51
|
Budak SO, Zhou M, Brouwer C, Wiebenga A, Benoit I, Di Falco M, Tsang A, de Vries RP. A genomic survey of proteases in Aspergilli. BMC Genomics 2014; 15:523. [PMID: 24965873 PMCID: PMC4102723 DOI: 10.1186/1471-2164-15-523] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. RESULTS We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. CONCLUSIONS Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species. In general wheat bran gives higher induction of proteases than sugar beet pulp. Interesting differences of protease activity, extracellular enzyme spectrum composition, protein occurrence and abundance were identified for species. By combining in silico and wet-lab experiments, we present the intriguing variety of protease productivity in Aspergilli.
Collapse
Affiliation(s)
- Sebnem Ozturkoglu Budak
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Faculty of Agriculture, Department of Dairy Technology, University of Ankara, Ankara, Turkey
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miaomiao Zhou
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Carlo Brouwer
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
| | - Ad Wiebenga
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Benoit
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Marcos Di Falco
- />Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Adrian Tsang
- />Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Ronald P de Vries
- />CBS-KNAW Fungal Biodiversity Center, Uppsalalaan 8, Utrecht, 3584 CT The Netherlands
- />Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
52
|
Ortega LM, Kikot GE, Rojas NL, López LMI, Astoreca AL, Alconada TM. Production, characterization, and identification using proteomic tools of a polygalacturonase from Fusarium graminearum. J Basic Microbiol 2014; 54 Suppl 1:S170-7. [PMID: 24403124 DOI: 10.1002/jobm.201300651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/16/2013] [Indexed: 11/11/2022]
Abstract
Since enzymatic degradation is a mechanism or component of the aggressiveness of a pathogen, enzymatic activities from a Fusarium graminearum isolate obtained from infected wheat spikes of Argentina Pampa region were studied in order to understand the disease progression, tending to help disease control. In particular, the significance of the study of polygalacturonase activity is based on that such activity is produced in the early stages of infection on the host, suggesting a crucial role in the establishment of disease. In this sense, polygalacturonase activity produced by this microorganism has been purified 375 times from 2-day-old culture filtrates by gel filtration and ion-exchange chromatography successively. The purified sample showed two protein bands in sodium dodecyl sulfate-polyacrylamide gels, with a molecular mass of 40 and 55 kDa. The protein bands were identified as an endopolygalacturonase and as a serine carboxypeptidase of F. graminearum, respectively, by peptide mass fingerprinting (matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF/TOF) fragment ion analysis). The pattern of substrate degradation analyzed by thin layer chromatography confirmed the mode of action of the enzyme as an endopolygalacturonase. High activity of the polygalacturonase against polygalacturonic acid was observed between 4 and 6 of pH, and between 30 and 50 °C, being 5 and 50 °C the optimum pH and temperature, respectively. The enzyme was fully stable at pH 5 for 120 min and 30 °C and sensible to the presence of some metal ions. This information would contribute to understand the most favorable environmental conditions for establishment of the disease.
Collapse
Affiliation(s)
- Leonel M Ortega
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CCT-La Plata, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
53
|
Tanveer T, Shaheen K, Parveen S, Kazi AG, Ahmad P. Plant secretomics: identification, isolation, and biological significance under environmental stress. PLANT SIGNALING & BEHAVIOR 2014; 9:e29426. [PMID: 25763623 PMCID: PMC4203502 DOI: 10.4161/psb.29426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 05/03/2023]
Abstract
Plant secretomes are the proteins secreted by the plant cells and are involved in the maintenance of cell wall structure, relationship between host and pathogen, communication between different cells in the plant, etc. Amalgamation of methodologies like bioinformatics, biochemical, and proteomics are used to separate, classify, and outline secretomes by means of harmonizing in planta systems and in vitro suspension cultured cell system (SSCs). We summed up and explained the meaning of secretome, methods used for the identification and isolation of secreted proteins from extracellular space and methods for the assessment of purity of secretome proteins in this review. Two D PAGE method and HPLC based methods for the analysis together with different bioinformatics tools used for the prediction of secretome proteins are also discussed. Biological significance of secretome proteins under different environmental stresses, i.e., salt stress, drought stress, oxidative stress, etc., defense responses and plant interactions with environment are also explained in detail.
