51
|
Santos AS, Ramos RT, Silva A, Hirata R, Mattos-Guaraldi AL, Meyer R, Azevedo V, Felicori L, Pacheco LGC. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species. Funct Integr Genomics 2018; 18:593-610. [PMID: 29752561 DOI: 10.1007/s10142-018-0610-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.
Collapse
Affiliation(s)
- André S Santos
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Rommel T Ramos
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Raphael Hirata
- Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana L Mattos-Guaraldi
- Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Roberto Meyer
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Vasco Azevedo
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Felicori
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luis G C Pacheco
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| |
Collapse
|
52
|
Abe K, Sunagawa N, Terada T, Takahashi Y, Arakawa T, Igarashi K, Samejima M, Nakai H, Taguchi H, Nakajima M, Fushinobu S. Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua. J Biol Chem 2018; 293:8812-8828. [PMID: 29678880 DOI: 10.1074/jbc.ra117.001536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
β-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several β-1,2-glucan-associated enzymes have been characterized, little is known about how β-1,2-glucan and its shorter oligosaccharides (Sop n s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop n -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Listeria innocua Calorimetric analysis revealed that SO-BP specifically binds to Sop n s with a degree of polymerization of 3 or more, with Kd values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop3-5) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop n , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop3-5 by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop n s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop n s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial β-1,2-glucan metabolism and promote the discovery of unidentified β-1,2-glucan-associated proteins.
Collapse
Affiliation(s)
- Koichi Abe
- From the Department of Biotechnology.,Agricultural Bioinformatics Research Unit, and
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Yuta Takahashi
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | | | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,the VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland, and
| | - Masahiro Samejima
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Nakai
- the Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Hayao Taguchi
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masahiro Nakajima
- the Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | |
Collapse
|
53
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
54
|
Bae JE, Kim IJ, Kim KJ, Nam KH. Crystal structure of a substrate-binding protein from Rhodothermus marinus reveals a single α/β-domain. Biochem Biophys Res Commun 2018; 497:368-373. [PMID: 29432740 DOI: 10.1016/j.bbrc.2018.02.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
Abstract
Substrate-binding proteins (SBPs) bind to specific ligands and are associated with membrane protein complexes for transport or signal transduction. Most SBPs recognize substrates by the hinge motion between two distinct α/β domains. However, short SBP motifs are often observed in protein databases, which are located around methyl-accepting chemotaxis protein genes, but structural and functional studies have yet to be performed. Here, we report the crystal structure of an unusually small SBP from Rhodothermus marinus (named as RmSBP) at 1.9 Å. This protein is composed of a single α/β-domain, unlike general SBPs that have two distinct domains. RmSBP exhibits a high structural similarity to the C-terminal domain of the previously reported amino acid bound SBPs, while it does not contain an N-terminal domain for substrate recognition. As a result of the structural comparison analysis, RmSBP has a putative SBP that is different from the previously reported SBP. Our results provide insight into a new class of substrate recognition mechanism by the mini SBP protein.
Collapse
Affiliation(s)
- Ji-Eun Bae
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Jung Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
55
|
Protein Linkers Provide Limits on the Domain Interactions in the ABC Importer GlnPQ and Determine the Rate of Transport. J Mol Biol 2018; 430:1249-1262. [PMID: 29486154 DOI: 10.1016/j.jmb.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/28/2023]
Abstract
GlnPQ is an ATP-binding cassette importer with a unique domain organization and intricate transport behavior. The protein has two extracytoplamic substrate-binding domains (SBDs) per membrane subunit, each with different specificity for amino acids and different spacing to the translocator domain. We determined the effect of the length and structure of the linkers, which connect the SBDs to each other and to the membrane-embedded translocator domain, on the transport by GlnPQ. We reveal that varying the linker length impacts transport in a dual manner that depends on the conformational dynamics of the SBD. Varying the linker length not only changes the time for the SBD to find the translocator (docking) but also changes the probability to release the substrate again, thus altering the transport efficiency. On the basis of the experimental data and mathematical modeling, we calculate the docking efficiency as function of linker length and lifetime of the closed conformation. Importantly, not only linker length but also features in the sequence are important for efficient delivery of substrate from SBD to the translocator. We show that the linkers provide a platform for SBD docking and are not merely flexible structures.
Collapse
|
56
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
57
|
Li L, Ghimire-Rijal S, Lucas SL, Stanley CB, Wright E, Agarwal PK, Myles DA, Cuneo MJ. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding. Biochemistry 2017; 56:5328-5337. [PMID: 28876049 DOI: 10.1021/acs.biochem.7b00657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimeric apo PBP leads to a tightening of the interface α-helices so that the hydrogen bonding pattern shifts to that of a 310 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.
