51
|
Xiao Y, Xia W, Ma J, Mason AS, Fan H, Shi P, Lei X, Ma Z, Peng M. Genome-Wide Identification and Transferability of Microsatellite Markers between Palmae Species. FRONTIERS IN PLANT SCIENCE 2016; 7:1578. [PMID: 27826307 PMCID: PMC5078683 DOI: 10.3389/fpls.2016.01578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/06/2016] [Indexed: 05/18/2023]
Abstract
The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future.
Collapse
Affiliation(s)
- Yong Xiao
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
- *Correspondence: Yong Xiao
| | - Wei Xia
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
- College of Agriculture, Hainan UniversityHaikou, China
| | - Jianwei Ma
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University GiessenGiessen, Germany
| | - Haikuo Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
| | - Peng Shi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
| | - Xintao Lei
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural SciencesWenchang, China
- Xintao Lei
| | - Zilong Ma
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural ScienceHaikou, China
| | - Ming Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural ScienceHaikou, China
| |
Collapse
|
52
|
Wang X, Wang L. GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing. FRONTIERS IN PLANT SCIENCE 2016; 7:1350. [PMID: 27679641 PMCID: PMC5020087 DOI: 10.3389/fpls.2016.01350] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/23/2016] [Indexed: 05/19/2023]
Abstract
Simple sequence repeats (SSRs), also referred to as microsatellites, are highly variable tandem DNAs that are widely used as genetic markers. The increasing availability of whole-genome and transcript sequences provides information resources for SSR marker development. However, efficient software is required to efficiently identify and display SSR information along with other gene features at a genome scale. We developed novel software package Genome-wide Microsatellite Analyzing Tool Package (GMATA) integrating SSR mining, statistical analysis and plotting, marker design, polymorphism screening and marker transferability, and enabled simultaneously display SSR markers with other genome features. GMATA applies novel strategies for SSR analysis and primer design in large genomes, which allows GMATA to perform faster calculation and provides more accurate results than existing tools. Our package is also capable of processing DNA sequences of any size on a standard computer. GMATA is user friendly, only requires mouse clicks or types inputs on the command line, and is executable in multiple computing platforms. We demonstrated the application of GMATA in plants genomes and reveal a novel distribution pattern of SSRs in 15 grass genomes. The most abundant motifs are dimer GA/TC, the A/T monomer and the GCG/CGC trimer, rather than the rich G/C content in DNA sequence. We also revealed that SSR count is a linear to the chromosome length in fully assembled grass genomes. GMATA represents a powerful application tool that facilitates genomic sequence analyses. GAMTA is freely available at http://sourceforge.net/projects/gmata/?source=navbar.
Collapse
Affiliation(s)
- Xuewen Wang
- Germplasm Bank of Wild Species in China, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- *Correspondence: Xuewen Wang
| | - Le Wang
- Key Laboratory of Forensic Genetics and Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public SecurityBeijing, China
| |
Collapse
|
53
|
Muthamilarasan M, Dhaka A, Yadav R, Prasad M. Exploration of millet models for developing nutrient rich graminaceous crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:89-97. [PMID: 26566827 DOI: 10.1016/j.plantsci.2015.08.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
Protein-energy malnutrition and micronutrient deficiencies contribute to high mortality among considerable proportion of the current 7.2 billion global populations, especially children. Although poverty and diets poor in nutrition are prime reasons for prevalence of malnutrition, nutritionally dense crops offer an inexpensive and sustainable solution to the problem of malnutrition. Remarkably, millets are nutritionally superior to major non-millet cereals. They especially are rich in dietary fibers, antioxidants, phytochemicals and polyphenols, which contribute broad-spectrum positive impacts to human health. However, millets have received lesser research attention universally, and considering this, the present review was planned to summarize the reports available on nutrition profile of millets and non-millet cereals to provide a comparative insight on importance of millets. It also emphasizes the need for research on deciphering nutritional traits present in millets and to develop strategies for introgressing these traits into other conventional staple crops using germplasm and 'omics' technologies. In some millet species, excellent 'omics' and germplasm panels have started to get available which can act as a starting point for understanding as well as of introgressing healthful traits across millets and non-millet cereals.
