51
|
Zabrocka E, Wegrzyn K, Konieczny I. Two replication initiators - one mechanism for replication origin opening? Plasmid 2014; 76:72-8. [PMID: 25454070 DOI: 10.1016/j.plasmid.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022]
Abstract
DNA replication initiation has been well-characterized; however, studies in the past few years have shown that there are still important discoveries to be made. Recent publications concerning the bacterial DnaA protein have revealed how this replication initiator, via interaction with specific sequences within the origin region, causes local destabilization of double stranded DNA. Observations made in the context of this bacterial initiator have also been converging with those recently made for plasmid Rep proteins. In this mini review we discuss the relevance of new findings for the RK2 plasmid replication initiator, TrfA, with regard to new data on the structure of complexes formed by the chromosomal replication initiator DnaA. We discuss structure-function relationships of replication initiation proteins.
Collapse
Affiliation(s)
- Elzbieta Zabrocka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| |
Collapse
|
52
|
Tognetti S, Riera A, Speck C. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated. Chromosoma 2014; 124:13-26. [PMID: 25308420 DOI: 10.1007/s00412-014-0489-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022]
Abstract
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Collapse
Affiliation(s)
- Silvia Tognetti
- DNA Replication Group, Institute of Clinical Science, Imperial College, London, W12 0NN, UK
| | | | | |
Collapse
|
53
|
Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol 2014; 30:104-9. [PMID: 24637008 DOI: 10.1016/j.semcdb.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Abstract
A central step in eukaryotic initiation of DNA replication is the loading of the helicase at replication origins, misregulation of this reaction leads to DNA damage and genome instability. Here we discuss how the helicase becomes recruited to origins and loaded into a double-hexamer around double-stranded DNA. We specifically describe the individual steps in complex assembly and explain how this process is regulated to maintain genome stability. Structural analysis of the helicase loader and the helicase has provided key insights into the process of double-hexamer formation. A structural comparison of the bacterial and eukaryotic system suggests a mechanism of helicase loading.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
54
|
Donczew R, Mielke T, Jaworski P, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Assembly of Helicobacter pylori initiation complex is determined by sequence-specific and topology-sensitive DnaA-oriC interactions. J Mol Biol 2014; 426:2769-82. [PMID: 24862285 DOI: 10.1016/j.jmb.2014.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2-DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator-origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
| | - Paweł Jaworski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland; University of Wrocław, Faculty of Biotechnology, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
55
|
Wegrzyn K, Fuentes-Perez ME, Bury K, Rajewska M, Moreno-Herrero F, Konieczny I. Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin. Nucleic Acids Res 2014; 42:7807-18. [PMID: 24838560 PMCID: PMC4081077 DOI: 10.1093/nar/gku453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The DNA unwinding element (DUE) is a sequence rich in adenine and thymine residues present within the origin region of both prokaryotic and eukaryotic replicons. Recently, it has been shown that this is the site where bacterial DnaA proteins, the chromosomal replication initiators, form a specific nucleoprotein filament. DnaA proteins contain a DNA binding domain (DBD) and belong to the family of origin binding proteins (OBPs). To date there has been no data on whether OBPs structurally different from DnaA can form nucleoprotein complexes within the DUE. In this work we demonstrate that plasmid Rep proteins, composed of two Winged Helix domains, distinct from the DBD, specifically bind to one of the strands of ssDNA within the DUE. We observed nucleoprotein complexes formed by these Rep proteins, involving both dsDNA containing the Rep-binding sites (iterons) and the strand-specific ssDNA of the DUE. Formation of these complexes required the presence of all repeated sequence elements located within the DUE. Any changes in these repeated sequences resulted in the disturbance in Rep-ssDNA DUE complex formation and the lack of origin replication activity in vivo or in vitro.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | - Maria Eugenia Fuentes-Perez
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | - Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| |
Collapse
|
56
|
Kaur G, Vora MP, Czerwonka CA, Rozgaja TA, Grimwade JE, Leonard AC. Building the bacterial orisome: high-affinity DnaA recognition plays a role in setting the conformation of oriC DNA. Mol Microbiol 2014; 91:1148-63. [PMID: 24443848 DOI: 10.1111/mmi.12525] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Abstract
During assembly of the E. coli pre-replicative complex (pre-RC), initiator DnaA oligomers are nucleated from three widely separated high-affinity DnaA recognition sites in oriC. Oligomer assembly is then guided by low-affinity DnaA recognition sites, but is also regulated by a switch-like conformational change in oriC mediated by sequential binding of two DNA bending proteins, Fis and IHF, serving as inhibitor and activator respectively. Although their recognition sites are separated by up to 90 bp, Fis represses IHF binding and weak DnaA interactions until accumulating DnaA displaces Fis from oriC. It remains unclear whether high-affinity DnaA binding plays any role in Fis repression at a distance and it is also not known whether all high-affinity DnaA recognition sites play an equivalent role in oligomer formation. To examine these issues, we developed origin-selective recombineering methods to mutate E. coli chromosomal oriC. We found that, although oligomers were assembled in the absence of any individual high-affinity DnaA binding site, loss of DnaA binding at peripheral sites eliminated Fis repression, and made binding of both Fis and IHF essential. We propose a model in which interaction of DnaA molecules at high-affinity sites regulates oriC DNA conformation.