Collapse
Affiliation(s)
| | | | - Sarah L Lucas
- Department of Biomedical Engineering, North Carolina State University , Raleigh North Carolina 27607, United States
| | | | - Edward Wright
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Pratul K Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
58
|
Meinert C, Senger J, Witthohn M, Wübbeler JH, Steinbüchel A. Carbohydrate uptake in Advenella mimigardefordensis strain DPN7 T is mediated by periplasmic sugar oxidation and a TRAP-transport system. Mol Microbiol 2017; 104:916-930. [PMID: 28407382 DOI: 10.1111/mmi.13692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
In this study, we investigated an SBP (DctPAm ) of a tripartite ATP-independent periplasmic transport system (TRAP) in Advenella mimigardefordensis strain DPN7T . Deletion of dctPAm as well as of the two transmembrane compounds of the tripartite transporter, dctQ and dctM, impaired growth of A. mimigardefordensis strain DPN7T , if cultivated on mineral salt medium supplemented with d-glucose, d-galactose, l-arabinose, d-fucose, d-xylose or d-gluconic acid, respectively. The wild type phenotype was restored during complementation studies of A. mimigardefordensis ΔdctPAm using the broad host vector pBBR1MCS-5::dctPAm . Furthermore, an uptake assay with radiolabeled [14 C(U)]-d-glucose clearly showed that the deletion of dctPAm , dctQ and dctM, respectively, disabled the uptake of this aldoses in cells of either mutant strain. Determination of KD performing thermal shift assays showed a shift in the melting temperature of DctPAm in the presence of d-gluconic acid (KD 11.76 ± 1.3 µM) and the corresponding aldonic acids to the above-mentioned carbohydrates d-galactonate (KD 10.72 ± 1.4 µM), d-fuconic acid (KD 13.50 ± 1.6 µM) and d-xylonic acid (KD 8.44 ± 1.0 µM). The sugar (glucose) dehydrogenase activity (E.C.1.1.5.2) in the membrane fraction was shown for all relevant sugars, proving oxidation of the molecules in the periplasm, prior to transport.
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jana Senger
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Marco Witthohn
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
59
|
van den Berg J, Boersma AJ, Poolman B. Microorganisms maintain crowding homeostasis. Nat Rev Microbiol 2017; 15:309-318. [DOI: 10.1038/nrmicro.2017.17] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
60
|
Teichmann L, Chen C, Hoffmann T, Smits SHJ, Schmitt L, Bremer E. From substrate specificity to promiscuity: hybrid ABC transporters for osmoprotectants. Mol Microbiol 2017; 104:761-780. [PMID: 28256787 DOI: 10.1111/mmi.13660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
The ABC-transporters OpuB and OpuC from Bacillus subtilis function as osmoprotectant import systems. Their structural genes have most likely evolved through a duplication event but the two transporters are remarkably different in their substrate profile. OpuB possesses narrow substrate specificity, while OpuC is promiscuous. We assessed the functionality of hybrids between these two ABC-transporters by reciprocally exchanging the coding regions for the OpuBC and OpuCC substrate-binding proteins between the corresponding opuB and opuC operons. Substantiating the critical role of the binding protein in setting the substrate specificity of ABC transporters, OpuB::OpuCC turned into a promiscuous system, while OpuC::OpuBC now exhibited narrow substrate specificity. Both hybrid transporters possessed a high affinity for their substrates but the transport capacity of the OpuB::OpuCC system was moderate due to the synthesis of only low amounts of the xenogenetic OpuCC protein. Suppressor mutations causing single amino acid substitutions in the GbsR repressor controlling the choline to glycine betaine biosynthesis pathway greatly improved OpuB::OpuCC-mediated compatible solute import through transcriptional up-regulation of the hybrid opuB::opuCC operon. Collectively, we demonstrate for the first time that one can synthetically switch the substrate specificity of a given ABC transporter by combining its core components with a xenogenetic ligand-binding protein.
Collapse
Affiliation(s)
- Laura Teichmann
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany
| | - Chiliang Chen
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, Marburg, D-35043, Germany
| | - Tamara Hoffmann
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Erhard Bremer
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, Marburg, D-35043, Germany
| |
Collapse
|
61
|
Lewinson O, Livnat-Levanon N. Mechanism of Action of ABC Importers: Conservation, Divergence, and Physiological Adaptations. J Mol Biol 2017; 429:606-619. [PMID: 28104364 DOI: 10.1016/j.jmb.2017.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
The past decade has seen a remarkable surge in structural characterization of ATP binding cassette (ABC) transporters, which have spurred a more focused functional analysis of these elaborate molecular machines. As a result, it has become increasingly apparent that there is a substantial degree of mechanistic variation between ABC transporters that function as importers, which correlates with their physiological roles. Here, we summarize recent advances in ABC importers' structure-function studies and provide an explanation as to the origin of the different mechanisms of action.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | - Nurit Livnat-Levanon
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel
| |
Collapse
|
62
|
Seppälä S, Solomon KV, Gilmore SP, Henske JK, O'Malley MA. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb Cell Fact 2016; 15:212. [PMID: 27998268 PMCID: PMC5168858 DOI: 10.1186/s12934-016-0611-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.
Collapse
Affiliation(s)
- Susanna Seppälä
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kgs. Lyngby, Denmark.,Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
63
|
Rolfe SA, Strelkov SE, Links MG, Clarke WE, Robinson SJ, Djavaheri M, Malinowski R, Haddadi P, Kagale S, Parkin IAP, Taheri A, Borhan MH. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics 2016; 17:272. [PMID: 27036196 PMCID: PMC4815078 DOI: 10.1186/s12864-016-2597-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.
Collapse
Affiliation(s)
- Stephen A. Rolfe
- />Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN UK
| | - Stephen E. Strelkov
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5 Canada
| | - Matthew G. Links
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Wayne E. Clarke
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
- />Present address: New York Genome Center, 101 6th Ave, New York, NY 10013 USA
| | - Stephen J. Robinson
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Mohammad Djavaheri
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Robert Malinowski
- />Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan, Poland
| | - Parham Haddadi
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Sateesh Kagale
- />National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9 Canada
| | - Isobel A. P. Parkin
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Ali Taheri
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
- />Present address: Department of Agricultural and Environmental Sciences, College of Agriculture, Human and Natural Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - M. Hossein Borhan
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| |
Collapse
|
64
|
Abstract
Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM, and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology, and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.