Collapse
Affiliation(s)
| | - Annvi Dhaka
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rattan Yadav
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Goggerdan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
54
|
Muthamilarasan M, Khan Y, Jaishankar J, Shweta S, Lata C, Prasad M. Integrative analysis and expression profiling of secondary cell wall genes in C4 biofuel model Setaria italica reveals targets for lignocellulose bioengineering. FRONTIERS IN PLANT SCIENCE 2015; 6:965. [PMID: 26583030 PMCID: PMC4631826 DOI: 10.3389/fpls.2015.00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 05/08/2023]
Abstract
Several underutilized grasses have excellent potential for use as bioenergy feedstock due to their lignocellulosic biomass. Genomic tools have enabled identification of lignocellulose biosynthesis genes in several sequenced plants. However, the non-availability of whole genome sequence of bioenergy grasses hinders the study on bioenergy genomics and their genomics-assisted crop improvement. Foxtail millet (Setaria italica L.; Si) is a model crop for studying systems biology of bioenergy grasses. In the present study, a systematic approach has been used for identification of gene families involved in cellulose (CesA/Csl), callose (Gsl) and monolignol biosynthesis (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H, COMT, CCR, CAD) and construction of physical map of foxtail millet. Sequence alignment and phylogenetic analysis of identified proteins showed that monolignol biosynthesis proteins were highly diverse, whereas CesA/Csl and Gsl proteins were homologous to rice and Arabidopsis. Comparative mapping of foxtail millet lignocellulose biosynthesis genes with other C4 panicoid genomes revealed maximum homology with switchgrass, followed by sorghum and maize. Expression profiling of candidate lignocellulose genes in response to different abiotic stresses and hormone treatments showed their differential expression pattern, with significant higher expression of SiGsl12, SiPAL2, SiHCT1, SiF5H2, and SiCAD6 genes. Further, due to the evolutionary conservation of grass genomes, the insights gained from the present study could be extrapolated for identifying genes involved in lignocellulose biosynthesis in other biofuel species for further characterization.
Collapse
Affiliation(s)
| | - Yusuf Khan
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Shweta Shweta
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Charu Lata
- Division of Plant-Microbe Interactions, CSIR-National Botanical Research InstituteLucknow, India
| | - Manoj Prasad
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
55
|
Dikshit HK, Singh A, Singh D, Aski MS, Prakash P, Jain N, Meena S, Kumar S, Sarker A. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis. PLoS One 2015; 10:e0138101. [PMID: 26381889 PMCID: PMC4575128 DOI: 10.1371/journal.pone.0138101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/25/2015] [Indexed: 01/05/2023] Open
Abstract
Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.
Collapse
Affiliation(s)
- Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
- * E-mail:
| | - Akanksha Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Dharmendra Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Prapti Prakash
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Neelu Jain
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suresh Meena
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shiv Kumar
- ICARDA, B.P. 6299, Station Experiment, INRA-Quich, Rue Hafiane Cherkaoui. Agdal, Rabat-Institutes, Rabat, Morocco
| | - Ashutosh Sarker
- ICARDA, South Asia and China Regional Program, CGIAR Block, NASC Complex, New Delhi-110012, India
| |
Collapse
|
56
|
He SL, Yang Y, Morrell PL, Yi TS. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica). PLoS One 2015; 10:e0137088. [PMID: 26325578 PMCID: PMC4556640 DOI: 10.1371/journal.pone.0137088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022] Open
Abstract
Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.
