51
|
Locke JM, Harries LW. RNA processing and mRNA surveillance in monogenic diabetes. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:203-12. [PMID: 19787084 PMCID: PMC2733086 DOI: 10.4137/grsb.s782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the eukaryotic cell a number of molecular mechanisms exist to regulate the nature and quantity of transcripts intended for translation. For monogenic diabetes an understanding of these processes is aiding scientists and clinicians in studying and managing this disease. Knowledge of RNA processing and mRNA surveillance pathways is helping to explain disease mechanisms, form genotype-phenotype relationships, and identifying new regions within genes to screen for mutations. Furthermore, recent insights into the regulatory role of micro RNAs (miRNAs) and RNA editing in the pancreas suggests that these mechanisms may also be important in the progression to the diabetic state.
Collapse
Affiliation(s)
- Jonathan M Locke
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK
| | | |
Collapse
|
52
|
Shyu AB, Wilkinson MF, van Hoof A. Messenger RNA regulation: to translate or to degrade. EMBO J 2008; 27:471-81. [PMID: 18256698 DOI: 10.1038/sj.emboj.7601977] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 12/06/2007] [Indexed: 12/13/2022] Open
Abstract
Quality control of gene expression operates post-transcriptionally at various levels in eukaryotes. Once transcribed, mRNAs associate with a host of proteins throughout their lifetime. These mRNA-protein complexes (mRNPs) undergo a series of remodeling events that are influenced by and/or influence the translation and mRNA decay machinery. In this review we discuss how a decision to translate or to degrade a cytoplasmic mRNA is reached. Nonsense-mediated mRNA decay (NMD) and microRNA (miRNA)-mediated mRNA silencing are provided as examples. NMD is a surveillance mechanism that detects and eliminates aberrant mRNAs whose expression would result in truncated proteins that are often deleterious to the organism. miRNA-mediated mRNA silencing is a mechanism that ensures a given protein is expressed at a proper level to permit normal cellular function. While NMD and miRNA-mediated mRNA silencing use different decision-making processes to determine the fate of their targets, both are greatly influenced by mRNP dynamics. In addition, both are linked to RNA processing bodies. Possible modes involving 3' untranslated region and its associated factors, which appear to play key roles in both processes, are discussed.
Collapse
Affiliation(s)
- Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical School, Houston, TX 77030, USA.
| | | | | |
Collapse
|
53
|
Meaux S, van Hoof A, Baker KE. Nonsense-mediated mRNA decay in yeast does not require PAB1 or a poly(A) tail. Mol Cell 2008; 29:134-40. [PMID: 18206975 PMCID: PMC2241659 DOI: 10.1016/j.molcel.2007.10.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/14/2007] [Accepted: 10/18/2007] [Indexed: 11/30/2022]
Abstract
Eukaryotic mRNAs harboring premature translation termination codons are recognized and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. The mechanism for discriminating between mRNAs that terminate translation prematurely and those subject to termination at natural stop codons remains unclear. Studies in multiple organisms indicate that proximity of the termination codon to the 3' poly(A) tail and the poly(A) RNA-binding protein, PAB1, constitute the critical determinant in NMD substrate recognition. We demonstrate that mRNA in yeast lacking a poly(A) tail can be destabilized by introduction of a premature termination codon and, importantly, that this mRNA is a substrate of the NMD machinery. We further show that, in cells lacking Pab1p, mRNA substrate recognition and destabilization by NMD are intact. These results establish that neither the poly(A) tail nor PAB1 is required in yeast for discrimination of nonsense-codon-containing mRNA from normal by NMD.
Collapse
Affiliation(s)
- Stacie Meaux
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
54
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
55
|
Lugassy J, McGrath JA, Itin P, Shemer R, Verbov J, Murphy HR, Ishida-Yamamoto A, Digiovanna JJ, Bercovich D, Karin N, Vitenshtein A, Uitto J, Bergman R, Richard G, Sprecher E. KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF-alpha-induced apoptosis and causes Naegeli-Franceschetti-Jadassohn syndrome. J Invest Dermatol 2007; 128:1517-24. [PMID: 18049449 DOI: 10.1038/sj.jid.5701187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Naegeli-Franceschetti-Jadassohn syndrome (NFJS) is a rare autosomal dominant disorder characterized by loss of dermatoglyphics, reticulate hyperpigmentation of the skin, palmoplantar keratoderma, abnormal sweating, and other developmental anomalies of the teeth, hair, and skin. We recently demonstrated that NFJS is caused by heterozygous nonsense or frameshift mutations in the E1/V1-encoding region of KRT14, but the mechanisms for their deleterious effects in NFJS remain elusive. In this study, we further expand the spectrum of NFJS-causing mutations and demonstrate that these mutations result in haploinsufficiency for keratin 14 (K14). As increased apoptotic activity was observed in the epidermal basal cell layer in NFJS patients and as previous data suggested that type I keratins may confer resistance to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in epithelial tissues, we assessed the effect of down-regulation of KRT14 expression on apoptotic activity in keratinocytes. Using a HaCaT cell-based assay, we found that decreased KRT14 expression is associated with increased susceptibility to TNF-alpha-induced apoptosis. This phenomenon was not observed when cells were cultured in the presence of doxycycline, a known negative regulator of TNF-alpha-dependant pro-apoptotic signaling. Collectively, our results indicate that NFJS results from haploinsufficiency for K14 and suggest that increased susceptibility of keratinocytes to pro-apoptotic signals may be involved in the pathogenesis of this ectodermal dysplasia syndrome.