Collapse
Affiliation(s)
- Gulpreet Kaur
- Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | | | | | | | | | | |
Collapse
|
57
|
Flåtten I, Skarstad K. The Fis protein has a stimulating role in initiation of replication in Escherichia coli in vivo. PLoS One 2013; 8:e83562. [PMID: 24358293 PMCID: PMC3865182 DOI: 10.1371/journal.pone.0083562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022] Open
Abstract
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radiumhospital, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
58
|
Lin Y, Li J, Yao J, Liang Y, Zhang J, Zhou Q, Jiang G. Mechanism of gold nanoparticle induced simultaneously increased PCR efficiency and specificity. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6080-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
59
|
Maj A, Dziewit L, Czarnecki J, Wlodarczyk M, Baj J, Skrzypczyk G, Giersz D, Bartosik D. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria) - structure, diversity and evolution. PLoS One 2013; 8:e80258. [PMID: 24260361 PMCID: PMC3832669 DOI: 10.1371/journal.pone.0080258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria. The composition of the plasmid genomes revealed frequent transfer of chromosomal genes into plasmids, which significantly enriches the pool of mobile DNA that can participate in lateral transfer. Many strains of Paracoccus spp. have great biotechnological potential, and the plasmid vectors constructed in this study will facilitate genetic studies of these bacteria.
Collapse
Affiliation(s)
- Anna Maj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Scholefield G, Murray H. YabA and DnaD inhibit helix assembly of the DNA replication initiation protein DnaA. Mol Microbiol 2013; 90:147-59. [PMID: 23909787 DOI: 10.1111/mmi.12353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Control of DNA replication initiation is essential for cell growth. A unifying characteristic of DNA replication initiator proteins is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains to form an active initiation complex. Recently we developed a unique cross-linking assay that specifically detects ATP-dependent DnaA helix assembly. Here we have utilized this assay to show that two DnaA regulatory proteins in Bacillus subtilis, YabA and DnaD, inhibit DnaA helix formation. These results, in combination with our previous finding that the regulatory factor Soj/ParA also targets DnaA filament formation, highlight the critical importance of regulating DnaA helix formation during the initiation reaction. Moreover, these observations lead us to suggest that DnaA oligomerization may be the main regulatory step of the initiator assembly pathway in B. subtilis, in contrast to the prevailing model of bacterial DNA replication based on Escherichia coli DnaA where ATP binding appears to be the targeted activity.
Collapse
Affiliation(s)
- Graham Scholefield
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | | |
Collapse
|
61
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. AdpA, key regulator for morphological differentiation regulates bacterial chromosome replication. Open Biol 2013; 2:120097. [PMID: 22870392 PMCID: PMC3411110 DOI: 10.1098/rsob.120097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022] Open
Abstract
AdpA, one of the most pleiotropic transcription regulators in bacteria, controls expression of several dozen genes during Streptomyces differentiation. Here, we report a novel function for the AdpA protein: inhibitor of chromosome replication at the initiation stage. AdpA specifically recognizes the 5′ region of the Streptomyces coelicolor replication origin (oriC). Our in vitro results show that binding of AdpA protein decreased access of initiator protein (DnaA) to the oriC region. We also found that mutation of AdpA-binding sequences increased the accessibility of oriC to DnaA, which led to more frequent replication and acceleration of Streptomyces differentiation (at the stage of aerial hyphae formation). Moreover, we also provide evidence that AdpA and DnaA proteins compete for oriC binding in an ATP-dependent manner, with low ATP levels causing preferential binding of AdpA, and high ATP levels causing dissociation of AdpA and association of DnaA. This would be consistent with a role for ATP levels in determining when aerial hyphae emerge.