Collapse
Affiliation(s)
- Tehreem Tanveer
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Kanwal Shaheen
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Sajida Parveen
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Alvina Gul Kazi
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Parvaiz Ahmad
- Department of Botany; S.P. College; Jammu and Kashmir, India
| |
Collapse
|
54
|
SECRETOOL: integrated secretome analysis tool for fungi. Amino Acids 2013; 46:471-3. [PMID: 24370983 DOI: 10.1007/s00726-013-1649-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
The secretome (full set of secreted proteins) has been studied in multiple fungal genomes to elucidate the potential role of those protein collections involved in a number of metabolic processes from host infection to wood degradation. Being aminoacid composition a key factor to recognize secretory proteins, SECRETOOL comprises a group of web tools that enable secretome predictions out of aminoacid sequence files, up to complete fungal proteomes, in one step. SECRETOOL is freely available on the web at http://genomics.cicbiogune.es/SECRETOOL/Secretool.php .
Collapse
|
55
|
Abstract
In fungi, heterokaryon incompatibility is a nonself recognition process occurring when filaments of different isolates of the same species fuse. Compatibility is controlled by so-called het loci and fusion of strains of unlike het genotype triggers a complex incompatibility reaction that leads to the death of the fusion cell. Herein, we analyze the transcriptional changes during the incompatibility reaction in Podospora anserina. The incompatibility response was found to be associated with a massive transcriptional reprogramming: 2231 genes were up-regulated by a factor 2 or more during incompatibility. In turn, 2441 genes were down-regulated. HET, NACHT, and HeLo domains previously found to be involved in the control of heterokaryon incompatibility were enriched in the up-regulated gene set. In addition, incompatibility was characterized by an up-regulation of proteolytic and other hydrolytic activities, of secondary metabolism clusters and toxins and effector-like proteins. The up-regulated set was found to be enriched for proteins lacking orthologs in other species and chromosomal distribution of the up-regulated genes was uneven with up-regulated genes residing preferentially in genomic islands and on chromosomes IV and V. There was a significant overlap between regulated genes during incompatibility in P. anserina and Neurospora crassa, indicating similarities in the incompatibility responses in these two species. Globally, this study illustrates that the expression changes occurring during cell fusion incompatibility in P. anserina are in several aspects reminiscent of those described in host-pathogen or symbiotic interactions in other fungal species.
Collapse
|
56
|
Armengaud J, Christie-Oleza JA, Clair G, Malard V, Duport C. Exoproteomics: exploring the world around biological systems. Expert Rev Proteomics 2013. [PMID: 23194272 DOI: 10.1586/epr.12.52] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term 'exoproteome' describes the protein content that can be found in the extracellular proximity of a given biological system. These proteins arise from cellular secretion, other protein export mechanisms or cell lysis, but only the most stable proteins in this environment will remain in abundance. It has been shown that these proteins reflect the physiological state of the cells in a given condition and are indicators of how living systems interact with their environments. High-throughput proteomic approaches based on a shotgun strategy, and high-resolution mass spectrometers, have modified the authors' view of exoproteomes. In the present review, the authors describe how these new approaches should be exploited to obtain the maximum useful information from a sample, whatever its origin. The methodologies used for studying secretion from model cell lines derived from eukaryotic, multicellular organisms, virulence determinants of pathogens and environmental bacteria and their relationships with their habitats are illustrated with several examples. The implication of such data, in terms of proteogenomics and the discovery of novel protein functions, is discussed.