Collapse
Affiliation(s)
- Jennie Lugassy
- Laboratory of Molecular Dermatology and Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 448] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
57
|
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that selectively degrades mRNAs harboring premature termination (nonsense) codons. If translated, these mRNAs can produce truncated proteins with dominant-negative or deleterious gain-of-function activities. In this review, we describe the molecular mechanism of NMD. We first cover conserved factors known to be involved in NMD in all eukaryotes. We then describe a unique protein complex that is deposited on mammalian mRNAs during splicing, which defines a stop codon as premature. Interaction between this exon-junction complex (EJC) and NMD factors assembled at the upstream stop codon triggers a series of steps that ultimately lead to mRNA decay. We discuss whether these proofreading events preferentially occur during a "pioneer" round of translation in higher and lower eukaryotes, their cellular location, and whether they can use alternative EJC factors or act independent of the EJC.
Collapse
Affiliation(s)
- Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
58
|
Matsuda D, Hosoda N, Kim YK, Maquat LE. Failsafe nonsense-mediated mRNA decay does not detectably target eIF4E-bound mRNA. Nat Struct Mol Biol 2007; 14:974-9. [PMID: 17873884 DOI: 10.1038/nsmb1297] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 08/01/2007] [Indexed: 11/08/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) generally eliminates messenger RNAs that prematurely terminate translation and occurs in all eukaryotes that have been studied, although with mechanistic variations. In mammals, NMD seems to be restricted to newly synthesized mRNA that is bound by the cap-binding heterodimer CBP80-CBP20 (CBP80/20) and typically has at least one exon junction complex (EJC) situated downstream of the nonsense codon and added post-splicing. However, mammalian NMD can also target spliced mRNA lacking an EJC downstream of the nonsense codon. Here we provide evidence that this additional pathway, known as failsafe NMD, likewise seems to be restricted to CBP80/20-bound mRNA and does not detectably target its subsequently remodeled product, eIF4E-bound mRNA. Our studies, including analyses of factor dependence, reveal important shared features of the two mammalian-cell NMD pathways as well as fundamental differences between NMD in mammals and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Daiki Matsuda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
59
|
Wu J, Kang JH, Hettenhausen C, Baldwin IT. Nonsense-mediated mRNA decay (NMD) silences the accumulation of aberrant trypsin proteinase inhibitor mRNA in Nicotiana attenuata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:693-706. [PMID: 17587303 DOI: 10.1111/j.1365-313x.2007.03173.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In eukaryotes, genes carrying premature termination codons (PTCs) are often associated with decreased mRNA levels compared with their counterparts without PTCs. PTC-harboring mRNA is rapidly degraded through the nonsense-mediated mRNA decay (NMD) pathway to prevent the accumulation of potentially detrimental truncated proteins. In a native ecotype of Nicotiana attenuata collected from Arizona (AZ), the mRNA levels of a trypsin proteinase inhibitor (TPI) gene are substantially lower than in plants collected from Utah (UT). Cloning the AZ TPI gene revealed a 6 bp deletion mutation in exon 2 resulting in a PTC and decreased mRNA levels through NMD. Silencing UPF1, 2 and 3 in N. attenuata AZ plants by virus-induced gene silencing (VIGS) enhanced the levels of PTC-harboring TPI mRNA, demonstrating a conserved role for UPF genes in plants. Furthermore, using cell suspension cultures that express variants of the TPI construct, we demonstrate that both intron-containing and intronless genes are subject to NMD in plants; unlike PTCs in mammals, PTCs downstream of introns activate NMD in plants. However, when a PTC is only 4 bp upstream of an intron, the NMD surveillance mechanism is abrogated. We also demonstrate that, in an intronless TPI gene, a PTC located at the beginning or the end of the coding sequence triggers NMD less efficiently than do PTCs located at the middle of the coding sequence. Taken together, these results highlight the complexity of the NMD activation mechanisms in plants.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll Strasse 8, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
60
|
Zhang Z, Krainer AR. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components. Proc Natl Acad Sci U S A 2007; 104:11574-9. [PMID: 17606899 PMCID: PMC1913901 DOI: 10.1073/pnas.0704946104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing not only removes introns and joins exons to generate spliced mRNA but also results in remodeling of the spliced messenger ribonucleoprotein, influencing various downstream events. This remodeling includes the loading of an exon-exon junction complex (EJC). It is unclear how the spliceosome recruits the EJC onto the mRNA and whether EJC formation or EJC components are required for pre-mRNA splicing. Here we immunodepleted the EJC core component eIF4A3 from HeLa cell nuclear extract and found that eIF4A3 is dispensable for pre-mRNA splicing in vitro. However, eIF4A3 is required for the splicing-dependent loading of the Y14/Magoh heterodimer onto mRNA, and this activity of human eIF4A3 is also present in the Drosophila ortholog. Surprisingly, the loading of six other EJC components was not affected by eIF4A3 depletion, suggesting that their binding to mRNA involves different or redundant pathways. Finally, we found that the assembly of the EJC onto mRNA occurs at the late stages of the splicing reaction and requires the second-step splicing and mRNA-release factor HRH1/hPrp22. The EJC-dependent and -independent recruitment of RNA-binding proteins onto mRNA suggests a role for the EJC in messenger ribonucleoprotein remodeling involving interactions with other proteins already bound to the pre-mRNA, which has implications for nonsense-mediated mRNA decay and other mRNA transactions.