Collapse
Affiliation(s)
- Marcin Wolański
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53114 Wrocław, Poland
| | | | | |
Collapse
|
62
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
63
|
Abstract
The initiation of DNA replication represents a committing step to cell proliferation. Appropriate replication onset depends on multiprotein complexes that help properly distinguish origin regions, generate nascent replication bubbles, and promote replisome formation. This review describes initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and contrasting molecular mechanisms among organisms. Although commonalities can be found in the functional domains and strategies used to carry out and regulate initiation, many key participants have markedly different activities and appear to have evolved convergently. Despite significant advances in the field, major questions still persist in understanding how initiation programs are executed at the molecular level.
Collapse
Affiliation(s)
- Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Hertfordshire, EN6 3LD United Kingdom
| | - Iris V. Hood
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| |
Collapse
|
64
|
Abstract
Helicases are fundamental components of all replication complexes since unwinding of the double-stranded template to generate single-stranded DNA is essential to direct DNA synthesis by polymerases. However, helicases are also required in many other steps of DNA replication. Replicative helicases not only unwind the template DNA but also play key roles in regulating priming of DNA synthesis and coordination of leading and lagging strand DNA polymerases. Accessory helicases also aid replicative helicases in unwinding of the template strands in the presence of proteins bound to the DNA, minimising the risks posed by nucleoprotein complexes to continued fork movement. Helicases also play critical roles in Okazaki fragment processing in eukaryotes and may also be needed to minimise topological problems when replication forks converge. Thus fork movement, coordination of DNA synthesis, lagging strand maturation and termination of replication all depend on helicases. Moreover, if disaster strikes and a replication fork breaks down then reloading of the replication machinery is effected by helicases, at least in bacteria. This chapter describes how helicases function in these multiple steps at the fork and how DNA unwinding is coordinated with other catalytic processes to ensure efficient, high fidelity duplication of the genetic material in all organisms.
Collapse
Affiliation(s)
- Peter McGlynn
- Department of Biology, University of York, York, Yorkshire, UK,
| |
Collapse
|
65
|
Zhang Q, Shi H. Coupling chromosomal replication to cell growth by the initiator protein DnaA in Escherichia coli. J Theor Biol 2012; 314:164-72. [DOI: 10.1016/j.jtbi.2012.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
66
|
Ozaki S, Noguchi Y, Hayashi Y, Miyazaki E, Katayama T. Differentiation of the DnaA-oriC subcomplex for DNA unwinding in a replication initiation complex. J Biol Chem 2012; 287:37458-71. [PMID: 22942281 DOI: 10.1074/jbc.m112.372052] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, ATP-DnaA multimers formed on the replication origin oriC promote duplex unwinding, which leads to helicase loading. Based on a detailed functional analysis of the oriC sequence motifs, we previously proposed that the left half of oriC forms an ATP-DnaA subcomplex competent for oriC unwinding, whereas the right half of oriC forms a distinct ATP-DnaA subcomplex that facilitates helicase loading. However, the molecular basis for the functional difference between these ATP-DnaA subcomplexes remains unclear. By analyzing a series of novel DnaA mutants, we found that structurally distinct DnaA multimers form on each half of oriC. DnaA AAA+ domain residues Arg-227 and Leu-290 are specifically required for oriC unwinding. Notably, these residues are required for the ATP-DnaA-specific structure of DnaA multimers in complex with the left half of oriC but not for that with the right half. These results support the idea that the ATP-DnaA multimers formed on oriC are not uniform and that they can adopt different conformations. Based on a structural model, we propose that Arg-227 and Leu-290 play a crucial role in inter-ATP-DnaA interaction and are a prerequisite for the formation of unwinding-competent DnaA subcomplexes on the left half of oriC. These residues are not required for the interaction with DnaB, nucleotide binding, or regulatory DnaA-ATP hydrolysis, which further supports their important role in inter-DnaA interaction. The corresponding residues are evolutionarily conserved and are required for unwinding in the initial complexes of Thermotoga maritima, an ancient hyperthermophile. Therefore, our findings suggest a novel and common mechanism for ATP-DnaA-dependent activation of initial complexes.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
67
|
Zorman S, Seitz H, Sclavi B, Strick TR. Topological characterization of the DnaA-oriC complex using single-molecule nanomanipuation. Nucleic Acids Res 2012; 40:7375-83. [PMID: 22581769 PMCID: PMC3424547 DOI: 10.1093/nar/gks371] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In most bacteria, the timing and synchrony of initiation of chromosomal replication are determined by the binding of the AAA+ protein DnaA to a set of high- and low-affinity sites found within the origin of chromosomal replication (oriC). Despite the large amount of information on the role and regulation of DnaA, the actual structure of the DnaA–oriC complex and the mechanism by which it primes the origin for the initiation of replication remain unclear. In this study, we have performed magnetic tweezers experiments to investigate the structural properties of the DnaA–oriC complex. We show that the DnaA-ATP–oriC complex adopts a right-handed helical conformation involving a variable amount of DNA and protein whose features fit qualitatively as well as quantitatively with an existing model based on the crystal structure of a truncated DnaA tetramer obtained in the absence of DNA. We also investigate the topological effect of oriC’s DNA unwinding element.