Collapse
Affiliation(s)
- Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France.
| | | | | | | | | |
Collapse
|
57
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
58
|
Xu L, Chen W. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:431-41. [PMID: 23252459 DOI: 10.1094/mpmi-07-12-0177-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Agrobacterium-mediated transformation (AMT) was used to identify potential virulence factors in Sclerotinia sclerotiorum. Screening AMT transformants identified two mutants showing significantly reduced virulence. The mutants showed growth rate, sclerotial formation, and oxalate production similar to that of the wild type. The mutation was due to a single T-DNA insertion at 212 bp downstream of the Cu/Zn superoxide dismutase (SOD) gene (SsSOD1, SS1G_00699). Expression levels of SsSOD1 were significantly increased under oxidative stresses or during plant infection in the wild-type strain but could not be detected in the mutant. SsSOD1 functionally complemented the Cu/Zn SOD gene in a Δsod1 Saccharomyces cerevisiae mutant. The SOD mutant had increased sensitivity to heavy metal toxicity and oxidative stress in culture and reduced ability to detoxify superoxide in infected leaves. The mutant also had reduced expression levels of other known pathogenicity genes such as endo-polygalacturanases sspg1 and sspg3. The functions of SsSOD1 were further confirmed by SsSOD1-deletion mutation. Like the AMT insertion mutant, the SsSOD1-deletion mutant exhibited normal growth rate, sclerotial formation, oxalate production, increased sensitivity to metal and oxidative stress, and reduced virulence. These results suggest that SsSOD1, while not being required for saprophytic growth and completion of the life cycle, plays critical roles in detoxification of reactive oxygen species during host-pathogen interactions and is an important virulence factor of Sclerotinia sclerotiorum.
Collapse
Affiliation(s)
- Liangsheng Xu
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
59
|
Girard V, Dieryckx C, Job C, Job D. Secretomes: The fungal strike force. Proteomics 2013; 13:597-608. [DOI: 10.1002/pmic.201200282] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Girard
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Cindy Dieryckx
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Claudette Job
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| | - Dominique Job
- Bayer CropScience Joint Laboratory (UMR5240); CNRS, University Lyon1; Lyon; France
| |
Collapse
|
60
|
Brown KJ, Formolo CA, Seol H, Marathi RL, Duguez S, An E, Pillai D, Nazarian J, Rood BR, Hathout Y. Advances in the proteomic investigation of the cell secretome. Expert Rev Proteomics 2013; 9:337-45. [PMID: 22809211 DOI: 10.1586/epr.12.21] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies of the cell secretome have greatly increased in recent years owing to improvements in proteomic platforms, mass spectrometry instrumentation and to the increased interaction between analytical chemists, biologists and clinicians. Several secretome studies have been implemented in different areas of research, leading to the generation of a valuable secretome catalogs. Secreted proteins continue to be an important source of biomarkers and therapeutic target discovery and are equally valuable in the field of microbiology. Several discoveries have been achieved in vitro using cell culture systems, ex vivo using human tissue specimens and in vivo using animal models. In this review, some of the most recent advances in secretome studies and the fields that have benefited the most from this evolving technology are highlighted.
Collapse
Affiliation(s)
- Kristy J Brown
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Alexandersson E, Ali A, Resjö S, Andreasson E. Plant secretome proteomics. FRONTIERS IN PLANT SCIENCE 2013; 4:9. [PMID: 23378846 PMCID: PMC3561728 DOI: 10.3389/fpls.2013.00009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/11/2013] [Indexed: 05/14/2023]
Abstract
The plant secretome refers to the set of proteins secreted out of the plant cell into the surrounding extracellular space commonly referred to as the apoplast. Secreted proteins maintain cell structure and acts in signaling and are crucial for stress responses where they can interact with pathogen effectors and control the extracellular environment. Typically, secreted proteins contain an N-terminal signal peptide and are directed through the endoplasmic reticulum/Golgi pathway. However, in plants many proteins found in the secretome lack such a signature and might follow alternative ways of secretion. This review covers techniques to isolate plant secretomes and how to identify and quantify their constituent proteins. Furthermore, bioinformatical tools to predict secretion signals and define the putative secretome are presented. Findings from proteomic studies and important protein families of plant secretomes, such as proteases and hydrolases, are highlighted.