Collapse
Affiliation(s)
- Zuo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- *To whom correspondence should be addressed at:
Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, NY 11724. E-mail:
| |
Collapse
|
61
|
Khajavi M, Lupski JR. Reply to Inácio et al. Eur J Hum Genet 2007. [DOI: 10.1038/sj.ejhg.5201805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
62
|
Longman D, Plasterk RH, Johnstone IL, Cáceres JF. Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev 2007; 21:1075-85. [PMID: 17437990 PMCID: PMC1855233 DOI: 10.1101/gad.417707] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 03/08/2007] [Indexed: 11/25/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs). Seven genes (smg-1-7, for suppressor with morphological effect on genitalia) that are essential for NMD were originally identified in the nematode Caenorhabditis elegans, and orthologs of these genes have been found in several species. Whereas in humans NMD is linked to splicing, PTC definition occurs independently of exon boundaries in Drosophila. Here, we have conducted an analysis of the cis-acting sequences and trans-acting factors that are required for NMD in C. elegans. We show that a PTC codon is defined independently of introns in C. elegans and, consequently, components of the exon junction complex (EJC) are dispensable for NMD. We also show a distance-dependent effect, whereby PTCs that are closer to the 3' end of the mRNA are less sensitive to NMD. We also provide evidence for the existence of previously unidentified components of the NMD pathway that, unlike known smg genes, are essential for viability in C. elegans. A genome-wide RNA interference (RNAi) screen resulted in the identification of two such novel NMD genes, which are essential for proper embryonic development, and as such represent a new class of essential NMD genes in C. elegans that we have termed smgl (for smg lethal). We show that the encoded proteins are conserved throughout evolution and are required for NMD in C. elegans and also in human cells.
Collapse
Affiliation(s)
- Dasa Longman
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Ronald H.A. Plasterk
- Hubrecht Laboratory-Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), 3584 CT Utrecht, The Netherlands
| | - Iain L. Johnstone
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, Glasgow G11 6NU, Scotland, United Kingdom
| | - Javier F. Cáceres
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| |
Collapse
|
63
|
Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA, Wilkinson MF. An alternative branch of the nonsense-mediated decay pathway. EMBO J 2007; 26:1820-30. [PMID: 17363904 PMCID: PMC1847659 DOI: 10.1038/sj.emboj.7601628] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
The T-cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC-bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense-mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRbeta NMD, thereby distinguishing it from classical NMD. Depletion of the related factor UPF3a, by itself or in combination with UPF3b, also has no effect on TCRbeta NMD. Mapping experiments revealed the identity of TCRbeta sequences that elicit a switch to UPF3b dependence. This regulation is not a peculiarity of TCRbeta, as we identified many wild-type genes, including one essential for NMD, that transcribe NMD-targeted mRNAs whose downregulation is little or not affected by UPF3a and UPF3b depletion. We propose that we have uncovered an alternative branch of the NMD pathway that not only degrades aberrant mRNAs but also regulates normal mRNAs, including one that participates in a negative feedback loop controlling the magnitude of NMD.