Collapse
Affiliation(s)
- Sylvain Zorman
- Institut Jacques Monod, CN RS UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | | | | |
Collapse
|
68
|
Ozaki S, Noguchi Y, Nishimura M, Katayama T. Stable nucleotide binding to DnaA requires a specific glutamic acid residue within the AAA+ box II motif. J Struct Biol 2012; 179:242-50. [PMID: 22579783 DOI: 10.1016/j.jsb.2012.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/28/2012] [Accepted: 05/01/2012] [Indexed: 11/28/2022]
Abstract
In complex with ATP, but not ADP, DnaA protein multimers unwind a specific region of duplex DNA within the chromosomal replication origin, oriC, triggering a series of reactions that result in initiation of DNA replication. Following replication initiation, ATP hydrolysis, which is coupled to DNA replication, results in the generation of initiation-incompetent ADP-DnaA. Suppression of overinitiation of replication requires that ADP-DnaA complexes be stably maintained until the next round of replication. Thus, the functional and structural requirements that ensure stable nucleotide binding to DnaA are crucial for proper regulation of replication. Here, we demonstrate that Glu143 of DnaA, located within the AAA+ box II N-linker motif, is a key residue involved in stable nucleotide binding. A Glu143 substitution variant of DnaA (DnaA E143A) bound to ADP on ice with an affinity similar to wild-type DnaA, but the resultant ADP-DnaA E143A complex was more labile at 37 °C than wild-type ADP-DnaA complexes. Consistent with this, conversion of ADP-DnaA E143A to ATP-DnaA E143A was stimulated at 37°C in the presence of ATP, which also stimulated replication of a minichromosome in an in vitro reconstitution reaction. Expression of DnaA E143A in vivo inhibited cell growth in an oriC-dependent manner, suggesting that DnaA E143A caused over-initiation of replication, consistent with the in vitro results. Glu is a highly conserved residue at the corresponding position of γ-proteobacterial DnaA orthologs. Our finding of the novel role for the DnaA N-linker region may represent a conserved function of this motif among those DnaA orthologs.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
69
|
Scholefield G, Errington J, Murray H. Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO J 2012; 31:1542-55. [PMID: 22286949 DOI: 10.1038/emboj.2012.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022] Open
Abstract
Control of DNA replication initiation is essential for normal cell growth. A unifying characteristic of DNA replication initiator proteins across the kingdoms of life is their distinctive AAA+ nucleotide-binding domains. The bacterial initiator DnaA assembles into a right-handed helical oligomer built upon interactions between neighbouring AAA+ domains, that in vitro stretches DNA to promote replication origin opening. The Bacillus subtilis protein Soj/ParA has previously been shown to regulate DnaA-dependent DNA replication initiation; however, the mechanism underlying this control was unknown. Here, we report that Soj directly interacts with the AAA+ domain of DnaA and specifically regulates DnaA helix assembly. We also provide critical biochemical evidence indicating that DnaA assembles into a helical oligomer in vivo and that the frequency of replication initiation correlates with the extent of DnaA oligomer formation. This work defines a significant new regulatory mechanism for the control of DNA replication initiation in bacteria.