Collapse
|
65
|
Mustyala KK, Malkhed V, Chittireddy VRR, Vuruputuri U. Identification of Small Molecular Inhibitors for Efflux Protein: DrrA of Mycobacterium tuberculosis. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0427-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
66
|
Li K, Bruner SD. Structure and functional analysis of the siderophore periplasmic binding protein from the fuscachelin gene cluster of T
hermobifida fusca. Proteins 2015; 84:118-28. [DOI: 10.1002/prot.24959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Kunhua Li
- Department of Chemistry; University of Florida; Gainesville Florida 32611
| | - Steven D. Bruner
- Department of Chemistry; University of Florida; Gainesville Florida 32611
| |
Collapse
|
67
|
Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis. J Bacteriol 2015; 198:477-85. [PMID: 26553850 DOI: 10.1128/jb.00685-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The GlnPQ transporter from Lactococcus lactis has the remarkable feature of having two substrate-binding domains (SBDs) fused to the N terminus of the transmembrane domain (TMD), and thus four SBDs are present in the homodimeric complex. Although X-ray structures and ligand binding data are available for both SBDs, little is known of how different amino acids compete with each other for transport via GlnPQ. Here we show GlnPQ has a broader substrate specificity than previously thought, with the ability to take up asparagine, glutamine, and glutamic acid, albeit via different routes and with different affinities. Asparagine and glutamine compete with each other at the level of binding to SBD1 and SBD2 (with differences in dissociation constant), but at the same time SBD1 and SBD2 compete with each other at the level of interaction with the translocator domain (with differences in affinity constant and rate of transport). Although glutamine transport via SBD1 is outcompeted by physiological concentrations of asparagine, SBD2 ensures high rates of import of the essential amino acid glutamine. Taken together, this study demonstrates that even in the presence of competing asparagine concentrations, GlnPQ has a high capacity to transport glutamine, which matches the high needs of the cell for glutamine and glutamate. IMPORTANCE GlnPQ is an ATP-binding cassette (ABC) transporter for glutamine, glutamic acid, and asparagine. The system is essential in various Gram-positive bacteria, including L. lactis and several pathogens. Here we show how the amino acids compete with each other for binding to the multiple SBDs of GlnPQ and how these SBDs compete with each other for substrate delivery to the transporter. Overall, our results show that GlnPQ has evolved to transport diverse substrates via different paths and to optimally acquire the abundant and essential amino acid glutamine.
Collapse
|
68
|
Bosdriesz E, Magnúsdóttir S, Bruggeman FJ, Teusink B, Molenaar D. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate. FEBS J 2015; 282:2394-407. [PMID: 25846030 DOI: 10.1111/febs.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them.
Collapse
Affiliation(s)
- Evert Bosdriesz
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | | | | | - Bas Teusink
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| |
Collapse
|
69
|
Sun Z, Chen Y, Yang C, Yang S, Gu Y, Jiang W. A novel three-component system-based regulatory model for D-xylose sensing and transport in Clostridium beijerinckii. Mol Microbiol 2014; 95:576-89. [PMID: 25441682 DOI: 10.1111/mmi.12894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
D-Xylose is the most abundant fermentable pentose in nature and can serve as a carbon source for many bacterial species. Since D-xylose constitutes the major component of hemicellulose, its metabolism is important for lignocellulosic biomass utilization. Here, we report a six-protein module for D-xylose signaling, uptake and regulation in solvent-producing Clostridium beijerinckii. This module consists of a novel 'three-component system' (a putative periplasmic ABC transporter substrate-binding protein XylFII and a two-component system LytS/YesN) and an ABC-type D-xylose transporter XylFGH. Interestingly, we demonstrate that, although XylFII harbors a transmembrane domain, it is not involved in D-xylose transport. Instead, XylFII acts as a signal sensor to assist the response of LytS/YesN to extracellular D-xylose, thus enabling LytS/YesN to directly activate the transcription of the adjacent xylFGH genes and thereby promote the uptake of D-xylose. To our knowledge, XylFII is a novel single transmembrane sensor that assists two-component system to respond to extracellular sugar molecules. Also of significance, this 'three-component system' is widely distributed in Firmicutes, indicating that it may play a broad role in this bacterial phylum. The results reported here provide new insights into the regulatory mechanism of D-xylose sensing and transport in bacteria.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | |
Collapse
|
70
|
Gouridis G, Schuurman-Wolters GK, Ploetz E, Husada F, Vietrov R, de Boer M, Cordes T, Poolman B. Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat Struct Mol Biol 2014; 22:57-64. [DOI: 10.1038/nsmb.2929] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/06/2014] [Indexed: 11/09/2022]
|
71
|
Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, Kang OH, Kwon DY. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules 2014; 19:18283-95. [PMID: 25389660 PMCID: PMC6271166 DOI: 10.3390/molecules191118283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/25/2014] [Accepted: 10/11/2014] [Indexed: 11/24/2022] Open
Abstract
Curcumin, a natural polyphenolic flavonoid extracted from the rhizome of Curcuma longa L., was shown to possess superior potency to resensitize methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics. Previous studies have shown the synergistic activity of curcumin with β-lactam and quinolone antibiotics. Further, to understand the anti-MRSA mechanism of curcumin, we investigated the potentiated effect of curcumin by its interaction in diverse conditions. The mechanism of anti-MRSA action of curcumin was analyzed by the viability assay in the presence of detergents, ATPase inhibitors and peptidoglycan (PGN) from S. aureus, and the PBP2a protein level was analyzed by western blotting. The morphological changes in the curcumin-treated MRSA strains were investigated by transmission electron microscopy (TEM). We analyzed increased susceptibility to MRSA isolates in the presence of curcumin. The optical densities at 600 nm (OD600) of the suspensions treated with the combinations of curcumin with triton X-100 and Tris were reduced to 63% and 59%, respectively, compared to curcumin without treatment. N,N'-dicyclohexylcarbodiimide (DCCD) and sodium azide (NaN3) were reduced to 94% and 55%, respectively. When peptidoglycan (PGN) from S. aureus was combined with curcumin, PGN (0–125 μg/mL) gradually blocked the antibacterial activity of curcumin (125 μg/mL); however, at a concentration of 125 µg/mL PGN, it did not completely block curcumin. Curcumin has a significant effect on the protein level of PBP2a. The TEM images of MRSA showed damage of the cell wall, disruption of the cytoplasmic contents, broken cell membrane and cell lysis after the treatment of curcumin. These data indicate a remarkable antibacterial effect of curcumin, with membrane permeability enhancers and ATPase inhibitors, and curcumin did not directly bind to PGN on the cell wall. Further, the antimicrobial action of curcumin involved in the PBP2a-mediated resistance mechanism was investigated.