Collapse
MESH Headings
- Animals
- Clone Cells
- Codon, Nonsense/genetics
- Codon, Nonsense/metabolism
- Gene Expression Regulation
- HeLa Cells
- Humans
- Introns/genetics
- Mice
- RNA Helicases
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Sequence Deletion
- Trans-Activators/metabolism
- VDJ Exons/genetics
Collapse
Affiliation(s)
- Wai-Kin Chan
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lulu Huang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jayanthi P Gudikote
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Saadi Imam
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James A MacLean
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miles F Wilkinson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Unit 1000, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA. Tel.: +1 713 563 3215; Fax: +1 713 563 3375; E-mail:
| |
Collapse
|
64
|
Behm-Ansmant I, Gatfield D, Rehwinkel J, Hilgers V, Izaurralde E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J 2007; 26:1591-601. [PMID: 17318186 PMCID: PMC1829367 DOI: 10.1038/sj.emboj.7601588] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 01/12/2007] [Indexed: 01/01/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway degrades mRNAs with premature translation termination codons (PTCs). The mechanisms by which PTCs and natural stop codons are discriminated remain unclear. We show that the position of stops relative to the poly(A) tail (and thus of PABPC1) is a critical determinant for PTC definition in Drosophila melanogaster. Indeed, tethering of PABPC1 downstream of a PTC abolishes NMD. Conversely, natural stops trigger NMD when the length of the 3' UTR is increased. However, many endogenous transcripts with exceptionally long 3' UTRs escape NMD, suggesting that the increase in 3' UTR length has co-evolved with the acquisition of features that suppress NMD. We provide evidence for the existence of 3' UTRs conferring immunity to NMD. We also show that PABPC1 binding is sufficient for PTC recognition, regardless of cleavage or polyadenylation. The role of PABPC1 in NMD must go beyond that of providing positional information for PTC definition, because its depletion suppresses NMD under conditions in which translation efficiency is not affected. These findings reveal a conserved role for PABPC1 in mRNA surveillance.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Izaurralde
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
- EMBL, Heidelberg, Germany
- Max-Planck-Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany. Tel.: +49 7071 601 1350; Fax: +49 7071 601 1353; E-mail:
| |
Collapse
|
65
|
Resta N, Susca FC, Di Giacomo MC, Stella A, Bukvic N, Bagnulo R, Simone C, Guanti G. A homozygous frameshift mutation in the ESCO2 gene: evidence of intertissue and interindividual variation in Nmd efficiency. J Cell Physiol 2006; 209:67-73. [PMID: 16775838 DOI: 10.1002/jcp.20708] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Roberts syndrome (RS) is a rare disorder characterized by tetraphocomelia and several other clinical features. Cells from RS patients exhibit characteristic premature separation of heterochromatic region of many chromosomes and abnormalities in cell cycle. Mutations in the ESCO2 gene have recently been identified in 20 RS families. We performed mutational analysis of the ESCO2 gene in two fetuses diagnosed with RS and their normal parents. In both fetuses, we identified homozygosity for the c. 745_746delGT mutation, while the non-consanguineous parents were both heterozygous for the same mutation. Considering the position of the mutation identified, we carried out qualitative and quantitative real-time ESCO2 cDNA analysis on RNA isolated from CVS-stromal cells in one fetus, amniocytes in the second fetus, and lymphocytes from the heterozygous parents. The results of this analysis showed that despite the presence of a premature termination codon (PTC) 112 nucleotides upstream of the next exon3-exon4 junction, the mutant ESCO2 mRNA was present in both fetuses, albeit at low levels, indicating a partial resistance to nonsense mediated decay (NMD). Interestingly, when cells derived from the two fetuses were treated with an inhibitor of translation, they revealed the presence of tissue and individual variability in NMD efficiency, despite the identical mutational status. The existence of such a variation in the NMD efficiency could explain the broad intrafamilial and interfamilial variability in the clinical presentation of RS patients, and in other genetic diseases where nonsense mutations are responsible for most of the mutation load. Moreover, considering that a mutated full length mRNA was produced in both fetuses, we used Western blot analysis to demonstrate the absence of the ESCO2-truncated protein in cells derived from both fetuses and in a lymphoblastoid cell line derived from the parents.
Collapse
Affiliation(s)
- Nicoletta Resta
- Dipartimento di Biomedicina dell'Età Evolutiva, Sezione di Genetica Medica, Università di Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Khajavi M, Inoue K, Lupski JR. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 2006; 14:1074-81. [PMID: 16757948 DOI: 10.1038/sj.ejhg.5201649] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nonsense-mediated decay (NMD) pathway is an mRNA surveillance system that typically degrades transcripts containing premature termination codons (PTCs) in order to prevent translation of unnecessary or aberrant transcripts. Failure to eliminate these mRNAs with PTCs may result in the synthesis of abnormal proteins that can be toxic to cells through dominant-negative or gain-of-function effects. Recent studies have expanded our understanding of the mechanism by which nonsense transcripts are recognized and targeted for decay. Here, we review the physiological role of this surveillance pathway, its implications for human diseases, and why knowledge of NMD is important to an understanding of genotype-phenotype correlations in various genetic disorders.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
67
|
Weil JE, Beemon KL. A 3' UTR sequence stabilizes termination codons in the unspliced RNA of Rous sarcoma virus. RNA (NEW YORK, N.Y.) 2006; 12:102-10. [PMID: 16301601 PMCID: PMC1370890 DOI: 10.1261/rna.2129806] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eukaryotic cells target mRNAs to the nonsense-mediated mRNA decay (NMD) pathway when translation terminates within the coding region. In mammalian cells, this is presumably due to a downstream signal deposited during pre-mRNA splicing. In contrast, unspliced retroviral RNA undergoes NMD in chicken cells when premature termination codons (PTCs) are present in the gag gene. Surprisingly, deletion of a 401-nt 3' UTR sequence immediately downstream of the normal gag termination codon caused this termination event to be recognized as premature. We termed this 3' UTR region the Rous sarcoma virus (RSV) stability element (RSE). The RSE also stabilized the viral RNA when placed immediately downstream of a PTC in the gag gene. Deletion analysis of the RSE indicated a smaller functional element. We conclude that this 3' UTR sequence stabilizes termination codons in the RSV RNA, and termination codons not associated with such an RSE sequence undergo NMD.