Collapse
Affiliation(s)
- Graham Scholefield
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | | |
Collapse
|
70
|
Leonard AC, Grimwade JE. Regulation of DnaA assembly and activity: taking directions from the genome. Annu Rev Microbiol 2012; 65:19-35. [PMID: 21639790 DOI: 10.1146/annurev-micro-090110-102934] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To ensure proper timing of chromosome duplication during the cell cycle, bacteria must carefully regulate the activity of initiator protein DnaA and its interactions with the unique replication origin oriC. Although several protein regulators of DnaA are known, recent evidence suggests that DnaA recognition sites, in multiple genomic locations, also play an important role in controlling assembly of pre-replicative complexes. In oriC, closely spaced high- and low-affinity recognition sites direct DnaA-DnaA interactions and couple complex assembly to the availability of active DnaA-ATP. Additional recognition sites at loci distant from oriC modulate DnaA-ATP availability by repressing new synthesis, recharging inactive DnaA-ADP, or titrating DnaA. Relying on genomic DnaA binding sites, as well as protein regulators, to control DnaA function appears to provide the best combination of high precision and dynamic regulation necessary to couple DNA replication with cell growth over a range of nutritional conditions.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| | | |
Collapse
|
71
|
Grant MAA, Saggioro C, Ferrari U, Bassetti B, Sclavi B, Cosentino Lagomarsino M. DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate. BMC SYSTEMS BIOLOGY 2011; 5:201. [PMID: 22189092 PMCID: PMC3309966 DOI: 10.1186/1752-0509-5-201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
Background In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. Results In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. Conclusions We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.
Collapse
Affiliation(s)
- Matthew A A Grant
- BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | | | | | | | |
Collapse
|
72
|
Ozaki S, Katayama T. Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation. Nucleic Acids Res 2011; 40:1648-65. [PMID: 22053082 PMCID: PMC3287180 DOI: 10.1093/nar/gkr832] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, the replication origin oriC consists of two functional regions: the duplex unwinding element (DUE) and its flanking DnaA-assembly region (DAR). ATP-DnaA molecules multimerize on DAR, unwinding DUE for DnaB helicase loading. However, DUE-unwinding mechanisms and functional structures in DnaA–oriC complexes supporting those remain unclear. Here, using various in vitro reconstituted systems, we identify functionally distinct DnaA sub-complexes formed on DAR and reveal novel mechanisms in DUE unwinding. The DUE-flanking left-half DAR carrying high-affinity DnaA box R1 and the ATP-DnaA-preferential DnaA box R5, τ1-2 and I1-2 sites formed a DnaA sub-complex competent in DUE unwinding and ssDUE binding, thereby supporting basal DnaB loading activity. This sub-complex is further subdivided into two; the DUE-distal DnaA sub-complex formed on the ATP–DnaA-preferential sites binds ssDUE. Notably, the DUE-flanking, DnaA box R1–DnaA sub-complex recruits DUE to the DUE-distal DnaA sub-complex in concert with a DNA-bending nucleoid protein IHF, thereby promoting DUE unwinding and binding of ssDUE. The right-half DAR–DnaA sub-complex stimulated DnaB loading, consistent with in vivo analyses. Similar features are seen in DUE unwinding of the hyperthermophile, Thermotoga maritima, indicating evolutional conservation of those mechanisms.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
73
|
Duderstadt KE, Chuang K, Berger JM. DNA stretching by bacterial initiators promotes replication origin opening. Nature 2011; 478:209-13. [PMID: 21964332 PMCID: PMC3192921 DOI: 10.1038/nature10455] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/12/2011] [Indexed: 11/10/2022]
Abstract
Many replication initiators form higher-order oligomers that process host replication origins to promote replisome formation. In addition to dedicated duplex-DNA-binding domains, cellular initiators possess AAA+ (ATPases associated with various cellular activities) elements that drive functions ranging from protein assembly to origin recognition. In bacteria, the AAA+ domain of the initiator DnaA has been proposed to assist in single-stranded DNA formation during origin melting. Here we show crystallographically and in solution that the ATP-dependent assembly of Aquifex aeolicus DnaA into a spiral oligomer creates a continuous surface that allows successive AAA+ domains to bind and extend single-stranded DNA segments. The mechanism of binding is unexpectedly similar to that of RecA, a homologous recombination factor, but it differs in that DnaA promotes a nucleic acid conformation that prevents pairing of a complementary strand. These findings, combined with strand-displacement assays, indicate that DnaA opens replication origins by a direct ATP-dependent stretching mechanism. Comparative studies reveal notable commonalities between the approach used by DnaA to engage DNA substrates and other, nucleic-acid-dependent, AAA+ systems.