Collapse
Affiliation(s)
- Erik Alexandersson
- *Correspondence: Erik Alexandersson, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53 Alnarp, Sweden. e-mail:
| | | | | | | |
Collapse
|
62
|
Hadwiger LA, Polashock J. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance. PHYTOPATHOLOGY 2013; 103:81-90. [PMID: 23228145 DOI: 10.1094/phyto-04-12-0085-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, 100 Dairy Road, Washington State University, Pullman 99164-6430, USA.
| | | |
Collapse
|
63
|
Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 2013; 4:1424. [PMID: 23361014 PMCID: PMC3562461 DOI: 10.1038/ncomms2427] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 12/31/2012] [Indexed: 11/09/2022] Open
Abstract
Rhizoctonia solani is a major fungal pathogen of rice (Oryza sativa L.) that causes great yield losses in all rice-growing regions of the world. Here we report the draft genome sequence of the rice sheath blight disease pathogen, R. solani AG1 IA, assembled using next-generation Illumina Genome Analyser sequencing technologies. The genome encodes a large and diverse set of secreted proteins, enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, which probably reflect an exclusive necrotrophic lifestyle. We find few repetitive elements, a closer relationship to Agaricomycotina among Basidiomycetes, and expand protein domains and families. Among the 25 candidate pathogen effectors identified according to their functionality and evolution, we validate 3 that trigger crop defence responses; hence we reveal the exclusive expression patterns of the pathogenic determinants during host infection.
Collapse
Affiliation(s)
- Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
- These authors contributed equally to this work
| | - Runmao Lin
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- These authors contributed equally to this work
| | - Danhua Zhang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Peigang Qin
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Xu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Ai
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Ding
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| | - Yanran Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhigang Sun
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Haitao Feng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxing Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Rongtao Fu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Changqing Tang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Zhang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
| | - Zelin Xie
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| | - Lingxia Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu 611130, China
- Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
64
|
Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 2012; 7:e49904. [PMID: 23236356 PMCID: PMC3517617 DOI: 10.1371/journal.pone.0049904] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/15/2012] [Indexed: 01/16/2023] Open
Abstract
The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328) which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks), and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies.
Collapse
|
65
|
Sorgo AG, Heilmann CJ, Brul S, de Koster CG, Klis FM. Beyond the wall:Candida albicanssecret(e)s to survive. FEMS Microbiol Lett 2012; 338:10-7. [DOI: 10.1111/1574-6968.12049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alice G. Sorgo
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Clemens J. Heilmann
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Chris G. de Koster
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
66
|
Gonçalves AMD, Silva CS, Madeira TI, Coelho R, de Sanctis D, San Romão MV, Bento I. Endo-β-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1468-78. [PMID: 23090396 DOI: 10.1107/s0907444912034646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/03/2012] [Indexed: 12/19/2022]
Abstract
The crystal structure of wild-type endo-β-D-1,4-mannanase (EC 3.2.1.78) from the ascomycete Chrysonilia sitophila (CsMan5) has been solved at 1.40 Å resolution. The enzyme isolated directly from the source shows mixed activity as both an endo-glucanase and an endo-mannanase. CsMan5 adopts the (β/α)(8)-barrel fold that is well conserved within the GH5 family and has highest sequence and structural homology to the GH5 endo-mannanases. Superimposition with proteins of this family shows a unique structural arrangement of three surface loops of CsMan5 that stretch over the active centre, promoting an altered topography of the binding cleft. The most relevant feature results from the repositioning of a long loop at the extremity of the binding cleft, resulting in a shortened glycone-binding region with two subsites. The other two extended loops flanking the binding groove produce a narrower cleft compared with the wide architecture observed in GH5 homologues. Two aglycone subsites (+1 and +2) are identified and a nonconserved tryptophan (Trp271) at the +1 subsite may offer steric hindrance. Taken together, these findings suggest that the discrimination of mannan substrates is achieved through modified loop length and structure.