Collapse
Affiliation(s)
- Jason E Weil
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | |
Collapse
|
68
|
Harries LW, Bingham C, Bellanne-Chantelot C, Hattersley AT, Ellard S. The position of premature termination codons in the hepatocyte nuclear factor -1 beta gene determines susceptibility to nonsense-mediated decay. Hum Genet 2005; 118:214-24. [PMID: 16133182 DOI: 10.1007/s00439-005-0023-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 06/15/2005] [Indexed: 11/24/2022]
Abstract
The nonsense-mediated decay (NMD) pathway is an mRNA surveillance mechanism that detects and degrades transcripts containing premature termination codons. The position of a truncating mutation can govern the resulting phenotype as mutations in the last exon evade NMD. In this study we investigated the susceptibility to NMD of six truncating HNF-1beta mutations by allele-specific quantitative real-time PCR using transformed lymphoblastoid cell lines. Four of six mutations (R181X, Q243fsdelC, P328L329fsdelCCTCT and A373fsdel29) showed evidence of NMD with levels of mutant transcript at 71% (p=0.009), 24% (p=0.008), 22% (p=0.008) and 3% (p=0.016) of the wild-type allele respectively. Comparable results were derived from lymphoblastoid cells and renal tubule cells isolated from a patient's overnight urine confirming that cell lines provide a good model for mRNA analysis. Two mutations (H69fsdelAC and P159fsdelT) produced transcripts unexpectedly immune to NMD. We conclude that truncating mutant transcripts of the HNF-1beta gene do not conform to the known rules governing NMD susceptibility, but instead demonstrate a previously unreported 5' to 3' polarity. We hypothesise that this may be due to reinitiation of translation downstream of the premature termination codon. Our study suggests that reinitiation of translation may be an important mechanism in the evasion of NMD, but that other factors such as the distance from the native initiation codon may also play a part.
Collapse
Affiliation(s)
- L W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Barrack Road, Exeter, UK
| | | | | | | | | |
Collapse
|
69
|
Yamashita A, Kashima I, Ohno S. The role of SMG-1 in nonsense-mediated mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:305-15. [PMID: 16289965 DOI: 10.1016/j.bbapap.2005.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 10/09/2005] [Accepted: 10/10/2005] [Indexed: 01/20/2023]
Abstract
SMG-1, a member of the PIKK (phosphoinositide 3-kinase related kinases) family, plays a critical role in the mRNA quality control system termed nonsense-mediated mRNA decay (NMD). NMD protects the cells from the accumulation of aberrant mRNAs with premature termination codons (PTCs) that encode nonfunctional or potentially harmful truncated proteins. SMG-1 directly phosphorylates Upf1, another key component of NMD, and this phosphorylation occurs upon recognition of PTC on post-spliced mRNA during the initial round of translation. At present, a variety of tools are available that can specifically suppress NMD, and it is possible to examine the contribution of NMD in a variety of physiological and pathological conditions.
Collapse
Affiliation(s)
- Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine and Graduate School of Medical Science, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | |
Collapse
|
70
|
Magen A, Ast G. The importance of being divisible by three in alternative splicing. Nucleic Acids Res 2005; 33:5574-82. [PMID: 16192573 PMCID: PMC1236976 DOI: 10.1093/nar/gki858] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Revised: 08/10/2005] [Accepted: 09/07/2005] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing events that are conserved in orthologous genes in different species are commonly viewed as reliable evidence of authentic, functionally significant alternative splicing events. Several recent bioinformatic analyses have shown that conserved alternative exons possess several features that distinguish them from alternative exons that are species-specific. One of the most striking differences between conserved and species-specific alternative exons is the high percentage of exons that preserve the reading frame (exons whose length is an exact multiple of 3, termed symmetrical exons) among the conserved alternative exons. Here, we examined conserved alternative exons and found several features that differentiate between symmetrical and non-symmetrical alternative exons. We show that symmetrical alternative exons have a strong tendency not to disrupt protein domain structures, whereas the tendency of non-symmetrical alternative exons to overlap with different fractions of protein domains is similar to that of constitutive exons. Additionally, skipping isoforms of non-symmetrical alternative exons are strongly underrepresented, compared with their including isoforms, suggesting that skipping of a large fraction of non-symmetrical alternative exons produces transcripts that are degraded by the nonsense-mediated mRNA decay mechanism. Non-symmetrical alternative exons also show a tendency to reside in the 5' half of the CDS. These findings suggest that alternative splicing of symmetrical and non-symmetrical exons is governed by different selective pressures and serves different purposes.