Collapse
Affiliation(s)
- Karl E. Duderstadt
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin Chuang
- Department of Molecular and Cell Biology, California Institute for Quantitative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James M. Berger
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, California Institute for Quantitative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
74
|
Merrikh H, Grossman AD. Control of the replication initiator DnaA by an anti-cooperativity factor. Mol Microbiol 2011; 82:434-46. [PMID: 21895792 DOI: 10.1111/j.1365-2958.2011.07821.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proper coordination of DNA replication with cell growth and division is critical for production of viable progeny. In bacteria, coordination of DNA replication with cell growth is generally achieved by controlling activity of the replication initiator DnaA and its access to the chromosomal origin of replication, oriC. Here we describe a previously unknown mechanism for regulation of DnaA. YabA, a negative regulator of replication initiation in Bacillus subtilis, interacts with DnaA and DnaN, the sliding (processivity) clamp of DNA polymerase. We found that in vivo, YabA associated with the oriC region in a DnaA-dependent manner and limited the amount of DnaA at oriC. In vitro, purified YabA altered binding of DnaA to DNA by inhibiting cooperativity. Although previously undescribed, proteins that directly inhibit cooperativity may be a common mechanism for regulating replication initiation. Conditions that cause release of DnaN from the replisome, or overproduction of DnaN, caused decreased association of YabA and increased association of DnaA with oriC. This effect of DnaN, either directly or indirectly, is likely responsible, in part, for enabling initiation of a new round of replication following completion of a previous round.
Collapse
Affiliation(s)
- Houra Merrikh
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
75
|
Rozgaja TA, Grimwade JE, Iqbal M, Czerwonka C, Vora M, Leonard AC. Two oppositely oriented arrays of low-affinity recognition sites in oriC guide progressive binding of DnaA during Escherichia coli pre-RC assembly. Mol Microbiol 2011; 82:475-88. [PMID: 21895796 DOI: 10.1111/j.1365-2958.2011.07827.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The onset of chromosomal DNA replication requires highly precise and reproducible interactions between initiator proteins and replication origins to assemble a pre-replicative complex (pre-RC) that unwinds the DNA duplex. In bacteria, initiator protein DnaA, bound to specific high- and low-affinity recognition sites within the unique oriC locus, comprises the pre-RC, but how complex assembly is choreographed to ensure precise initiation timing during the cell cycle is not well understood. In this study, we present evidence that higher-order DnaA structures are formed at oriC when DnaA monomers are closely positioned on the same face of the DNA helix by interaction with two oppositely oriented essential arrays of closely spaced low-affinity DnaA binding sites. As DnaA levels increase, peripheral high-affinity anchor sites begin cooperative loading of the arrays, which is extended by sequential binding of additional DnaA monomers resulting in growth of the complexes towards the centre of oriC. We suggest that this polarized assembly of unique DnaA oligomers within oriC plays an important role in mediating pre-RC activity and may be a feature found in all bacterial replication origins.
Collapse
Affiliation(s)
- Tania A Rozgaja
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | | | | | | | | | | |
Collapse
|
76
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
77
|
Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 2011; 15:606-13. [PMID: 21856207 DOI: 10.1016/j.cbpa.2011.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 11/24/2022]
Abstract
To initiate DNA replication, DnaA recognizes and binds to specific sequences within the Escherichia coli chromosomal origin (oriC), and then unwinds a region within oriC. Next, DnaA interacts with DnaB helicase in loading the DnaB-DnaC complex on each separated strand. Primer formation by primase (DnaG) induces the dissociation of DnaC from DnaB, which involves the hydrolysis of ATP bound to DnaC. Recent evidence indicates that DnaC acts as a checkpoint in the transition from initiation to the elongation stage of DNA replication. Freed from DnaC, DnaB helicase unwinds the parental duplex DNA while interacting the cellular replicase, DNA polymerase III holoenzyme, and primase as it intermittently forms primers that are extended by the replicase in duplicating the chromosome.