Collapse
Affiliation(s)
- Su-Hyun Mun
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Sung-Bae Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Ryong Kong
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Jang-Gi Choi
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Youn-Chul Kim
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, College of Bio Industry Science, Sunchon National University, Sunchon, Jeonnam 540-742, Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Dong-Yeul Kwon
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
72
|
Pletzer D, Lafon C, Braun Y, Köhler T, Page MGP, Mourez M, Weingart H. High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa. PLoS One 2014; 9:e111311. [PMID: 25338022 PMCID: PMC4206461 DOI: 10.1371/journal.pone.0111311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/23/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1-A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Pletzer
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| | - Corinne Lafon
- Sanofi-Aventis R&D, Infectious Diseases Therapeutic Unit, Toulouse, France
| | - Yvonne Braun
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine and Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
| | | | - Michael Mourez
- Sanofi-Aventis R&D, Infectious Diseases Therapeutic Unit, Toulouse, France
| | - Helge Weingart
- Jacobs University Bremen, School of Engineering and Science, Bremen, Germany
| |
Collapse
|
73
|
Dalla Vecchia E, Shao PP, Suvorova E, Chiappe D, Hamelin R, Bernier-Latmani R. Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens. Front Microbiol 2014; 5:432. [PMID: 25191310 PMCID: PMC4137172 DOI: 10.3389/fmicb.2014.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/31/2014] [Indexed: 11/13/2022] Open
Abstract
Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III). Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III) reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III) reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble [Fe(III)-citrate] and insoluble (hydrous ferric oxide, HFO) Fe(III). Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III) reductases, we carried out an investigation of the surface proteome (surfaceome) of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III) reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462), a heterodisulfide reductase subunit A (Dred_0143) and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533).
Collapse
Affiliation(s)
- Elena Dalla Vecchia
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Paul P Shao
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Elena Suvorova
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Diego Chiappe
- Proteomics Core Facility, Core Facility PTECH, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, Core Facility PTECH, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
74
|
Nuruzzaman M, Zhang R, Cao HZ, Luo ZY. Plant pleiotropic drug resistance transporters: transport mechanism, gene expression, and function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:729-40. [PMID: 24645852 DOI: 10.1111/jipb.12196] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | | | | | | |
Collapse
|
75
|
Substrate binding protein SBP2 of a putative ABC transporter as a novel vaccine antigen of Moraxella catarrhalis. Infect Immun 2014; 82:3503-12. [PMID: 24914218 DOI: 10.1128/iai.01832-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Moraxella catarrhalis is a common respiratory tract pathogen that causes otitis media in children and infections in adults with chronic obstructive pulmonary disease. Since the introduction of the pneumococcal conjugate vaccines with/without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high-priority pathogen in otitis media. For the development of antibacterial vaccines and therapies, substrate binding proteins of ATP-binding cassette transporters are important targets. In this study, we identified and characterized a substrate binding protein, SBP2, of M. catarrhalis. Among 30 clinical isolates tested, the sbp2 gene sequence was highly conserved. In 2 different analyses (whole-cell enzyme-linked immunosorbent assay and flow cytometry), polyclonal antibodies raised to recombinant SBP2 demonstrated that SBP2 expresses epitopes on the bacterial surface of the wild type but not the sbp2 mutant. Mice immunized with recombinant SBP2 showed significantly enhanced clearance of M. catarrhalis from the lung compared to that in the control group at both 25-μg and 50-μg doses (P < 0.001). We conclude that SBP2 is a novel, attractive candidate as a vaccine antigen against M. catarrhalis.