Collapse
Affiliation(s)
- Alon Magen
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv UniversityRamat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv UniversityRamat Aviv 69978, Israel
| |
Collapse
|
71
|
Gudikote JP, Imam JS, Garcia RF, Wilkinson MF. RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 2005; 12:801-9. [PMID: 16116435 DOI: 10.1038/nsmb980] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Jayanthi P Gudikote
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
72
|
Bühler M, Mohn F, Stalder L, Mühlemann O. Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes. Mol Cell 2005; 18:307-17. [PMID: 15866173 DOI: 10.1016/j.molcel.2005.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/17/2005] [Accepted: 03/31/2005] [Indexed: 01/28/2023]
Abstract
Cells possess mechanisms to prevent synthesis of potentially deleterious truncated proteins caused by premature translation-termination codons (PTCs). Here, we show that PTCs can induce silencing of transcription of its cognate gene. We demonstrate for immunoglobulin (Ig)-mu minigenes expressed in HeLa cells that this transcriptional silencing is PTC specific and reversible by treatment of the cells with histone deacetylase inhibitors. Furthermore, PTC-containing Ig-mu minigenes are significantly more associated with K9-methylated histone H3 and less associated with acetylated H3 than the PTC-free Ig-mu minigene. This nonsense-mediated transcriptional gene silencing (NMTGS) is also observed with an Ig-gamma minigene, but not with several classic NMD reporter genes, suggesting that NMTGS might be specific for Ig genes. NMTGS represents a nonsense surveillance mechanism by which truncation of a gene's open reading frame (ORF) induces transcriptional silencing through chromatin remodeling. Remarkably, NMTGS is inhibited by overexpression of the putative siRNase 3'hExo, suggesting that siRNA-like molecules are involved in NMTGS.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
73
|
Petruzzella V, Panelli D, Torraco A, Stella A, Papa S. Mutations in theNDUFS4gene of mitochondrial complex I alter stability of the splice variants. FEBS Lett 2005; 579:3770-6. [PMID: 15975579 DOI: 10.1016/j.febslet.2005.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/05/2005] [Accepted: 05/10/2005] [Indexed: 11/22/2022]
Abstract
The effect on the stability of alternative transcripts of different mutations of the NDUFS4 gene in patients with Leigh syndrome with complex I deficiency is presented. Normally, two NDUFS4 splice variants are degraded by nonsense mediated mRNA decay (NMD) while a third form does not trigger NMD degradation. In a patient with a premature termination codon in exon 1, all the three splice variants are up-regulated. The present is the first case of a nonsense mutation leading to the abrogation of NMD, which can represent an additional event to be considered in the evaluation of clinically relevant mutations.
Collapse
Affiliation(s)
- Vittoria Petruzzella
- Department of Medical Biochemistry and Medical Biology, University of Bari, Piazza G. Cesare, Bari 70124, Italy
| | | | | | | | | |
Collapse
|
74
|
Bühler M, Mühlemann O. Alternative splicing induced by nonsense mutations in the immunoglobulin mu VDJ exon is independent of truncation of the open reading frame. RNA (NEW YORK, N.Y.) 2005; 11:139-46. [PMID: 15613538 PMCID: PMC1370703 DOI: 10.1261/rna.7183805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/08/2004] [Indexed: 05/21/2023]
Abstract
In addition to triggering nonsense-mediated mRNA decay (NMD), premature translation-termination codons (PTCs) frequently induce alternative splicing, an observation referred to as nonsense-associated alternative splicing (NAS). In many cases, NAS is induced because the nonsense mutation alters a splicing signal, such as inactivating an exonic splicing enhancer. However, for a few genes, NAS was reported to be PTC specific, implying that a translation signal could influence splicing. Here, we investigated whether production of a previously undetected alternatively spliced transcript from immunoglobulin mu (Ig-mu) depends on premature termination of the open reading frame. We show that PTCs at different positions in the VDJ exon of an Ig-mu minigene activate usage of an alternative 3' splice site, generating an alternative transcript that lacks the initial PTC and a previously identified NMD-promoting element (NPE), but contains new PTCs because of a frame shift. Corroborating the importance of the NPE for maximal NMD response, the alternative transcript is only moderately down-regulated by NMD. We further demonstrate that NAS of Ig-mu minigene transcripts is not PTC specific. This finding, together with our results that contradict the previously reported frame dependence of TCR-beta NAS, challenges the idea that cells might possess mechanisms that would allow regulation of splice site selection in response to premature termination of the ORF.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | |
Collapse
|
75
|
Abstract
Gene regulation by short RNAs is a ubiquitous and important mode of control. MicroRNAs are short, single-strand RNAs that bind with partial complementarity to the 3' untranslated region of several genes to silence their expression. This expanding class of endogenous short RNAs are evolutionarily conserved and participate in control of development and cell-specific gene function. Several of these microRNAs have been cloned uniquely from mammalian lymphocytes suggesting specialized roles in lymphocyte development and function. In addition, several genes linked to RNAi in lower eukaryotes have mammalian homologs with specialized roles in adaptive immunity. For example, in worms, the nonsense-mediated decay (NMD) and RNAi pathways appear to be intricately linked. NMD plays a key role in regulating antigen-receptor expression in lymphocytes and there are mammalian homologs for factors identified in worms that appear to be common in both RNAi and NMD pathways. On the other hand, RNA editing and RNAi have an inverse relationship and RNA editing has an important role in viral immunity. These observations indicate unique roles for dsRNAs in the mammalian immune system.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
76
|
Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet 2004; 36:801-8. [PMID: 15284851 DOI: 10.1038/ng1403] [Citation(s) in RCA: 470] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 06/16/2004] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated decay (NMD) eliminates mRNAs containing premature termination codons and thus helps limit the synthesis of abnormal proteins. New results uncover a broader role of NMD as a pathway that also affects the expression of wild-type genes and alternative-splice products. Because the mechanisms by which NMD operates have received much attention, we discuss here the emerging awareness of the impact of NMD on the manifestation of human genetic diseases. We explore how an understanding of NMD accounts for phenotypic differences in diseases caused by premature termination codons. Specifically, we consider how the protective function of NMD sometimes benefits heterozygous carriers and, in contrast, sometimes contributes to a clinical picture of protein deficiency by inhibiting expression of partially functional proteins. Potential 'NMD therapeutics' will therefore need to strike a balance between the general physiological benefits of NMD and its detrimental effects in cases of specific genetic mutations.