Collapse
|
78
|
Saxena R, Rozgaja T, Grimwade J, Crooke E. Remodeling of nucleoprotein complexes is independent of the nucleotide state of a mutant AAA+ protein. J Biol Chem 2011; 286:33770-7. [PMID: 21832063 DOI: 10.1074/jbc.m111.223495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA protein, a member of the AAA+ (ATPase associated with various cellular activities) family, initiates DNA synthesis at the chromosomal origin of replication (oriC) and regulates the transcription of several genes, including its own. The assembly of DnaA complexes at chromosomal recognition sequences is affected by the tight binding of ATP or ADP by DnaA. DnaA with a point mutation in its membrane-binding amphipathic helix, DnaA(L366K), previously described for its ability to support growth in cells with altered phospholipid content, has biochemical characteristics similar to those of the wild-type protein. Yet DnaA(L366K) fails to initiate in vitro or in vivo replication from oriC. We found here, through in vitro dimethyl sulfate footprinting and gel mobility shift assays, that DnaA(L366K) in either nucleotide state was unable to assemble into productive prereplication complexes. In contrast, at the dnaA promoter, both the ATP and the ADP form of DnaA(L366K) generated active nucleoprotein complexes that efficiently repressed transcription in a manner similar to wild-type ATP-DnaA. Thus, it appears that unlike wild-type DnaA protein DnaA(L366K) can adopt architectures that are independent of its bound nucleotide, and instead the locus determines the functionality of the higher order DnaA(L366K)-DNA complexes.
Collapse
Affiliation(s)
- Rahul Saxena
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
79
|
Charbon G, Riber L, Cohen M, Skovgaard O, Fujimitsu K, Katayama T, Løbner-Olesen A. Suppressors of DnaA(ATP) imposed overinitiation in Escherichia coli. Mol Microbiol 2010; 79:914-28. [PMID: 21299647 DOI: 10.1111/j.1365-2958.2010.07493.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaA(ATP) level. Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter and increased the SeqA protein level in the cell. hsm-1 cells had prolonged origin sequestration, reduced DnaA protein level and reduced DnaA-Reactivating Sequence (DARS)-mediated rejuvenation of DnaA(ADP) to DnaA(ATP) , all of which could contribute to the suppression of RIDA deficiency. Despite of these defects hsm-1 cells were quite similar to wild type with respect to cell cycle parameters. We speculate that since SeqA binding sites might overlap with DnaA binding sites spread throughout the chromosome, excess SeqA could interfere with DnaA titration and thereby increase free DnaA level. Thus, in spite of reduction in total DnaA, the amount of DnaA molecules available for initiation may not be reduced.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Science, Systems and Models, Roskilde University, Building 18.1, 4000 Roskilde, Denmark
| | | | | | | | | | | | | |
Collapse
|
80
|
Leonard AC, Grimwade JE. Regulating DnaA complex assembly: it is time to fill the gaps. Curr Opin Microbiol 2010; 13:766-72. [PMID: 21035377 PMCID: PMC3005629 DOI: 10.1016/j.mib.2010.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/27/2010] [Accepted: 10/02/2010] [Indexed: 11/25/2022]
Abstract
New rounds of bacterial chromosome replication are triggered during each cell division cycle by the initiator protein, DnaA. For precise timing, interactions of DnaA-ATP monomers with the replication origin, oriC, must be carefully regulated during formation of complexes that unwind origin DNA and load replicative helicase. Recent studies in Escherichia coli suggest that high and low affinity DnaA recognition sites are positioned within oriC to direct staged assembly of bacterial pre-replication complexes, with DnaA contacting low affinity sites as it oligomerizes to 'fill the gaps' between high affinity sites. The wide variability of oriC DnaA recognition site patterns seen in nature may reflect myriad gap-filling strategies needed to couple oriC function to the lifestyle of different bacterial types.
Collapse
Affiliation(s)
- Alan C. Leonard
- Department of Biological Sciences, 234 Olin Life Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Julia E. Grimwade
- Department of Biological Sciences, 235 Olin Life Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| |
Collapse
|
81
|
Johnsen L, Flåtten I, Morigen, Dalhus B, Bjørås M, Waldminghaus T, Skarstad K. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Mol Microbiol 2010; 79:433-46. [PMID: 21219462 DOI: 10.1111/j.1365-2958.2010.07453.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.