Collapse
|
76
|
Abstract
AbstractABC transporters comprise a large, diverse, and ubiquitous superfamily of membrane active transporters. Their core architecture is a dimer of dimers, comprising two transmembrane (TM) domains that bind substrate, and two ATP-binding cassettes, which use the cell's energy currency to couple substrate translocation to ATP hydrolysis. Despite the availability of over a dozen resolved structures and a wealth of biochemical and biophysical data, this field is bedeviled by controversy and long-standing mechanistic questions remain unresolved. The prevailing paradigm for the ABC transport mechanism is the Switch Model, in which the ATP-binding cassettes dimerize upon binding two ATP molecules, and thence dissociate upon sequential ATP hydrolysis. This cycle of nucleotide-binding domain (NBD) dimerization and dissociation is coupled to a switch between inward- or outward facing conformations of a single TM channel; this alternating access enables substrate binding on one face of the membrane and its release at the other. Notwithstanding widespread acceptance of the Switch Model, there is substantial evidence that the NBDs do not separate very much, if at all, and thus physical separation of the ATP cassettes observed in crystallographic structures may be an artefact. An alternative Constant Contact Model has been proposed, in which ATP hydrolysis occurs alternately at the two ATP-binding sites, with one of the sites remaining closed and containing occluded nucleotide at all times. In this model, the cassettes remain in contact and the active sites swing open in an alternately seesawing motion. Whilst the concept of NBD association/dissociation in the Switch Model is naturally compatible with a single alternating-access channel, the asymmetric functioning proposed by the Constant Contact model suggests an alternating or reciprocating function in the TMDs. Here, a new model for the function of ABC transporters is proposed in which the sequence of ATP binding, hydrolysis, and product release in each active site is directly coupled to the analogous sequence of substrate binding, translocation and release in one of two functionally separate substrate translocation pathways. Each translocation pathway functions 180° out of phase. A wide and diverse selection of data for both ABC importers and exporters is examined, and the ability of the Switch and Reciprocating Models to explain the data is compared and contrasted. This analysis shows that not only can the Reciprocating Model readily explain the data; it also suggests straightforward explanations for the function of a number of atypical ABC transporters. This study represents the most coherent and complete attempt at an all-encompassing scheme to explain how these important proteins work, one that is consistent with sound biochemical and biophysical evidence.
Collapse
|
77
|
Williams TJ, Cavicchioli R. Marine metaproteomics: deciphering the microbial metabolic food web. Trends Microbiol 2014; 22:248-60. [PMID: 24731505 DOI: 10.1016/j.tim.2014.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Metaproteomics can be applied to marine systems to discover metabolic processes in the ocean. This review describes current breakthroughs regarding marine microbes in the areas of microbial procurement of nutrients, important and previously unrecognized metabolic processes, functional roles for proteins with previously unknown functions, and intricate networks of metabolic interactions between symbiotic microbes and their hosts. By recognizing that metaproteomics empowers our understanding of the roles that marine microbes play in global biogeochemical cycles, the achievements to date from this advancing field highlight the enormous potential that the future holds.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
78
|
The Maltose ABC Transporter: Where Structure Meets Function. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
79
|
|
80
|
Brautigam CA, Ouyang Z, Deka RK, Norgard MV. Sequence, biophysical, and structural analyses of the PstS lipoprotein (BB0215) from Borrelia burgdorferi reveal a likely binding component of an ABC-type phosphate transporter. Protein Sci 2013; 23:200-12. [PMID: 24318969 DOI: 10.1002/pro.2406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC-type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand-binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high-resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate-binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215-0218 function as a phosphate transporter for B. burgdorferi.
Collapse
Affiliation(s)
- Chad A Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | | | | | | |
Collapse
|
81
|
Fulyani F, Schuurman-Wolters GK, Zagar AV, Guskov A, Slotboom DJ, Poolman B. Functional diversity of tandem substrate-binding domains in ABC transporters from pathogenic bacteria. Structure 2013; 21:1879-88. [PMID: 23994008 DOI: 10.1016/j.str.2013.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/05/2013] [Accepted: 07/23/2013] [Indexed: 11/17/2022]
Abstract
The ATP-binding cassette (ABC) transporter GlnPQ is an essential uptake system for amino acids in gram-positive pathogens and related nonpathogenic bacteria. The transporter has tandem substrate-binding domains (SBDs) fused to each transmembrane domain, giving rise to four SBDs per functional transporter complex. We have determined the crystal structures and ligand-binding properties of the SBDs of GlnPQ from Enterococcus faecalis, Streptococcus pneumoniae, and Lactococcus lactis. The tandem SBDs differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. The combined structural, functional, and thermodynamic analysis revealed the roles of individual residues in determining the substrate affinity. We succeeded in converting a low-affinity SBD into a high-affinity receptor and vice versa. Our data indicate that a small number of residues that reside in the binding pocket constitute the major affinity determinants of the SBDs.
Collapse
Affiliation(s)
- Faizah Fulyani
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
ATP-binding cassette (ABC) transporters couple the translocation of solutes across membranes to ATP hydrolysis. Crystal structures of the Escherichia coli maltose importer (MalFGK2) in complex with its substrate binding protein (MalE) provided unprecedented insights in the mechanism of substrate translocation, leaving the MalE-transporter interactions still poorly understood. Using pulsed EPR and cross-linking methods we investigated the effects of maltose and MalE on complex formation and correlated motions of the MalK2 nucleotide-binding domains (NBDs). We found that both substrate-free (open) and liganded (closed) MalE interact with the transporter with similar affinity in all nucleotide states. In the apo-state, binding of open MalE occurs via the N-lobe, leaving the C-lobe disordered, but upon maltose binding, closed MalE associates tighter to the transporter. In both cases the NBDs remain open. In the presence of ATP, the transporter binds both substrate-free and liganded MalE, both inducing the outward-facing conformation trapped in the crystal with open MalE at the periplasmic side and NBDs tightly closed. In contrast to ATP, ADP-Mg(2+) alone is sufficient to induce a semiopen conformation in the NBDs. In this nucleotide-driven state, the transporter binds both open and closed MalE with slightly different periplasmic configurations. We also found that dissociation of MalE is not a required step for substrate translocation since a supercomplex with MalE cross-linked to MalG retains the ability to hydrolyze ATP and to transport maltose. These features of MalE-MalFGK2 interactions highlight the conformational plasticity of the maltose importer, providing insights into the ATPase stimulation by unliganded MalE.