Collapse
Affiliation(s)
- Jill A Holbrook
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
77
|
Bühler M, Paillusson A, Mühlemann O. Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res 2004; 32:3304-15. [PMID: 15210863 PMCID: PMC443527 DOI: 10.1093/nar/gkh651] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Premature translation-termination codons (PTCs) elicit rapid degradation of the mRNA by a process called nonsense-mediated mRNA decay (NMD). NMD appears to be significantly more efficient for mRNAs of genes belonging to the immunoglobulin superfamily, which frequently acquire PTCs during VDJ rearrangment, than for mRNAs of other genes. To identify determinants for efficient NMD, we developed a minigene system derived from a mouse immunoglobulin micro gene (Ig-micro) and measured the effect of PTCs at different positions on the mRNA level. This revealed that PTCs located downstream of the V-D junction in the VDJ exon of Ig-micro minigenes and of endogenous Ig-micro genes elicit very strong mRNA downregulation, whereas NMD efficiency decreases gradually further upstream in the V segment where a PTC was inserted. Interestingly, two PTCs are in positions where they usually do not trigger NMD (<50 nt from the 3'-most 5' splice site) still resulted in reduced mRNA levels. Using a set of hybrid constructs comprised of Ig-micro and an inefficient substrate for NMD, we identified a 177 nt long element in the V segment that is necessary for efficient downregulation of PTC-containing hybrid transcripts. Moreover, deletion of this NMD-promoting element from the Ig-micro minigene results in loss of strong NMD.
Collapse
Affiliation(s)
- Marc Bühler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
78
|
Inácio A, Silva AL, Pinto J, Ji X, Morgado A, Almeida F, Faustino P, Lavinha J, Liebhaber SA, Romão L. Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J Biol Chem 2004; 279:32170-80. [PMID: 15161914 DOI: 10.1074/jbc.m405024200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs containing premature translation termination codons. In mammalian cells, a termination codon is ordinarily recognized as "premature" if it is located greater than 50-54 nucleotides 5' to the final exon-exon junction. We have described a set of naturally occurring human beta-globin gene mutations that apparently contradict this rule. The corresponding beta-thalassemia genes contain nonsense mutations within exon 1, and yet their encoded mRNAs accumulate to levels approaching wild-type beta-globin (beta(WT)) mRNA. In the present report we demonstrate that the stabilities of these mRNAs with nonsense mutations in exon 1 are intermediate between beta(WT) mRNA and beta-globin mRNA carrying a prototype NMD-sensitive mutation in exon 2 (codon 39 nonsense; beta 39). Functional analyses of these mRNAs with 5'-proximal nonsense mutations demonstrate that their relative resistance to NMD does not reflect abnormal RNA splicing or translation re-initiation and is independent of promoter identity and erythroid specificity. Instead, the proximity of the nonsense codon to the translation initiation AUG constitutes a major determinant of NMD. Positioning a termination mutation at the 5' terminus of the coding region blunts mRNA destabilization, and this effect is dominant to the "50-54 nt boundary rule." These observations impact on current models of NMD.
Collapse
Affiliation(s)
- Angela Inácio
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
80
|
Inoue K, Khajavi M, Ohyama T, Hirabayashi SI, Wilson J, Reggin JD, Mancias P, Butler IJ, Wilkinson MF, Wegner M, Lupski JR. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 2004; 36:361-9. [PMID: 15004559 DOI: 10.1038/ng1322] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 01/30/2004] [Indexed: 01/03/2023]
Abstract
The molecular mechanisms by which different mutations in the same gene can result in distinct disease phenotypes remain largely unknown. Truncating mutations of SOX10 cause either a complex neurocristopathy designated PCWH or a more restricted phenotype known as Waardenburg-Shah syndrome (WS4; OMIM 277580). Here we report that although all nonsense and frameshift mutations that cause premature termination of translation generate truncated SOX10 proteins with potent dominant-negative activity, the more severe disease phenotype, PCWH, is realized only when the mutant mRNAs escape the nonsense-mediated decay (NMD) pathway. We observe similar results for truncating mutations of MPZ that convey distinct myelinopathies. Our experiments show that triggering NMD and escaping NMD may cause distinct neurological phenotypes.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Affiliation(s)
- Cecília Maria Arraiano
- ITQB-Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal.
| | | |
Collapse
|
82
|
Abstract
A conserved mRNA surveillance system, referred to as nonsense-mediated decay (NMD), exists in eukaryotic cells to degrade mRNAs containing nonsense codons. This process is important in checking that mRNAs have been properly synthesized and functions, at least in part, to increase the fidelity of gene expression by degrading aberrant mRNAs that, if translated, would produce truncated proteins. Using computational modeling and experimental analysis, we define the alterations in mRNA turnover triggered by NMD in yeast. We demonstrate that the nonsense-containing transcripts are efficiently recognized, targeted for deadenylation-independent decapping, and show NMD triggered accelerated deadenylation regardless of the position of the nonsense codon. We also show that 5' nonsense codons trigger faster rates of decapping than 3' nonsense codons, thereby providing a mechanistic basis for the polar effect of NMD. Finally, we construct a computational model that accurately describes the process of NMD and serves as an explanatory and predictive tool.