Collapse
Affiliation(s)
- Shui-lian He
- China Southwestern Germplasm Bank of Wild Species, the Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Landscape and Horticulture College, Yunnan Agriculture University, Kunming, Yunnan, China
| | - Yang Yang
- China Southwestern Germplasm Bank of Wild Species, the Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Peter L. Morrell
- Department of Agronomy & Plant genetics, 411 Borlaug Hall, 1991 Upper Buford Circle, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Ting-shuang Yi
- China Southwestern Germplasm Bank of Wild Species, the Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
57
|
Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J, Cai H, Cakir M, Cseke LJ, Cockram J, de Oliveira AC, De Pace C, Dempewolf H, Ellison S, Gepts P, Greenland A, Hall A, Hori K, Hughes S, Humphreys MW, Iorizzo M, Ismail AM, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Simon PW, Tohme J, Tuberosa R, Valliyodan B, Varshney RK, Wullschleger SD, Yano M, Prasad M. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. FRONTIERS IN PLANT SCIENCE 2015; 6:563. [PMID: 26322050 PMCID: PMC4531421 DOI: 10.3389/fpls.2015.00563] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/08/2015] [Indexed: 05/19/2023]
Abstract
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
Collapse
Affiliation(s)
| | - Mehanathan Muthamilarasan
- Department of Plant Molecular Genetics and Genomics, National Institute of Plant Genome ResearchNew Delhi, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt Lucia, QLD, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Rishu Sharma
- Department of Plant Pathology, Faculty of Agriculture, Bidhan Chandra Krishi ViswavidyalayaMohanpur, India
| | - Michael Abberton
- Genetic Resources Centre, International Institute of Tropical AgricultureIbadan, Nigeria
| | - Jacqueline Batley
- Centre for Integrated Legume Research, University of QueenslandBrisbane, QLD, Australia
| | - Alison Bentley
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - John Bryant
- CLES, Hatherly Laboratories, University of ExeterExeter, UK
| | - Hongwei Cai
- Forage Crop Research Institute, Japan Grassland Agriculture and Forage Seed AssociationNasushiobara, Japan
- Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural UniversityBeijing, China
| | - Mehmet Cakir
- Faculty of Science and Engineering, School of Biological Sciences and Biotechnology, Murdoch UniversityMurdoch, WA, Australia
| | - Leland J. Cseke
- Department of Biological Sciences, The University of Alabama in HuntsvilleHuntsville, AL, USA
| | - James Cockram
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | | | - Ciro De Pace
- Department of Agriculture, Forests, Nature and Energy, University of TusciaViterbo, Italy
| | - Hannes Dempewolf
- Global Crop Diversity Trust, Platz der Vereinten NationenBonn, Germany
| | - Shelby Ellison
- Department of Horticulture, University of WisconsinMadison, WI, USA
| | - Paul Gepts
- Section of Crop and Ecosystem Sciences, Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Andy Greenland
- The John Bingham Laboratory, National Institute of Agricultural BotanyCambridge, UK
| | - Anthony Hall
- Department of Botany and Plant Sciences, University of CaliforniaRiverside, Riverside, USA
| | - Kiyosumi Hori
- Agrogenomics Research Center, National Institute of Agrobiological SciencesTsukuba, Japan
| | | | - Mike W. Humphreys
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityWales, UK
| | - Massimo Iorizzo
- Department of Horticulture, University of WisconsinMadison, WI, USA
| | | | - Athole Marshall
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityWales, UK
| | - Sean Mayes
- Biotechnology and Crop Genetics, Crops for the FutureSemenyih, Malaysia
| | - Henry T. Nguyen
- National Center for Soybean Biotechnology and Division of Plant Science, University of MissouriColumbia, MO, USA
| | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural SciencesSundvagen, Sweden
| | | | - Philipp W. Simon
- Department of Horticulture, USDA-ARS, University of WisconsinMadison, WI, USA
| | - Joe Tohme
- Agrobiodiversity and Biotechnology Project, Centro International de Agricultura TropicalCali, Columbia
| | | | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Science, University of MissouriColumbia, MO, USA
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Stan D. Wullschleger
- Oak Ridge National Laboratory, Environmental Sciences Division, Climate Change Science InstituteOak Ridge, TN, USA
| | - Masahiro Yano
- National Agriculture and Food Research Organization, Institute of Crop ScienceTsukuba, Japan
| | - Manoj Prasad
- Department of Plant Molecular Genetics and Genomics, National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
58
|
Genomic Resources for Water Yam (Dioscorea alata L.): Analyses of EST-Sequences, De Novo Sequencing and GBS Libraries. PLoS One 2015. [PMID: 26222616 PMCID: PMC4519108 DOI: 10.1371/journal.pone.0134031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches in generating genomic resources provides a non-biased glimpse into the publicly available EST-sequences, yam genome, and GBS profiles with affirmation that the genomic complexity can be methodically unraveled and constitute a critical foundation for future studies in linkage mapping, germplasm analysis, and predictive breeding.