Collapse
Affiliation(s)
- Line Johnsen
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
82
|
Duderstadt KE, Mott ML, Crisona NJ, Chuang K, Yang H, Berger JM. Origin remodeling and opening in bacteria rely on distinct assembly states of the DnaA initiator. J Biol Chem 2010; 285:28229-39. [PMID: 20595381 DOI: 10.1074/jbc.m110.147975] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation of DNA replication requires the melting of chromosomal origins to provide a template for replisomal polymerases. In bacteria, the DnaA initiator plays a key role in this process, forming a large nucleoprotein complex that opens DNA through a complex and poorly understood mechanism. Using structure-guided mutagenesis, biochemical, and genetic approaches, we establish an unexpected link between the duplex DNA-binding domain of DnaA and the ability of the protein to both self-assemble and engage single-stranded DNA in an ATP-dependent manner. Intersubunit cross-talk between this domain and the DnaA ATPase region regulates this link and is required for both origin unwinding in vitro and initiator function in vivo. These findings indicate that DnaA utilizes at least two different oligomeric conformations for engaging single- and double-stranded DNA, and that these states play distinct roles in controlling the progression of initiation.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
83
|
Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation. J Bacteriol 2010; 192:3903-14. [PMID: 20511501 DOI: 10.1128/jb.00311-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We successfully substituted Escherichia coli's origin of replication oriC with the origin region of Vibrio cholerae chromosome I (oriCI(Vc)). Replication from oriCI(Vc) initiated at a similar or slightly reduced cell mass compared to that of normal E. coli oriC. With respect to sequestration-dependent synchrony of initiation and stimulation of initiation by the loss of Hda activity, replication initiation from oriC and oriCI(Vc) were similar. Since Hda is involved in the conversion of DnaA(ATP) (DnaA bound to ATP) to DnaA(ADP) (DnaA bound to ADP), this indicates that DnaA associated with ATP is limiting for V. cholerae chromosome I replication, which similar to what is observed for E. coli. No hda homologue has been identified in V. cholerae yet. In V. cholerae, dam is essential for viability, whereas in E. coli, dam mutants are viable. Replacement of E. coli oriC with oriCI(Vc) allowed us to specifically address the role of the Dam methyltransferase and SeqA in replication initiation from oriCI(Vc). We show that when E. coli's origin of replication is substituted by oriCI(Vc), dam, but not seqA, becomes important for growth, arguing that Dam methylation exerts a critical function at the origin of replication itself. We propose that Dam methylation promotes DnaA-assisted successful duplex opening and replisome assembly at oriCI(Vc) in E. coli. In this model, methylation at oriCI(Vc) would ease DNA melting. This is supported by the fact that the requirement for dam can be alleviated by increasing negative supercoiling of the chromosome through oversupply of the DNA gyrase or loss of SeqA activity.
Collapse
|
84
|
Sánchez-Romero MA, Busby SJW, Dyer NP, Ott S, Millard AD, Grainger DC. Dynamic distribution of seqa protein across the chromosome of escherichia coli K-12. mBio 2010; 1:e00012-10. [PMID: 20689753 PMCID: PMC2912659 DOI: 10.1128/mbio.00012-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 11/20/2022] Open
Abstract
The bacterial SeqA protein binds to hemi-methylated GATC sequences that arise in newly synthesized DNA upon passage of the replication machinery. In Escherichia coli K-12, the single replication origin oriC is a well-characterized target for SeqA, which binds to multiple hemi-methylated GATC sequences immediately after replication has initiated. This sequesters oriC, thereby preventing reinitiation of replication. However, the genome-wide DNA binding properties of SeqA are unknown, and hence, here, we describe a study of the binding of SeqA across the entire Escherichia coli K-12 chromosome, using chromatin immunoprecipitation in combination with DNA microarrays. Our data show that SeqA binding correlates with the frequency and spacing of GATC sequences across the entire genome. Less SeqA is found in highly transcribed regions, as well as in the ter macrodomain. Using synchronized cultures, we show that SeqA distribution differs with the cell cycle. SeqA remains bound to some targets after replication has ceased, and these targets locate to genes encoding factors involved in nucleotide metabolism, chromosome replication, and methyl transfer.
Collapse
Affiliation(s)
| | - Stephen J. W. Busby
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Nigel P. Dyer
- Systems Biology Centre, