51
|
Li S, Liang M, Gao D, Su Q, Laher I. Changes in Titin and Collagen Modulate Effects of Aerobic and Resistance Exercise on Diabetic Cardiac Function. J Cardiovasc Transl Res 2019; 12:404-414. [PMID: 30820865 DOI: 10.1007/s12265-019-09875-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Diastolic dysfunction is a common complication that occurs early in diabetes mellitus. Titin and collagen are two important regulators of myocardial passive tension, which contributes to diabetic myocardial diastolic dysfunction. Exercise therapy significantly improves the impaired diabetic cardiac function, but its benefits appear to depend on the type of exercise used. We investigated the effect of aerobic and resistance exercise on cardiac diastolic function in diabetic rats induced by high-fat diet combined with low-dose streptozotocin injection. Interestingly, although resistance training had a more pronounced effect on blood glucose control than did aerobic training in type 2 diabetic rats, improvements in cardiac diastolic parameters benefited more from aerobic training. Moreover, aerobic exercise did significantly increase the expression levels of titin and decrease collagen I, TGFβ1 expression level. In summary, out data suggest that aerobic exercise may improve diabetic cardiac function through changes in titin-dependent myocardial stiffness rather than collagen-dependent interstitial fibrosis.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Derun Gao
- Institute of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Quansheng Su
- School of Sports Medicine and Health, Chengdu Sport Institute, Chengdu, 610041, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
52
|
Rouhana S, Farah C, Roy J, Finan A, Rodrigues de Araujo G, Bideaux P, Scheuermann V, Saliba Y, Reboul C, Cazorla O, Aimond F, Richard S, Thireau J, Fares N. Early calcium handling imbalance in pressure overload-induced heart failure with nearly normal left ventricular ejection fraction. Biochim Biophys Acta Mol Basis Dis 2019; 1865:230-242. [DOI: 10.1016/j.bbadis.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
53
|
Lewalle A, Land S, Carruth E, Frank LR, Lamata P, Omens JH, McCulloch AD, Niederer SA, Smith NP. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts. Front Physiol 2018; 9:37. [PMID: 29527171 PMCID: PMC5829063 DOI: 10.3389/fphys.2018.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022] Open
Abstract
The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance) to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF) of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks). Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy) and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%), rather than on anatomical features (average decrease ~60%), to achieve compensation of pump function in the early phase of heart failure.
Collapse
Affiliation(s)
- Alexandre Lewalle
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Sander Land
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Eric Carruth
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Radiology Department, University of California, San Diego, San Diego, CA, United States
| | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven A. Niederer
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Nicolas P. Smith
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
54
|
Guo A, Chen R, Wang Y, Huang CK, Chen B, Kutschke W, Hong J, Song LS. Transient activation of PKC results in long-lasting detrimental effects on systolic [Ca 2+] i in cardiomyocytes by altering actin cytoskeletal dynamics and T-tubule integrity. J Mol Cell Cardiol 2018; 115:104-114. [PMID: 29307535 DOI: 10.1016/j.yjmcc.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
Abstract
AIMS Protein kinase C (PKC) isozymes contribute to the development of heart failure through dysregulation of Ca2+ handling properties and disruption of contractile function in cardiomyocytes. However, the mechanisms by which PKC activation leads to Ca2+ dysfunction are incompletely understood. METHODS AND RESULTS Shortly upon ventricular pressure overload in mice, we detected transient PKC activation that was associated with pulsed actin cytoskeletal rearrangement. In cultured cardiomyocytes, transient activation of PKC promoted long-term deleterious effects on the integrity of the transverse (T)- tubule system, resulting in a significant decrease in the amplitude and increase in the rising kinetics of Ca2+ transients. Treatment with a PKCα/β inhibitor restored the synchronization of Ca2+ transients and maintained T-tubule integrity in cultured cardiomyocytes. Supporting these data, PKCα/β inhibition protected against T-tubule remodeling and cardiac dysfunction in a mouse model of pressure overload-induced heart failure. Mechanistically, transient activation of PKC resulted in biphasic actin cytoskeletal rearrangement, consistent with in vivo observations in the pressure overloaded mouse model. Transient inhibition of actin polymerization or depolymerization resulted in severe T-tubule damage, recapitulating the T-tubule damage induced by PKC activation. Moreover, inhibition of stretch activated channels (SAC) protected against T-tubule remodeling and E-C coupling dysfunction induced by transient PKC activation and actin cytoskeletal rearrangement. CONCLUSIONS These data identify a key mechanistic link between transient PKC activation and long-term Ca2+ handling defects through PKC-induced actin cytoskeletal rearrangement and resultant T-tubule damage.
Collapse
Affiliation(s)
- Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Rong Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Chun-Kai Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jiang Hong
- Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine & Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
55
|
Gattoni S, Røe ÅT, Aronsen JM, Sjaastad I, Louch WE, Smith NP, Niederer SA. Compensatory and decompensatory alterations in cardiomyocyte Ca 2+ dynamics in hearts with diastolic dysfunction following aortic banding. J Physiol 2017; 595:3867-3889. [PMID: 28542952 PMCID: PMC5471387 DOI: 10.1113/jp273879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/06/2017] [Indexed: 01/20/2023] Open
Abstract
Key points At the cellular level cardiac hypertrophy causes remodelling, leading to changes in ionic channel, pump and exchanger densities and kinetics. Previous studies have focused on quantifying changes in channels, pumps and exchangers without quantitatively linking these changes with emergent cellular scale functionality. Two biophysical cardiac cell models were created, parameterized and validated and are able to simulate electrophysiology and calcium dynamics in myocytes from control sham operated rats and aortic‐banded rats exhibiting diastolic dysfunction. The contribution of each ionic pathway to the calcium kinetics was calculated, identifying the L‐type Ca2+ channel and sarco/endoplasmic reticulum Ca2+ATPase as the principal regulators of systolic and diastolic Ca2+, respectively. Results show that the ability to dynamically change systolic Ca2+, through changes in expression of key Ca2+ modelling protein densities, is drastically reduced following the aortic banding procedure; however the cells are able to compensate Ca2+ homeostasis in an efficient way to minimize systolic dysfunction.
Abstract Elevated left ventricular afterload leads to myocardial hypertrophy, diastolic dysfunction, cellular remodelling and compromised calcium dynamics. At the cellular scale this remodelling of the ionic channels, pumps and exchangers gives rise to changes in the Ca2+ transient. However, the relative roles of the underlying subcellular processes and the positive or negative impact of each remodelling mechanism are not fully understood. Biophysical cardiac cell models were created to simulate electrophysiology and calcium dynamics in myocytes from control rats (SHAM) and aortic‐banded rats exhibiting diastolic dysfunction. The model parameters and framework were validated and the fitted parameters demonstrated to be unique for explaining our experimental data. The contribution of each ionic pathway to the calcium kinetics was calculated, identifying the L‐type Ca2+ channel (LCC) and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) as the principal regulators of systolic and diastolic Ca2+, respectively. In the aortic banding model, the sensitivity of systolic Ca2+ to LCC density and diastolic Ca2+ to SERCA density decreased by 16‐fold and increased by 23%, respectively, relative to the SHAM model. The energy cost of ionic homeostasis is maintained across the two models. The models predict that changes in ionic pathway densities in compensated aortic banding rats maintain Ca2+ function and efficiency. The ability to dynamically alter systolic function is significantly diminished, while the capacity to maintain diastolic Ca2+ is moderately increased. At the cellular level cardiac hypertrophy causes remodelling, leading to changes in ionic channel, pump and exchanger densities and kinetics. Previous studies have focused on quantifying changes in channels, pumps and exchangers without quantitatively linking these changes with emergent cellular scale functionality. Two biophysical cardiac cell models were created, parameterized and validated and are able to simulate electrophysiology and calcium dynamics in myocytes from control sham operated rats and aortic‐banded rats exhibiting diastolic dysfunction. The contribution of each ionic pathway to the calcium kinetics was calculated, identifying the L‐type Ca2+ channel and sarco/endoplasmic reticulum Ca2+ATPase as the principal regulators of systolic and diastolic Ca2+, respectively. Results show that the ability to dynamically change systolic Ca2+, through changes in expression of key Ca2+ modelling protein densities, is drastically reduced following the aortic banding procedure; however the cells are able to compensate Ca2+ homeostasis in an efficient way to minimize systolic dysfunction.
Collapse
Affiliation(s)
- Sara Gattoni
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, 4th floor North Wing, The Rayne Institute, London, SE1 7EH, UK
| | - Åsmund Treu Røe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Nicolas P Smith
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, 4th floor North Wing, The Rayne Institute, London, SE1 7EH, UK.,University of Auckland, Engineering School Block 1, Level 5, 20 Symonds St., Auckland, 101, New Zealand
| | - Steven A Niederer
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, 4th floor North Wing, The Rayne Institute, London, SE1 7EH, UK
| |
Collapse
|