Collapse
|
59
|
Biswas MK, Liu Y, Li C, Sheng O, Mayer C, Yi G. Genome-Wide Computational Analysis of Musa Microsatellites: Classification, Cross-Taxon Transferability, Functional Annotation, Association with Transposons & miRNAs, and Genetic Marker Potential. PLoS One 2015; 10:e0131312. [PMID: 26121637 PMCID: PMC4488140 DOI: 10.1371/journal.pone.0131312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
The development of organized, informative, robust, user-friendly, and freely accessible molecular markers is imperative to the Musa marker assisted breeding program. Although several hundred SSR markers have already been developed, the number of informative, robust, and freely accessible Musa markers remains inadequate for some breeding applications. In view of this issue, we surveyed SSRs in four different data sets, developed large-scale non-redundant highly informative therapeutic SSR markers, and classified them according to their attributes, as well as analyzed their cross-taxon transferability and utility for the genetic study of Musa and its relatives. A high SSR frequency (177 per Mbp) was found in the Musa genome. AT-rich dinucleotide repeats are predominant, and trinucleotide repeats are the most abundant in transcribed regions. A significant number of Musa SSRs are associated with pre-miRNAs, and 83% of these SSRs are promising candidates for the development of therapeutic SSR markers. Overall, 74% of the SSR markers were polymorphic, and 94% were transferable to at least one Musa spp. Two hundred forty-three markers generated a total of 1047 alleles, with 2-8 alleles each and an average of 4.38 alleles per locus. The PIC values ranged from 0.31 to 0.89 and averaged 0.71. We report the largest set of non-redundant, polymorphic, new SSR markers to be developed in Musa. These additional markers could be a valuable resource for marker-assisted breeding, genetic diversity and genomic studies of Musa and related species.
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- The College of Life Science, South China Agricultural University, Guangzhou, China
| | - Yuxuan Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunyu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Ou Sheng
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
| | - Christoph Mayer
- Forschungsmuseum Alexander Koenig, Bonn, Adenauerallee 160, 53113 Bonn, Germany
| | - Ganjun Yi
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, China
- * E-mail:
| |
Collapse
|
60
|
Souframanien J, Reddy KS. De novo Assembly, Characterization of Immature Seed Transcriptome and Development of Genic-SSR Markers in Black Gram [Vigna mungo (L.) Hepper]. PLoS One 2015; 10:e0128748. [PMID: 26042595 PMCID: PMC4456365 DOI: 10.1371/journal.pone.0128748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/01/2015] [Indexed: 12/02/2022] Open
Abstract
Black gram [V. mungo (L.) Hepper] is an important legume crop extensively grown in south and south-east Asia, where it is a major source of dietary protein for its predominantly vegetarian population. However, lack of genomic information and markers has become a limitation for genetic improvement of this crop. Here, we report the transcriptome sequencing of the immature seeds of black gram cv. TU94-2, by Illumina paired end sequencing technology to generate transcriptome sequences for gene discovery and genic-SSR marker development. A total of 17.2 million paired-end reads were generated and 48,291 transcript contigs (TCS) were assembled with an average length of 443 bp. Based on sequence similarity search, 33,766 TCS showed significant similarity to known proteins. Among these, only 29,564 TCS were annotated with gene ontology (GO) functional categories. A total number of 138 unique KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were identified, of which majority of TCS are grouped into purine metabolism (678) followed by pyrimidine metabolism (263). A total of 48,291 TCS were searched for SSRs and 1,840 SSRs were identified in 1,572 TCS with an average frequency of one SSR per 11.9 kb. The tri-nucleotide repeats were most abundant (35%) followed by di-nucleotide repeats (32%). PCR primer pairs were successfully designed for 933 SSR loci. Sequences analyses indicate that about 64.4% and 35.6% of the SSR motifs were present in the coding sequences (CDS) and untranslated regions (UTRs) respectively. Tri-nucleotide repeats (57.3%) were preferentially present in the CDS. The rate of successful amplification and polymorphism were investigated using selected primers among 18 black gram accessions. Genic-SSR markers developed from the Illumina paired end sequencing of black gram immature seed transcriptome will provide a valuable resource for genetic diversity, evolution, linkage mapping, comparative genomics and marker-assisted selection in black gram.
Collapse
Affiliation(s)
- J. Souframanien
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai-400085, India
- * E-mail:
| | | |
Collapse
|
61
|
Wang Q, Fang L, Chen J, Hu Y, Si Z, Wang S, Chang L, Guo W, Zhang T. Genome-wide mining, characterization, and development of microsatellite markers in gossypium species. Sci Rep 2015; 5:10638. [PMID: 26030481 PMCID: PMC4650602 DOI: 10.1038/srep10638] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/01/2015] [Indexed: 12/02/2022] Open
Abstract
Although much research has been conducted to characterize microsatellites and develop markers, the distribution of microsatellites remains ambiguous and the use of microsatellite markers in genomic studies and marker-assisted selection is limited. To identify microsatellites for cotton research, we mined 100,290, 83,160, and 56,937 microsatellites with frequencies of 41.2, 49.1, and 74.8 microsatellites per Mb in the recently sequenced Gossypium species: G. hirsutum, G. arboreum, and G. raimondii, respectively. The distributions of microsatellites in their genomes were non-random and were positively and negatively correlated with genes and transposable elements, respectively. Of the 77,996 developed microsatellite markers, 65,498 were physically anchored to the 26 chromosomes of G. hirsutum with an average marker density of 34 markers per Mb. We confirmed 67,880 (87%) universal and 7,705 (9.9%) new genic microsatellite markers. The polymorphism was estimated in above three species by in silico PCR and validated with 505 markers in G. hirsutum. We further predicted 8,825 polymorphic microsatellite markers within G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. In our study, genome-wide mining and characterization of microsatellites, and marker development were very useful for the saturation of the allotetraploid genetic linkage map, genome evolution studies and comparative genome mapping.
Collapse
Affiliation(s)
- Qiong Wang
- 1] State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China [2]
| | - Lei Fang
- 1] State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China [2]
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Zhanfeng Si
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R &D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
62
|
CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research. PLoS One 2015; 10:e0118630. [PMID: 25885062 PMCID: PMC4401682 DOI: 10.1371/journal.pone.0118630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 12/02/2022] Open
Abstract
Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.
Collapse
|
63
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015; 6:157. [PMID: 25852710 PMCID: PMC4371761 DOI: 10.3389/fpls.2015.00157] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
64
|
Wang Y, Yang C, Jin Q, Zhou D, Wang S, Yu Y, Yang L. Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet 2015; 16:18. [PMID: 25886726 PMCID: PMC4333251 DOI: 10.1186/s12863-015-0178-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/05/2015] [Indexed: 11/21/2022] Open
Abstract
Background The Poaceae family is of great importance to human beings since it comprises the cereal grasses which are the main sources for human food and animal feed. With the rapid growth of genomic data from Poaceae members, comparative genomics becomes a convinent method to study genetics of diffierent species. The SSRs (Simple Sequence Repeats) are widely used markers in the studies of Poaceae for their high abundance and stability. Results In this study, using the genomic sequences of 9 Poaceae species, we detected 11,993,943 SSR loci and developed 6,799,910 SSR primer pairs. The results show that SSRs are distributed on all the genomic elements in grass. Hexamer is the most frequent motif and AT/TA is the most frequent motif in dimer. The abundance of the SSRs has a positive linear relationship with the recombination rate. SSR sequences in the coding regions involve a higher GC content in the Poaceae than that in the other species. SSRs of 70-80 bp in length showed the highest AT/GC base ratio among all of these loci. The result shows the highest polymorphism rate belongs to the SSRs ranged from 30 bp to 40 bp. Using all the SSR primers of Japonica, nineteen universal primers were selected and located on the genome of the grass family. The information of SSR loci, the SSR primers and the tools of mining and analyzing SSR are provided in the PSSRD (Poaceae SSR Database, http://biodb.sdau.edu.cn/pssrd/). Conclusions Our study and the PSSRD database provide a foundation for the comparative study in the Poaceae and it will accelerate the study on markers application, gene mapping and molecular breeding.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Crop Biology of China, Shandong Agricultural University, Taian, 271018, China.