Collapse
Affiliation(s)
- Ana Maria D Gonçalves
- Macromolecular Crystallography Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
67
|
Zhu S, Cao YZ, Jiang C, Tan BY, Wang Z, Feng S, Zhang L, Su XH, Brejova B, Vinar T, Xu M, Wang MX, Zhang SG, Huang MR, Wu R, Zhou Y. Sequencing the genome of Marssonina brunnea reveals fungus-poplar co-evolution. BMC Genomics 2012; 13:382. [PMID: 22876864 PMCID: PMC3484023 DOI: 10.1186/1471-2164-13-382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop. RESULTS We sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. While a handful of virulence genes in M. brunnea, mostly from the LysM family, are detected to up-regulate during infection, the poplar down-regulates its resistance genes, such as nucleotide binding site domains and leucine rich repeats, in response to infection. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection. CONCLUSIONS Our results from the draft sequence of the M. brunnea genome provide evidence for genome-genome interactions that play an important role in poplar-pathogen co-evolution. This knowledge could help to design effective strategies for controlling Marssonina leaf spot in poplar.
Collapse
Affiliation(s)
- Sheng Zhu
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - You-Zhi Cao
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Cong Jiang
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Bi-Yue Tan
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Zhong Wang
- Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Sisi Feng
- Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Xiao-Hua Su
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Brona Brejova
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, Bratislava, 84248, Slovakia
| | - Tomas Vinar
- Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska Dolina, Bratislava, 84248, Slovakia
| | - Meng Xu
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Ming-Xiu Wang
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Shou-Gong Zhang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Min-Ren Huang
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Rongling Wu
- Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
- Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Yan Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
68
|
Li M, Liang X, Rollins JA. Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:412-420. [PMID: 22046959 DOI: 10.1094/mpmi-06-11-0159] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcripts encoding Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) were found to accumulate specifically during sclerotium, apothecium, and compound appressorium development in S. sclerotiorum. To determine the requirement of this protein in these developmental processes, gene deletion mutants of Ss-ggt1 were generated and five independent homokaryotic ΔSs-ggt1 mutants were characterized. All deletion mutants overproduced sclerotial initials that were arrested in further development or eventually produced sclerotia with aberrant rind layers. During incubation for carpogenic germination, these sclerotia decayed and failed to produce apothecia. Total glutathione accumulation was approximately 10-fold higher and H(2)O(2) hyperaccumulated in ΔSs-ggt1 sclerotia compared with the wild type. Production of compound appressoria was also negatively affected. On host plants, these mutants exhibited a defect in infection efficiency and a delay in initial symptom development unless the host tissue was wounded prior to inoculation. These results suggest that Ss-Ggt1 is the primary enzyme involved in glutathione recycling during these key developmental stages of the S. sclerotiorum life cycle but Ss-Ggt1 is not required for host colonization and symptom development. The accumulation of oxidized glutathione is hypothesized to negatively impact these developmental processes by disrupting the dynamic redox environment associated with multicellular development.
Collapse
Affiliation(s)
- Moyi Li
- Department of Molecular Genetics and Microbiogical, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
69
|
Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum. J Biomed Biotechnol 2012; 2012:105109. [PMID: 22318718 PMCID: PMC3270403 DOI: 10.1155/2012/105109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/30/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022] Open
Abstract
Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.
Collapse
|
70
|
Abstract
Many characterized fungal effector proteins are small secreted proteins. Effectors are defined as those proteins that alter host cell structure and/or function by facilitating pathogen infection. The identification of effectors by molecular and cell biology techniques is a difficult task. However, with the availability of whole-genome sequences, these proteins can now be predicted in silico. Here, we describe in detail how to identify and characterize effectors from a defined fungal proteome using in silico techniques.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
71
|
de Jonge R, Bolton MD, Thomma BPHJ. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:400-6. [PMID: 21454120 DOI: 10.1016/j.pbi.2011.03.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 05/23/2023]
Abstract
Research on effectors secreted by pathogens during host attack has dominated the field of molecular plant-microbe interactions over recent years. Functional analysis of type III secreted effectors injected by pathogenic bacteria into host cells has significantly advanced the field and demonstrated that many function to suppress host defense. Fungal and oomycete effectors are delivered outside the host plasma membrane, and although research has lagged behind on bacterial effectors, we are gradually learning more and more about the functions of these effectors. While some function outside the host cell to disarm defense, others exploit host cellular uptake mechanisms to suppress defense or liberate nutrients intracellularly. Comparative genomics suggests that the organization of effector genes drives effector evolution in many pathogen genomes.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | |
Collapse
|