Collapse
Affiliation(s)
- Dan Cao
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
83
|
Wang J, Chang YF, Hamilton JI, Wilkinson MF. Nonsense-associated altered splicing: a frame-dependent response distinct from nonsense-mediated decay. Mol Cell 2002; 10:951-7. [PMID: 12419238 DOI: 10.1016/s1097-2765(02)00635-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsense-associated altered splicing (NAS) is a putative correction response that upregulates alternatively spliced transcripts that have skipped offending premature termination codons (PTCs). Here, we examined whether NAS has characteristics in common with nonsense-mediated decay (NMD), a surveillance mechanism that degrades PTC-bearing mRNAs. We discovered that although NAS shared the need for a Kozak AUG to define frame, it differed from NMD. NAS was not affected by depletion of the NMD protein hUPF2, and it functioned independently of RNA stabilization. We identified an alternatively spliced transcript acted upon by both NAS and NMD, indicating that these two mechanisms are not mutually exclusive. Our results suggest that NAS and NMD are distinct mechanisms despite being triggered by the same signal.
Collapse
Affiliation(s)
- Jun Wang
- Department of Immunology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
84
|
Lejeune F, Ishigaki Y, Li X, Maquat LE. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J 2002; 21:3536-45. [PMID: 12093754 PMCID: PMC126094 DOI: 10.1093/emboj/cdf345] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Newly spliced mRNAs in mammalian cells are characterized by a complex of proteins at exon-exon junctions. This complex recruits Upf3 and Upf2, which function in nonsense-mediated mRNA decay (NMD). Both Upf proteins are detected on mRNA bound by the major nuclear cap-binding proteins CBP80/CBP20 but not mRNA bound by the major cytoplasmic cap-binding protein eIF4E. These and other data indicate that NMD targets CBP80-bound mRNA during a 'pioneer' round of translation, but whether nuclear eIF4E also binds nascent but dead-end transcripts is unclear. Here we provide evidence that nuclear CBP80 but not nuclear eIF4E is readily detected in association with intron-containing RNA and the C-terminal domain of RNA polymerase II. Consistent with this evidence, we demonstrate that RNPS1, Y14, SRm160, REF/Aly, TAP, Upf3X and Upf2 are detected in the nuclear fraction on CBP80-bound but not eIF4E-bound mRNA. Each of these proteins is also detected on CBP80-bound mRNA in the cytoplasmic fraction, indicating a presence on mRNA after export. The dynamics of mRNP composition before and after mRNA export are discussed.
Collapse
Affiliation(s)
| | - Yasuhito Ishigaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
Present address: Laboratory of Molecular Human Genetics, Department of Pharmaceutical Science, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan Corresponding author e-mail:
| | | | - Lynne E. Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
Present address: Laboratory of Molecular Human Genetics, Department of Pharmaceutical Science, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan Corresponding author e-mail:
| |
Collapse
|
85
|
Wang J, Vock VM, Li S, Olivas OR, Wilkinson MF. A quality control pathway that down-regulates aberrant T-cell receptor (TCR) transcripts by a mechanism requiring UPF2 and translation. J Biol Chem 2002; 277:18489-93. [PMID: 11889124 DOI: 10.1074/jbc.m111781200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonsense-mediated decay (NMD) is an RNA surveillance pathway that degrades mRNAs containing premature termination codons (PTC). T-cell receptor (TCR) and immunoglobulin (Ig) transcripts, which are encoded by genes that very frequently acquire PTCs during lymphoid ontogeny, are down-regulated much more dramatically in response to PTCs than are other known transcripts. Another feature unique to TCR, Ig, and a subset of other mRNAs is that they are down-regulated in response to nonsense codons in the nuclear fraction of cells. This is paradoxical, as the only well recognized entity that recognizes nonsense codons is the cytoplasmic translation apparatus. Therefore, we investigated whether translation is responsible for this nuclear-associated mechanism. We found that the down-regulation of TCR-beta transcripts in response to nonsense codons requires several features of translation, including an initiator ATG and the ability to scan. We also found that optimal down-regulation depends on a Kozak consensus sequence surrounding the initiator ATG and that it can be initiated by an internal ribosome entry site, neither of which has been demonstrated before for any other PTC-bearing mRNA. At least a portion of this down-regulatory response is mediated by the NMD pathway as antisense hUPF2 transcripts increased the levels of PTC-bearing TCR-beta transcripts in the nuclear fraction of cells. We conclude that a hUPF2-dependent RNA surveillance pathway with translation-like features operating in the nuclear fraction of cells prevents the expression of potentially deleterious truncated proteins encoded by non-productively rearranged TCR genes.
Collapse
Affiliation(s)
- Jun Wang
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|