| | - Chao Yang
- Key Laboratory of Crop Biology of China, Shandong Agricultural University, Taian, 271018, China.
| | - Qiaojun Jin
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| | - Dongjie Zhou
- Agricultural Big-Data Research Center, Shandong Agricultural University, Taian, 271018, China.
| | - Shuangshuang Wang
- Agricultural Big-Data Research Center, Shandong Agricultural University, Taian, 271018, China.
| | - Yuanjie Yu
- Key Laboratory of Crop Biology of China, Shandong Agricultural University, Taian, 271018, China.
| | - Long Yang
- Key Laboratory of Crop Biology of China, Shandong Agricultural University, Taian, 271018, China. .,Agricultural Big-Data Research Center, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
65
|
Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Sci Rep 2015; 5:8018. [PMID: 25620112 PMCID: PMC4306134 DOI: 10.1038/srep08018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/29/2014] [Indexed: 01/02/2023] Open
Abstract
Morphology-based taxonomy via exiguously reproductive organ has severely limitation on bamboo taxonomy, mainly owing to infrequent and unpredictable flowering events of bamboo. Here, we present the first genome-wide analysis and application of microsatellites based on the genome of moso bamboo (Phyllostachys edulis) to assist bamboo taxonomy. Of identified 127,593 microsatellite repeat-motifs, the primers of 1,451 microsatellites were designed and 1,098 markers were physically mapped on the genome of moso bamboo. A total of 917 markers were successfully validated in 9 accessions with ~39.8% polymorphic potential. Retrieved from validated microsatellite markers, 23 markers were selected for polymorphic analysis among 78 accessions and 64 alleles were detected with an average of 2.78 alleles per primers. The cluster result indicated the majority of the accessions were consistent with their current taxonomic classification, confirming the suitability and effectiveness of the developed microsatellite markers. The variations of microsatellite marker in different species were confirmed by sequencing and in silico comparative genome mapping were investigated. Lastly, a bamboo microsatellites database (http://www.bamboogdb.org/ssr) was implemented to browse and search large information of bamboo microsatellites. Consequently, our results of microsatellite marker development are valuable for assisting bamboo taxonomy and investigating genomic studies in bamboo and related grass species.
Collapse
|
66
|
Muthamilarasan M, Prasad M. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015. [PMID: 25239219 DOI: 10.1007/s00122-014-2399-325239219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | | |
Collapse
|
67
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25852710 DOI: 10.3389/fpl.2015.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
- Travis L Goron
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| |
Collapse
|
68
|
Muthamilarasan M, Prasad M. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1-14. [PMID: 25239219 DOI: 10.1007/s00122-014-2399-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/11/2014] [Indexed: 05/18/2023]
Abstract
Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | | |
Collapse
|
69
|
Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M. Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 2014; 22:79-90. [PMID: 25428892 PMCID: PMC4379977 DOI: 10.1093/dnares/dsu039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are major components of plant genome and are reported to play significant roles in functional genome diversity and phenotypic variations. Several TEs are highly polymorphic for insert location in the genome and this facilitates development of TE-based markers for various genotyping purposes. Considering this, a genome-wide analysis was performed in the model plant foxtail millet. A total of 30,706 TEs were identified and classified as DNA transposons (24,386), full-length Copia type (1,038), partial or solo Copia type (10,118), full-length Gypsy type (1,570), partial or solo Gypsy type (23,293) and Long- and Short-Interspersed Nuclear Elements (3,659 and 53, respectively). Further, 20,278 TE-based markers were developed, namely Retrotransposon-Based Insertion Polymorphisms (4,801, ∼24%), Inter-Retrotransposon Amplified Polymorphisms (3,239, ∼16%), Repeat Junction Markers (4,451, ∼22%), Repeat Junction-Junction Markers (329, ∼2%), Insertion-Site-Based Polymorphisms (7,401, ∼36%) and Retrotransposon-Microsatellite Amplified Polymorphisms (57, 0.2%). A total of 134 Repeat Junction Markers were screened in 96 accessions of Setaria italica and 3 wild Setaria accessions of which 30 showed polymorphism. Moreover, an open access database for these developed resources was constructed (Foxtail millet Transposable Elements-based Marker Database; http://59.163.192.83/ltrdb/index.html). Taken together, this study would serve as a valuable resource for large-scale genotyping applications in foxtail millet and related grass species.
Collapse
Affiliation(s)
- Chandra Bhan Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Venkata Suresh Bonthala
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | - Garima Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
70
|
Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS One 2014; 9:e113092. [PMID: 25409524 PMCID: PMC4237383 DOI: 10.1371/journal.pone.0113092] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/18/2014] [Indexed: 02/04/2023] Open
Abstract
The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
Collapse
Affiliation(s)
- Charu Lata
- National Research Centre on Plant Biotechnology, New Delhi, India
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | - Yusuf Khan
- National Institute of Plant Genome Research, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
71
|
Identification and characterization of microsatellites in expressed sequence tags and their cross transferability in different plants. Int J Genomics 2014; 2014:863948. [PMID: 25389527 PMCID: PMC4217358 DOI: 10.1155/2014/863948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/31/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022] Open
Abstract
Expressed sequence tags (EST) are potential source for the development of genic microsatellite markers, gene discovery, comparative genomics, and other genomic studies. In the present study, 7630 ESTs were examined from NCBI for SSR identification and characterization. A total of 263 SSRs were identified with an average density of one SSR/4.2 kb (3.4% frequency). Analysis revealed that trinucleotide repeats (47.52%) were most abundant followed by tetranucleotide (19.77%), dinucleotide (19.01%), pentanucleotide (9.12%), and hexanucleotide repeats (4.56%). Functional annotation was done through homology search and gene ontology, and 35 EST-SSRs were selected. Primer pairs were designed for evaluation of cross transferability and polymorphism among 11 plants belonging to five different families. Total 402 alleles were generated at 155 loci with an average of 2.6 alleles/locus and the polymorphic information content (PIC) ranged from 0.15 to 0.92 with an average of 0.75. The cross transferability ranged from 34.84% to 98.06% in different plants, with an average of 67.86%. Thus, the validation study of annotated 35 EST-SSR markers which correspond to particular metabolic activity revealed polymorphism and evolutionary nature in different families of Angiospermic plants.
Collapse
|
72
|
Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS One 2014; 9:e109920. [PMID: 25279462 PMCID: PMC4184890 DOI: 10.1371/journal.pone.0109920] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/06/2014] [Indexed: 02/02/2023] Open
Abstract
MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I - X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Yusuf Khan
- National Institute of Plant Genome Research, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
73
|
FmTFDb: a foxtail millet transcription factors database for expediting functional genomics in millets. Mol Biol Rep 2014; 41:6343-8. [DOI: 10.1007/s11033-014-3574-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022]
|
74
|
Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, Prasad M. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics 2014; 14:531-43. [PMID: 24915771 DOI: 10.1007/s10142-014-0383-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 01/05/2023]
Abstract
C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.
Collapse
|
75
|
Verma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S. Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 2014; 41:5607-25. [PMID: 24893599 DOI: 10.1007/s11033-014-3431-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/21/2014] [Indexed: 12/01/2022]
Abstract
Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2-5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.
Collapse
Affiliation(s)
- Priyanka Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
76
|
Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. PLANT CELL REPORTS 2014; 33:881-93. [PMID: 24413764 DOI: 10.1007/s00299-014-1564-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/06/2013] [Accepted: 12/31/2013] [Indexed: 05/20/2023]
Abstract
Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R (2) = 18 %) with nine agronomic traits in foxtail millet. Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R (2) = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.
Collapse
Affiliation(s)
- Sarika Gupta
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | | | | | | | | |
Collapse
|
77
|
Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M, Liu X, Chai Y, Zhang X, Wang H, Li Y, Li W, Zhi H, Jia G, Diao X. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv]. BMC Genomics 2014; 15:78. [PMID: 24472631 PMCID: PMC3930901 DOI: 10.1186/1471-2164-15-78] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/27/2014] [Indexed: 11/22/2022] Open
Abstract
Background Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. Result A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1’ by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei’s genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. Conclusions A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | |
Collapse
|
78
|
Mishra AK, Muthamilarasan M, Khan Y, Parida SK, Prasad M. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.). PLoS One 2014; 9:e86852. [PMID: 24466268 PMCID: PMC3900672 DOI: 10.1371/journal.pone.0086852] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/19/2013] [Indexed: 12/16/2022] Open
Abstract
WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I–V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and biofuel grasses.
Collapse
Affiliation(s)
| | | | - Yusuf Khan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi
| | | | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi
- * E-mail:
| |
Collapse
|
79
|
Shi J, Huang S, Zhan J, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species. DNA Res 2013; 21:53-68. [PMID: 24130371 PMCID: PMC3925394 DOI: 10.1093/dnares/dst040] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.
Collapse
Affiliation(s)
| | | | | | | | - Xinfa Wang
- To whom correspondence should be addressed. Tel. +86 027-86836265. Fax. +86 027-86836125.
| | | | | | | | | |
Collapse
|
80
|
Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, Prasad M. Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 2013; 21:41-52. [PMID: 24086082 PMCID: PMC3925393 DOI: 10.1093/dnares/dst039] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei's average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.
Collapse
|
81
|
B VS, Muthamilarasan M, Misra G, Prasad M. FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 2013; 8:e71418. [PMID: 23951158 PMCID: PMC3741111 DOI: 10.1371/journal.pone.0071418] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
The prominent attributes of foxtail millet (Setaria italica L.) including its small genome size, short life cycle, inbreeding nature, and phylogenetic proximity to various biofuel crops have made this crop an excellent model system to investigate various aspects of architectural, evolutionary and physiological significances in Panicoid bioenergy grasses. After release of its whole genome sequence, large-scale genomic resources in terms of molecular markers were generated for the improvement of both foxtail millet and its related species. Hence it is now essential to congregate, curate and make available these genomic resources for the benefit of researchers and breeders working towards crop improvement. In view of this, we have constructed the Foxtail millet Marker Database (FmMDb; http://www.nipgr.res.in/foxtail.html), a comprehensive online database for information retrieval, visualization and management of large-scale marker datasets with unrestricted public access. FmMDb is the first database which provides complete marker information to the plant science community attempting to produce elite cultivars of millet and bioenergy grass species, thus addressing global food insecurity.
Collapse
Affiliation(s)
| | | | - Gopal Misra
- National Institute of Plant Genome Research, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
82
|
Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M. Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species. PLoS One 2013; 8:e67742. [PMID: 23805325 PMCID: PMC3689721 DOI: 10.1371/journal.pone.0067742] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/22/2013] [Indexed: 11/25/2022] Open
Abstract
Foxtail millet (Setariaitalica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02–0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.
Collapse
Affiliation(s)
- Kajal Kumari
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Gopal Misra
- National Institute of Plant Genome Research, New Delhi, India
| | - Sarika Gupta
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|