wall of the cochlear duct. PLoS One 2014; 9:e112857. [PMID: 25405349 PMCID: PMC4236067 DOI: 10.1371/journal.pone.0112857] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
Abstract
Age-related hearing loss is a progressive sensorineural hearing loss that occurs during aging. Degeneration of the organ of Corti and atrophy of the lateral wall of the cochlear duct (or scala media) in the inner ear are the two primary causes. MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA/protein targets, are important regulators of cellular senescence and aging. We examined miRNA gene expression profiles in the lateral wall of two mouse strains, along with exploration of the potential targets of those miRNAs that showed dynamic expression during aging. We show that 95 and 60 miRNAs exhibited differential expression in C57 and CBA mice during aging, respectively. A majority of downregulated miRNAs are known to regulate pathways of cell proliferation and differentiation, while all upregulated miRNAs are known regulators in the pro-apoptotic pathways. By using apoptosis-related gene array and bioinformatic approaches to predict miRNA targets, we identify candidate miRNA-regulated genes that regulate apoptosis pathways in the lateral wall of C57 and CBA mice during aging.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Garrett A. Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail: (GS); (DH)
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, United States of America
- * E-mail: (GS); (DH)
| |
Collapse
|
53
|
Cui SY, Wang R, Chen LB. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J Cell Mol Med 2014; 18:1913-26. [PMID: 25124875 PMCID: PMC4244007 DOI: 10.1111/jcmm.12358] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs are endogenous, small (18-25 nucleotides) non-coding RNAs, which regulate genes expression by directly binding to the 3'-untranslated regions of the target messenger RNAs. Emerging evidence shows that alteration of microRNAs is involved in cancer development. MicroRNA-145 is commonly down-regulated in many types of cancer, regulating various cellular processes, such as the cell cycle, proliferation, apoptosis and invasion, by targeting multiple oncogenes. This review aims to summarize the recent published literature on the role of microRNA-145 in regulating tumourigenesis and progression, and explore its potential for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Shi-Yun Cui
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| | - Long-Bang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu, China
| |
Collapse
|
54
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014; 5:673-91. [PMID: 24916440 PMCID: PMC4145080 DOI: 10.1007/s13238-014-0065-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/13/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
55
|
Pivonello C, De Martino MC, Negri M, Cuomo G, Cariati F, Izzo F, Colao A, Pivonello R. The GH-IGF-SST system in hepatocellular carcinoma: biological and molecular pathogenetic mechanisms and therapeutic targets. Infect Agent Cancer 2014; 9:27. [PMID: 25225571 PMCID: PMC4164328 DOI: 10.1186/1750-9378-9-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide. Different signalling pathways have been identified to be implicated in the pathogenesis of HCC; among these, GH, IGF and somatostatin (SST) pathways have emerged as some of the major pathways implicated in the development of HCC. Physiologically, GH-IGF-SST system plays a crucial role in liver growth and development since GH induces IGF1 and IGF2 secretion and the expression of their receptors, involved in hepatocytes cell proliferation, differentiation and metabolism. On the other hand, somatostatin receptors (SSTRs) are exclusively present on the biliary tract. Importantly, the GH-IGF-SST system components have been indicated as regulators of hepatocarcinogenesis. Reduction of GH binding affinity to GH receptor, decreased serum IGF1 and increased serum IGF2 production, overexpression of IGF1 receptor, loss of function of IGF2 receptor and appearance of SSTRs are frequently observed in human HCC. In particular, recently, many studies have evaluated the correlation between increased levels of IGF1 receptors and liver diseases and the oncogenic role of IGF2 and its involvement in angiogenesis, migration and, consequently, in tumour progression. SST directly or indirectly influences tumour growth and development through the inhibition of cell proliferation and secretion and induction of apoptosis, even though SST role in hepatocarcinogenesis is still opened to argument. This review addresses the present evidences suggesting a role of the GH-IGF-SST system in the development and progression of HCC, and describes the therapeutic perspectives, based on the targeting of GH-IGF-SST system, which have been hypothesised and experimented in HCC.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | | | - Federica Cariati
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Francesco Izzo
- National Cancer Institute G Pascale Foundation, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| |
Collapse
|
56
|
Yang J, Zhang JY, Chen J, Chen C, Song XM, Xu Y, Li J. Prognostic role of microRNA-145 in various human malignant neoplasms: a meta-analysis of 18 related studies. World J Surg Oncol 2014; 12:254. [PMID: 25106061 PMCID: PMC4249768 DOI: 10.1186/1477-7819-12-254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/20/2014] [Indexed: 01/20/2023] Open
Abstract
Background Recent studies show that microRNA-145 (miR-145) might be an attractive tumor
biomarker of considerable prognostic value. To clarify the preliminary predictive
value of miR-145 for prognosis in various malignant neoplasms, we conducted a
meta-analysis of 18 relevant studies. Methods Eligible studies were identified by searching the online databases PubMed,
EMBASE, and Web of Science up to March 2014. Pooled hazard ratios (HRs) with 95%
confidence intervals (CIs) for patient survival and disease progress were
calculated to investigate the association with miR-145 expression. Results In total, 18 eligible studies were included in this meta-analysis. Our results
showed that upregulated miR-145 significantly predicted a favorable overall
survival (OS) (HR = 0.47, 95% CI 0.31 to 0.72), but failed to show a significant
relation with disease prognosis. In stratified analyses, high miR-145 expression
predicted favorable OS in both Whites and Asians but the intensity of the
association in Whites (HR = 0.67, 95% CI 0.47 to 0.95) was not as strong as in
Asians (HR = 0.35, 95% CI 0.19 to 0.64). High miR-145 expression also predicted
better progression-free survival (PFS) in Asians (HR = 0.43, 95% CI 0.21 to 0.89),
but not in Whites. In addition, a significantly favorable OS associated with
upregulated miR-145 expression was observed in both squamous cell (SCC)
(HR = 0.34, 95% CI 0.13 to 0.93) and glioblastoma (HR = 0.72, 95% CI 0.52 to
0.99). Conclusions Our findings indicate that high miR-145 expression is better at predicting
patient survival rather than disease progression for malignant tumors, especially
for SCC and glioblastoma in Asians. Considering the insufficient evidence, further
investigations and more studies are needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Li
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
57
|
Farrokhnia F, Aplin JD, Westwood M, Forbes K. MicroRNA regulation of mitogenic signaling networks in the human placenta. J Biol Chem 2014; 289:30404-30416. [PMID: 25077964 DOI: 10.1074/jbc.m114.587295] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Placental cell growth depends on an adaptable combination of an endogenous developmental program and the exogenous influence of maternal growth factors, both of which may be influenced by microRNA (miR)-dependent effects on gene expression. We have previously shown that global miR suppression in placenta accelerates proliferation and enhances levels of growth factor signaling mediators in cytotrophoblast. This study aimed to identify miRs involved in regulating placental growth. An initial array revealed 58 miR species whose expression differs between first trimester, when cytotrophoblast proliferation is rapid, and term, by which time proliferation has slowed. In silico analysis defined potential growth-regulatory miRs; among these, hsa-miR-145, hsa-miR-377, and hsa-let-7a were predicted to target known placental growth genes and were higher at term than in the first trimester, so they were selected for further analysis. Overexpression of miR-377 and let-7a, but not miR-145, in first trimester placental explants significantly reduced basal cytotrophoblast proliferation and expression of ERK and MYC. PCR arrays, in silico analysis, Western blotting, and 3'-UTR luciferase reporter assays revealed targets of miR-145 within the insulin-like growth factor axis. Analysis of proliferation in placental explants overexpressing miR-145 demonstrated its role as a mediator of insulin-like growth factor-induced trophoblast proliferation. These findings identify miR-377 and let-7a in regulation of endogenous cell growth and miR-145 in the placental response to maternal stimulation and will aid the development of therapeutic strategies for problem pregnancies.
Collapse
Affiliation(s)
- Farkhondeh Farrokhnia
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, United Kingdom and; St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, United Kingdom and; St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, United Kingdom and; St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, United Kingdom and; St. Mary's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom.
| |
Collapse
|
58
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014. [PMID: 24916440 DOI: 10.1007/s13238- 014-0065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
59
|
Wang Y, Hu C, Cheng J, Chen B, Ke Q, Lv Z, Wu J, Zhou Y. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun 2014; 446:1255-60. [PMID: 24690171 DOI: 10.1016/j.bbrc.2014.03.107] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 02/06/2023]
Abstract
Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.
Collapse
Affiliation(s)
- Yelin Wang
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Hu
- Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Cheng
- Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binquan Chen
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinghong Ke
- Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Lv
- Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfeng Zhou
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
60
|
Duan X, Hu J, Wang Y, Gao J, Peng D, Xia L. MicroRNA-145: a promising biomarker for hepatocellular carcinoma (HCC). Gene 2014; 541:67-8. [PMID: 24630966 DOI: 10.1016/j.gene.2014.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/27/2014] [Accepted: 03/07/2014] [Indexed: 12/15/2022]
Abstract
It has been demonstrated that microRNA-145 (miR-145) is downregulated in patients with hepatocellular carcinoma (HCC) compared with healthy controls. The mechanisms for miR-145 in HCC will become potential in future researches.
Collapse
Affiliation(s)
- Xianchun Duan
- First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | | | - Yongzhong Wang
- First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Jiarong Gao
- First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | | | - Lunzhu Xia
- First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| |
Collapse
|
61
|
Otsuka M, Kishikawa T, Yoshikawa T, Ohno M, Takata A, Shibata C, Koike K. The role of microRNAs in hepatocarcinogenesis: current knowledge and future prospects. J Gastroenterol 2014; 49:173-184. [PMID: 24258409 DOI: 10.1007/s00535-013-0909-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate gene expression post-transcriptionally through complementary base pairing with thousands of messenger RNAs. Although the precise biological functions of individual miRNAs are still unknown, miRNAs are speculated to play important roles in diverse biological processes through fine regulation of their target gene expression. A growing body of data indicates the deregulation of miRNAs during hepatocarcinogenesis. In this review, we summarize recent findings regarding deregulated miRNA expression and their possible target genes in hepatocarcinogenesis, with emphasis on inflammation-related hepatocarcinogenesis. Because miRNA-based strategies are being applied to clinical therapeutics, precise knowledge of miRNA functions is crucial both scientifically and clinically. We discuss the current open questions from these points of view, which must be clarified in the near future.
Collapse
Affiliation(s)
- Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 5-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan,
| | | | | | | | | | | | | |
Collapse
|
62
|
Kang MH, Zhang LH, Wijesekara N, de Haan W, Butland S, Bhattacharjee A, Hayden MR. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arterioscler Thromb Vasc Biol 2013; 33:2724-32. [PMID: 24135019 DOI: 10.1161/atvbaha.113.302004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The ATP-binding cassette transporter A1 (ABCA1) protein maintains cellular cholesterol homeostasis in several different tissues. In the liver, ABCA1 is crucial for high-density lipoprotein biogenesis, and in the pancreas ABCA1 can regulate insulin secretion. In this study, our aim was to identify novel microRNAs that regulate ABCA1 expression in these tissues. APPROACH AND RESULTS We combined multiple microRNA prediction programs to identify 8 microRNAs that potentially regulate ABCA1. A luciferase reporter assay demonstrated that 5 of these microRNAs (miR-148, miR-27, miR-144, miR-145, and miR-33a/33b) significantly repressed ABCA1 3'-untranslated region activity with miR-145 resulting in one of the larger decreases. In hepatic HepG2 cells, miR-145 can regulate both ABCA1 protein expression levels and cholesterol efflux function. In murine islets, an increase in miR-145 expression decreased ABCA1 protein expression, increased total islet cholesterol levels, and decreased glucose-stimulated insulin secretion. Inhibiting miR-145 produced the opposite effect of increasing ABCA1 protein levels and improving glucose-stimulated insulin secretion. Finally, increased glucose levels in media significantly decreased miR-145 levels in cultured pancreatic beta cells. These findings suggest that miR-145 is involved in glucose homeostasis and is regulated by glucose concentration. CONCLUSIONS Our studies demonstrate that miR-145 regulates ABCA1 expression and function, and inhibiting this microRNA represents a novel strategy for increasing ABCA1 expression, promoting high-density lipoprotein biogenesis in the liver, and improving glucose-stimulated insulin secretion in islets.
Collapse
Affiliation(s)
- Martin H Kang
- From the Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
63
|
Li HP, Zeng XC, Zhang B, Long JT, Zhou B, Tan GS, Zeng WX, Chen W, Yang JY. miR-451 inhibits cell proliferation in human hepatocellular carcinoma through direct suppression of IKK-β. Carcinogenesis 2013; 34:2443-2451. [PMID: 23740840 DOI: 10.1093/carcin/bgt206] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
It has been demonstrated that nuclear factor-kappa B (NF-κB), which is overactivated in hepatocellular carcinoma (HCC), plays important roles in the development of HCC. Recently, a group of dysregulated micro RNAs were reported to be involved in HCC progression. Further understanding of micro RNA-mediated regulation of NF-κB pathway may provide novel therapeutic targets for HCC. In this study, we found that miR-451 expression was markedly downregulated in HCC cells and tissues compared with immortalized normal liver epithelial cells and adjacent non- cancerous tissues, respectively. Upregulation of miR-451 inhibited, while downregulation of miR-451 promoted, the tumorigenicity of HCC cells both in vitro and in vivo. These changes in the properties of HCC cells were associated with deregulation of two well-known cellular G1/S transitional regulators, cyclin D1 and c-Myc, which are downstream targets of NF-κB pathway. Furthermore, we demonstrated that miR-451 upregulation led to downregulation of cyclin D1 and c-Myc through inhibition of NF-κB pathway initiated by direct targeting of the IKBKB 3'-untranslated region. Therefore, these results suggest that miR-451 downregulation plays an important role in promoting proliferation of HCC cells and may provide the basis for the development of novel anti-HCC therapies.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Adhesion
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- I-kappa B Kinase/antagonists & inhibitors
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- He-Ping Li
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Introduction Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue. Methods The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Results Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10). Conclusion To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.
Collapse
|
65
|
Sun X, He Y, Huang C, Ma TT, Li J. Distinctive microRNA signature associated of neoplasms with the Wnt/β-catenin signaling pathway. Cell Signal 2013; 25:2805-11. [PMID: 24041653 DOI: 10.1016/j.cellsig.2013.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/06/2013] [Indexed: 12/29/2022]
Abstract
As the crucial biological regulators, microRNAs that act by suppressing their target genes are involved in a variety of pathophysiological processes. It is generally accepted that microRNAs are often dysregulated in many types of neoplasm and other human diseases. In neoplasm, microRNAs may function as oncogenes or tumor suppressors. As constitutive activation of the Wnt signaling pathway is a common feature of neoplasm and contributes to its development, progression and metastasis in various cancers, numerous studies have revealed that microRNA-mediated gene regulation are interconnected with the Wnt/β-catenin signaling pathway, forming a Wnt/β-catenin-microRNA regulatory network, which is critical to successful targeting of the Wnt/β-catenin pathway for oncotherapy. In this review, we aim to accumulate recent advances on microRNAs that work in tandem with Wnt/β-catenin signaling in tumorigenesis, with particular focus on how microRNAs affect Wnt/β-catenin activity as well as how microRNAs are regulated through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xu Sun
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, China
| | | | | | | | | |
Collapse
|
66
|
Peng Y, Dai Y, Hitchcock C, Yang X, Kassis ES, Liu L, Luo Z, Sun HL, Cui R, Wei H, Kim T, Lee TJ, Jeon YJ, Nuovo GJ, Volinia S, He Q, Yu J, Nana-Sinkam P, Croce CM. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci U S A 2013; 110:15043-15048. [PMID: 23980150 PMCID: PMC3773758 DOI: 10.1073/pnas.1307107110] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small 19- to 24-nt noncoding RNAs that have the capacity to regulate fundamental biological processes essential for cancer initiation and progression. In cancer, miRNAs may function as oncogenes or tumor suppressors. Here, we conducted global profiling for miRNAs in a cohort of stage 1 nonsmall cell lung cancers (n = 81) and determined that miR-486 was the most down-regulated miRNA in tumors compared with adjacent uninvolved lung tissues, suggesting that miR-486 loss may be important in lung cancer development. We report that miR-486 directly targets components of insulin growth factor (IGF) signaling including insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and phosphoinositide-3-kinase, regulatory subunit 1 (alpha) (PIK3R1, or p85a) and functions as a potent tumor suppressor of lung cancer both in vitro and in vivo. Our findings support the role for miR-486 loss in lung cancer and suggest a potential biological link to p53.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Apoptosis
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Class Ia Phosphatidylinositol 3-Kinase/genetics
- Class Ia Phosphatidylinositol 3-Kinase/metabolism
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genes, p53
- Humans
- Insulin-Like Growth Factor I/antagonists & inhibitors
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- RNA, Small Interfering/genetics
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yong Peng
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Yuntao Dai
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | | | | | | | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghua Luo
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Hui-Lung Sun
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Ri Cui
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Huijun Wei
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Taewan Kim
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Tae Jin Lee
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Young-Jun Jeon
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | | | - Stefano Volinia
- Department of Molecular Virology, Immunology, and Medical Genetics and
| | - Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Jianhua Yu
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Patrick Nana-Sinkam
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University Comprehensive Cancer, Columbus, OH 43210
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics and
| |
Collapse
|
67
|
Khare S, Zhang Q, Ibdah JA. Epigenetics of hepatocellular carcinoma: Role of microRNA. World J Gastroenterol 2013; 19:5439-5445. [PMID: 24023486 PMCID: PMC3761096 DOI: 10.3748/wjg.v19.i33.5439] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. MicroRNAs (miRs), small non-coding single-stranded RNAs of 19-24 nucleotides in length, negatively regulate the expression of many target genes at the post-transcriptional and/or translational levels and play a critical role in the initiation and progression of HCC. In this review we have summarized the information of aberrantly expressed miRs in HCC, their mechanism of action and relationship to cancer. The recent advances in HCC research reveal that miRs regulate expression of various oncogenes and tumor suppressor genes, thereby contributing to the modulation of diverse biological processes including proliferation, apoptosis, epithelial to mesenchymal transition and metastasis. From a clinical viewpoint, polymorphisms within miR-binding sites are associated with the risk of HCC. Polymorphisms in miR related genes have been shown to correlate with survival or treatment outcome in patients. Furthermore, the review focuses on the potential role of miRs as novel biomarkers and their translational applications for diagnosis and therapy in HCC. With further insights into miR deregulation in HCC, it is expected that novel miR-based therapeutics will arise. Also, we orient the readers to other reviews that may provide better understanding of miR research in HCC.
Collapse
|
68
|
Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, Wang T, Wen WH, Jia LT, Yao LB, Yang AG. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis 2013; 34:1773-1781. [PMID: 23615404 DOI: 10.1093/carcin/bgt139] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The POU transcription factor OCT4 is a pleiotropic regulator of gene expression in embryonic stem cells. Recent studies demonstrated that OCT4 is aberrantly expressed in multiple types of human cancer; however, the underlying molecular mechanism remains largely unknown. In this study, we report that OCT4-pg4, a pseudogene of OCT4, is abnormally activated in hepatocellular carcinoma (HCC). The expression level of OCT4-pg4 is positively correlated with that of OCT4, and both gene transcripts can be directly targeted by a tumor-suppressive micro RNA miR-145. We find that the non-coding RNA OCT4-pg4 is biologically active, as it can upregulate OCT4 protein level in HCC. Mechanistic analysis revealed that OCT4-pg4 functions as a natural micro RNA sponge to protect OCT4 transcript from being inhibited by miR-145. In addition, our study also showed that OCT4-pg4 can promote growth and tumorigenicity of HCC cells, thus exerting an oncogenic role in hepatocarcinogenesis. Furthermore, survival analysis suggests that high OCT4-pg4 level is significantly correlated with poor prognosis of HCC patients. Taken together, our finding adds a new layer of post-transcriptional regulation of OCT4 and sheds new light on the treatment of human HCC.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Law PTY, Qin H, Ching AKK, Lai KP, Co NN, He M, Lung RWM, Chan AWH, Chan TF, Wong N. Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol 2013; 58:1165-73. [PMID: 23376363 DOI: 10.1016/j.jhep.2013.01.032] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Small non-coding RNAs (ncRNA) are increasingly recognized to play important roles in tumorigenesis. With the advent of deep sequencing, efforts have been put forth to profile the miRNome in a number of human malignancies. However, information on ncRNA in hepatocellular carcinoma (HCC), especially the non-microRNA transcripts, is still lacking. METHODS Small RNA transcriptomes of two HCC cell lines (HKCI-4 and HKCI-8) and an immortalized hepatocyte line (MIHA) were examined using Illumina massively parallel sequencing. Dysregulated ncRNAs were verified in paired HCC tumors and non-tumoral livers (n=73) by quantitative reverse transcription-polymerase chain reaction. Clinicopathologic correlations and in vitro functional investigations were further carried out. RESULTS The combined bioinformatic and biological analyses showed the presence of ncRNAs and the involvement of a new PIWI-interacting RNA (piRNA), piR-Hep1, in liver tumorigenesis. piR-Hep1 was found to be upregulated in 46.6% of HCC tumors compared to the corresponding adjacent non-tumoral liver. Silencing of piR-Hep1 inhibited cell viability, motility, and invasiveness, with a concomitant reduction in the level of active AKT phosphorylation. In the analysis of miRNA, we showed for the first time, the abundant expression of miR-1323 in HCC and its distinct association in tumors arising from a cirrhotic background. Furthermore, miR-1323 overexpression in cirrhotic HCC correlated with poorer disease-free and overall survivals of patients (p<0.009). CONCLUSIONS Our study demonstrated the value of next-generation sequencing in dissecting the ncRNome in cancer. The comprehensive definition of transcriptome unveils virtually all types of ncRNAs and provides new insight into liver carcinogenetic events.
Collapse
Affiliation(s)
- Priscilla T-Y Law
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Br J Cancer 2013; 108:2573-81. [PMID: 23703249 PMCID: PMC3694240 DOI: 10.1038/bjc.2013.250] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is characterised by great heterogeneity of the disease progression rate. Tumours range from insignificant and not life threatening to high risk for relapse ones. Consequently, a large number of patients undergo unnecessary treatment. miR-145 is a well-documented tumour suppressor and its expression, which is regulated by the p53 pathway, has been found to be decreased in the majority of human malignancies. The aim of our study was to evaluate the clinical utility of miR-145 for the prognostication of PCa. METHODS Total RNA was isolated from 137 prostate tissue specimens obtained from 73 radical prostatectomy-treated PCa patients and 64 transurethral- or open prostatectomy-treated benign prostate hyperplasia (BPH) patients. Following polyadenylation and reverse transcription, miR-145 levels were determined by quantitative real-time PCR assay, using SNORD48 (RNU48) for normalisation purposes. RESULTS Downregulated miR-145 expression was found in PCa compared with BPH patients. The reduction of miR-145 expression in PCa was correlated with higher Gleason score, advanced clinical stage, larger tumour diameter and higher prostate-specific antigen (PSA) and follow-up PSA levels. In addition, higher risk for biochemical recurrence and significantly shorter disease-free survival (DFS) was found for the PCa patients expressing lower miR-145. Focusing on 'low- and intermediate-recurrence risk' PCa patients, miR-145 loss was revealed to be a reliable predictor of biochemical relapse and poor DFS independent from Gleason score, clinical stage, PSA and patients' age. CONCLUSION The loss of the tumour-suppressor miR-145 increases the risk for disease progression and predicts the poor survival of PCa patients.
Collapse
|
71
|
Chai S, Ma S. Clinical implications of microRNAs in liver cancer stem cells. CHINESE JOURNAL OF CANCER 2013; 32:419-26. [PMID: 23668930 PMCID: PMC3845583 DOI: 10.5732/cjc.013.10038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is often dismal, mainly due to late presentation, high recurrence rate, and frequent resistance to chemotherapy and radiotherapy. Accumulating evidence on the differential microRNA (miRNA) expression patterns between non-tumor and HCC tissues or between liver cancer stem cells (CSCs) and non-CSC subsets and the significant clinical implications of these differences suggest that miRNAs are a promising, non-invasive marker for the prognosis and diagnosis of the disease. This perspective article summarizes the current knowledge of miRNAs in liver CSCs and highlights the need for further investigations of the role of miRNAs in regulating liver CSC subsets for possible future clinical applications.
Collapse
Affiliation(s)
- Stella Chai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P. R. China.
| | | |
Collapse
|
72
|
MicroRNAs in hepatocellular carcinoma: regulation, function, and clinical implications. ScientificWorldJournal 2013; 2013:924206. [PMID: 23431261 PMCID: PMC3575633 DOI: 10.1155/2013/924206] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and the third cause of cancer-related death. Poor understanding of the mechanisms underlying the pathogenesis of HCC makes it difficult to be diagnosed and treated at early stage. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs of ~22 nucleotides in length, posttranscriptionally regulate gene expression by base pairing with the 3' untranslated regions (3'UTRs) of target messenger RNAs (mRNAs). Aberrant expression of miRNAs is found in many if not all cancers, and many deregulated miRNAs have been proved to play crucial roles in the initiation and progression of cancers by regulating the expression of various oncogenes or tumor suppressor genes. In this Paper, we will summarize the regulations and functions of miRNAs aberrantly expressed in HCC and discuss the potential application of miRNAs as diagnostic and prognostic biomarkers of HCC and their potential roles in the intervention of HCC.
Collapse
|
73
|
Law PTY, Qin H, Chan TF, Wong N. Experimental verification of microRNA targets is essential, prediction alone is insufficient. Carcinogenesis 2012; 34:723. [DOI: 10.1093/carcin/bgs366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
74
|
Ma N, Gao X. β-Actin is predicted as one of the potential targets of miR-145: choose internal control gene in verification of microRNA target. Carcinogenesis 2012; 34:236. [PMID: 23129581 DOI: 10.1093/carcin/bgs354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
75
|
Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 2012; 7:e40028. [PMID: 22844398 PMCID: PMC3402511 DOI: 10.1371/journal.pone.0040028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNA molecules that regulate gene expression post-transcriptionally. Work in Caenorhabditis elegans has shown that specific miRNAs function in lifespan regulation and in a variety of age-associated pathways, but the roles of miRNAs in the aging of vertebrates are not well understood. We examined the expression of small RNAs in whole brains of young and old mice by deep sequencing and report here on the expression of 558 known miRNAs and identification of 41 novel miRNAs. Of these miRNAs, 75 known and 18 novel miRNAs exhibit greater than 2.0-fold expression changes. The majority of expressed miRNAs in our study decline in relative abundance in the aged brain, in agreement with trends observed in other miRNA studies in aging tissues and organisms. Target prediction analysis suggests that many of our novel aging-associated miRNAs target genes in the insulin signaling pathway, a central node of aging-associated genetic networks. These novel miRNAs may thereby regulate aging-related functions in the brain. Since many mouse miRNAs are conserved in humans, the aging-affected brain miRNAs we report here may represent novel regulatory genes that also function during aging in the human brain.
Collapse
|