Collapse
|
83
|
Jones PM, George AM. Mechanism of the ABC transporter ATPase domains: catalytic models and the biochemical and biophysical record. Crit Rev Biochem Mol Biol 2012; 48:39-50. [PMID: 23131203 DOI: 10.3109/10409238.2012.735644] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ABC transporters comprise a large, diverse, and ubiquitous superfamily of membrane active transporters. Their core architecture is a dimer of dimers, comprising two transmembrane domains that bind substrate and form the channel, and two ATP-binding cassettes, which bind and hydrolyze ATP to energize the translocase function. The prevailing paradigm for the ABC transport mechanism is the Switch Model, in which the nucleotide binding domains are proposed to dimerise upon binding of two ATP molecules, and thence dissociate upon sequential hydrolysis of the ATP. This idea appears consistent with crystal structures of both isolated subunits and whole transporters, as well as with a significant body of biochemical data. Nonetheless, an alternative Constant Contact Model has been proposed, in which the nucleotide binding domains do not fully dissociate, and ATP hydrolysis occurs alternately at each of the two active sites. Here, we review the biochemical and biophysical data relating to the ABC catalytic mechanism, to show how they may be construed as consistent with a Constant Contact Model, and to assess to what extent they support the Switch Model.
Collapse
Affiliation(s)
- Peter M Jones
- School of Medical and Molecular Biosciences, University of Technology Sydney, Broadway, NSW, Australia
| | | |
Collapse
|
84
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-42. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
85
|
Roston RL, Gao J, Murcha MW, Whelan J, Benning C. TGD1, -2, and -3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem 2012; 287:21406-15. [PMID: 22544736 PMCID: PMC3375562 DOI: 10.1074/jbc.m112.370213] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/27/2012] [Indexed: 11/06/2022] Open
Abstract
Members of the ATP-binding cassette (ABC) transporter family are essential proteins in species as diverse as archaea and humans. Their domain architecture has remained relatively fixed across these species, with rare exceptions. Here, we show one exception to be the trigalactosyldiacylglycerol 1, 2, and 3 (TGD1, -2, and -3) putative lipid transporter located at the chloroplast inner envelope membrane. TGD2 was previously shown to be in a complex of >500 kDa. We demonstrate that this complex also contains TGD1 and -3 and is very stable because it cannot be broken down by gentle denaturants to form a "core" complex similar in size to standard ABC transporters. The complex was purified from Pisum sativum (pea) chloroplast envelopes by native gel electrophoresis and examined by mass spectrometry. Identified proteins besides TGD1, -2, or -3 included a potassium efflux antiporter and a TIM17/22/23 family protein, but these were shown to be in separate high molecular mass complexes. Quantification of the complex components explained the size of the complex because 8-12 copies of the substrate-binding protein (TGD2) were found per functional transporter.
Collapse
Affiliation(s)
- Rebecca L. Roston
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Jinpeng Gao
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Monika W. Murcha
- the Australian Research Council Centre of Excellence Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - James Whelan
- the Australian Research Council Centre of Excellence Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Christoph Benning
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
86
|
Gul N, Schuurman-Wolters G, Karasawa A, Poolman B. Functional Characterization of Amphipathic α-Helix in the Osmoregulatory ABC Transporter OpuA. Biochemistry 2012; 51:5142-52. [DOI: 10.1021/bi300451a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nadia Gul
- Department of Biochemistry,
Groningen Biomolecular
Science and Biotechnology Institute, Netherlands Proteomics Centre
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry,
Groningen Biomolecular
Science and Biotechnology Institute, Netherlands Proteomics Centre
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Akira Karasawa
- Department of Biochemistry,
Groningen Biomolecular
Science and Biotechnology Institute, Netherlands Proteomics Centre
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry,
Groningen Biomolecular
Science and Biotechnology Institute, Netherlands Proteomics Centre
and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
87
|
Abstract
The bacterial ABC (ATP-binding cassette) importers mediate nutrient uptake and some are essential for survival in environments where nutrients are limited, such as in the human body. Although ABC importers exhibit remarkable versatility in the substrates that they can transport, they appear to share a similar multisubunit architecture and mechanism of energization by ATP hydrolysis. This chapter will provide both basic understanding and up-to-date information on the structure, mechanism and regulation of this important family of proteins.
Collapse
|
88
|
Park SH, Chang JE, Hawkes HJK, Kang YH, Hwang KY. Structural analysis and serological test of arginine periplasmic binding protein 2 from Chlamydophila pneumoniae. Biochem Biophys Res Commun 2012; 418:518-24. [PMID: 22285188 DOI: 10.1016/j.bbrc.2012.01.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
The 'art' genes encode specific arginine uptake proteins, and are repressed by the repressible promoters of ArgR, affecting transcription of artJ. Cpb0502, the arginine-binding periplasmic protein 2 precursor from Chlamydophila pneumoniae TW-183 strains, is responsible for arginine transport. As C. pneumoniae is difficult to isolate and culture, there have been many studies of better ways to detect it. A microimmunofluorescence assay (MIF) is still considered to be the 'gold standard' for detecting C. pneumoniae. Although MIF has its own limitations, a number of immunogenic antigens have been shown to be C. pneumoniae specific by this test. Here, we report Cpb0502 as a specific immunogenic antigen against C. pneumoniae as it was detected only in human infection sera of C. pneumoniae but not in Legionella pneumophila and Mycoplasma pneumoniae infection sera, showing high specificity and sensitivity by MIF, western blot and ELISA analysis. And also the crystal structure of Cpb0502 was determined to be a dimer at 2.07Å, revealing a similar backbone structure to a histidine kinase receptor, HK29S. Therefore we may suggest that Cpb0502 is a candidate immunogenic antigen for better diagnosis of C. pneumoniae.
Collapse
Affiliation(s)
- Sung-Ha Park
- Graduate School of Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
89
|
Vergauwen B, Van der Meeren R, Dansercoer A, Savvides SN. Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins. BMC BIOCHEMISTRY 2011; 12:59. [PMID: 22087650 PMCID: PMC3295651 DOI: 10.1186/1471-2091-12-59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/16/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA), and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences. RESULTS Lipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal structure of one of the GbpA family outliers from H. parasuis. Comparisons thereof with the previously determined structure of GbpA in complex with oxidized glutathione reveals the structural basis for the lack of allocrite binding capacity, thereby explaining the outlier behavior. CONCLUSIONS Taken together, our studies provide for the first time a collective functional look on a novel, Pasteurellaceae-specific, SBP subfamily of glutathione binding proteins, which we now term GbpA proteins. Our studies strongly implicate GbpA family SBPs in the priming step of ABC-transporter-mediated translocation of useful forms of glutathione across the inner membrane, and rule out a general role for GbpA proteins in heme acquisition.
Collapse
Affiliation(s)
- Bjorn Vergauwen
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
90
|
Chu BCH, Vogel HJ. A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol Chem 2011; 392:39-52. [PMID: 21194366 DOI: 10.1515/bc.2011.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Escherichia coli the Fhu, Fep and Fec transport systems are involved in the uptake of chelated ferric iron-siderophore complexes, whereas in pathogenic strains heme can also be used as an iron source. An essential step in these pathways is the movement of the ferric-siderophore complex or heme from the outer membrane transporter across the periplasm to the cognate cytoplasmic membrane ATP-dependent transporter. This is accomplished in each case by a dedicated periplasmic binding protein (PBP). Ferric-siderophore binding PBPs belong to the PBP protein superfamily and adopt a bilobal type III structural fold in which the two independently folded amino and carboxy terminal domains are linked together by a single long α-helix of approximately 20 amino acids. Recent structural studies reveal how the PBPs of the Fhu, Fep, Fec and Chu systems are able to bind their corresponding ligands. These complex structures will be discussed and placed in the context of our current understanding of the entire type III family of Gram-negative periplasmic binding proteins and related Gram-positive substrate binding proteins.
Collapse
Affiliation(s)
- Byron C H Chu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
91
|
Insight into the interaction of metal ions with TroA from Streptococcus suis. PLoS One 2011; 6:e19510. [PMID: 21611125 PMCID: PMC3097204 DOI: 10.1371/journal.pone.0019510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/31/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn(2+) and Mn(2+). Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn(2+) and Mn(2+) induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn(2+)/Mn(2+) bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein. CONCLUSIONS/SIGNIFICANCE Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport.
Collapse
|
92
|
Schneider E, Eckey V, Weidlich D, Wiesemann N, Vahedi-Faridi A, Thaben P, Saenger W. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes. Eur J Cell Biol 2011; 91:311-7. [PMID: 21561685 DOI: 10.1016/j.ejcb.2011.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Erwin Schneider
- Institut für Biologie, AG Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that has a 38-kb gene cluster for the utilization of arabinan, a branched polysaccharide that is part of the plant cell wall. The bacterium encodes a unique three-component regulatory system (araPST) that includes a sugar-binding lipoprotein (AraP), a histidine sensor kinase (AraS), and a response regulator (AraT) and lies adjacent to an ATP-binding cassette (ABC) arabinose transport system (araEGH). The lipoprotein (AraP) specifically bound arabinose, and gel mobility shift experiments showed that the response regulator, AraT, binds to a 139-bp fragment corresponding to the araE promoter region. Taken together, the results showed that the araPST system appeared to sense extracellular arabinose and to activate a specific ABC transporter for arabinose (AraEGH). The promoter regions of the arabinan utilization genes contain a 14-bp inverted repeat motif resembling an operator site for the arabinose repressor, AraR. AraR was found to bind specifically to these sequences, and binding was efficiently prevented in the presence of arabinose, suggesting that arabinose is the molecular inducer of the arabinan utilization system. The expression of the arabinan utilization genes was reduced in the presence of glucose, indicating that regulation is also mediated via a catabolic repression mechanism. The cluster also encodes a second putative ABC sugar transporter (AbnEFJ) whose sugar-binding lipoprotein (AbnE) was shown to interact specifically with linear and branched arabino-oligosaccharides. The final degradation of the arabino-oligosaccharides is likely carried out by intracellular enzymes, including two α-l-arabinofuranosidases (AbfA and AbfB), a β-l-arabinopyranosidase (Abp), and an arabinanase (AbnB), all of which are encoded in the 38-kb cluster.
Collapse
|
94
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
95
|
Knöller AS, Murphy AS. ABC Transporters and Their Function at the Plasma Membrane. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
96
|
Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose. J Mol Biol 2010; 406:92-105. [PMID: 21168419 DOI: 10.1016/j.jmb.2010.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
Solute receptors (binding proteins) are indispensable components of canonical ATP-binding cassette importers in prokaryotes. Here, we report on the characterization and crystal structures in the closed and open conformations of AcbH, the solute receptor of the putative carbohydrate transporter AcbFG which is encoded in the acarbose (acarviosyl-1,4-maltose) biosynthetic gene cluster from Actinoplanes sp. SE50/110. Binding assays identified AcbH as a high-affinity monosaccharide-binding protein with a dissociation constant (K(d)) for β-d-galactopyranose of 9.8±1.0 nM. Neither galactose-containing di- and trisaccharides, such as lactose and raffinose, nor monosaccharides including d-galacturonic acid, l-arabinose, d-xylose and l-rhamnose competed with [(1)(4)C]galactose for binding to AcbH. Moreover, AcbH does not bind d-glucose, which is a common property of all but one d-galactose-binding proteins characterized to date. Strikingly, determination of the X-ray structure revealed that AcbH is structurally homologous to maltose-binding proteins rather than to glucose-binding proteins. Two helices are inserted in the substrate-binding pocket, which reduces the cavity size and allows the exclusive binding of monosaccharides, specifically β-d-galactopyranose, in the (4)C(1) conformation. Site-directed mutagenesis of three residues from the binding pocket (Arg82, Asp361 and Arg362) that interact with the axially oriented O4-H hydroxyl of the bound galactopyranose and subsequent functional analysis indicated that these residues are crucial for galactose binding. To our knowledge, this is the first report of the tertiary structure of a solute receptor with exclusive affinity for β-d-galactopyranose. The putative role of a galactose import system in the context of acarbose metabolism in Actinoplanes sp. is discussed.
Collapse
|
97
|
Krämer R. Bacterial stimulus perception and signal transduction: response to osmotic stress. CHEM REC 2010; 10:217-29. [PMID: 20607761 DOI: 10.1002/tcr.201000005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When exposed to osmotic stress from the environment, bacteria act to maintain cell turgor and hydration by responding both on the level of gene transcription and protein activity. Upon a sudden decrease in external osmolality, internal solutes are released by the action of membrane embedded mechanosensitive channels. In response to an osmotic upshift, the concentration of osmolytes in the cytoplasm is increased both by de novo synthesis and by active uptake. In order to coordinate these processes of osmoregulation, cells are equipped with systems and mechanisms of sensing physical stimuli correlated to changes in the external osmolality (osmosensing), with pathways to transduce these stimuli into useful signals which can be processed in the cell (signal transduction), and mechanisms of regulating proper responses in the cell to recover from the environmental stress and to maintain all necessary physiological functions (osmoregulation). These processes will be described by a number of representative examples, mainly of osmoreactive transport systems with a focus on available data of their molecular mechanism.
Collapse
Affiliation(s)
- Reinhard Krämer
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany.
| |
Collapse
|
98
|
Fang F, Christian WV, Gorman SG, Cui M, Huang J, Tieu K, Ballatori N. Neurosteroid transport by the organic solute transporter OSTα-OSTβ. J Neurochem 2010; 115:220-33. [PMID: 20649839 DOI: 10.1111/j.1471-4159.2010.06920.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of steroids, including pregnenolone sulfate (PREGS) and dehydroepiandrosterone sulfate (DHEAS) are synthesized by specific brain cells, and are then delivered to their target sites, where they exert potent effects on neuronal excitability. The present results demonstrate that [(3)H]DHEAS and [(3)H]PREGS are relatively high affinity substrates for the organic solute transporter, OSTα-OSTβ, and that the two proteins that constitute this transporter are selectively localized to steroidogenic cells in the cerebellum and hippocampus, namely the Purkinje cells and cells in the cornu ammonis region in both mouse and human brain. Analysis of Ostα and Ostβ mRNA levels in mouse Purkinje and hippocampal cells isolated via laser capture microdissection supported these findings. In addition, Ostα-deficient mice exhibited changes in serum DHEA and DHEAS levels, and in tissue distribution of administered [(3)H]DHEAS. OSTα and OSTβ proteins were also localized to the zona reticularis of human adrenal gland, the major region for DHEAS production in the periphery. These results demonstrate that OSTα-OSTβ is localized to steroidogenic cells of the brain and adrenal gland, and that it modulates DHEA/DHEAS homeostasis, suggesting that it may contribute to neurosteroid action.
Collapse
Affiliation(s)
- Fang Fang
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
A structural classification of substrate-binding proteins. FEBS Lett 2010; 584:2606-17. [DOI: 10.1016/j.febslet.2010.04.043] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/22/2022]
|
100
|
A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus. J Bacteriol 2010; 192:3123-31. [PMID: 20382765 DOI: 10.1128/jb.01414-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SSO1273 of Sulfolobus solfataricus was identified as a cell surface-bound protein by a proteomics approach. Sequence inspection of the genome revealed that the open reading frame of sso1273 is associated in an operon-like structure with genes encoding all the remaining components of a canonical protein-dependent ATP-binding cassette (ABC) transporter. sso1273 gene expression and SSO1273 protein accumulation on the cell surface were demonstrated to be strongly induced by the addition of a peptide mixture (tryptone) to the culture medium. The native protein was obtained in multimeric form, mostly hexameric, under the purification conditions used, and it was characterized as an oligopeptide binding protein, named S. solfataricus OppA (OppA(Ss)). OppaA(Ss) possesses typical sequence patterns required for glycosylphosphatidylinositol lipid anchoring, resulting in an N-linked glycoprotein with carbohydrate moieties likely composed of high mannose and/or hybrid complex carbohydrates. OppA(Ss) specifically binds oligopeptides and shows a marked selectivity for the amino acid composition of substrates when assayed in complex peptide mixtures. Moreover, a truncated version of OppA(Ss), produced in recombinant form and including the putative binding domain, showed a low but significant oligopeptide binding activity.
Collapse
|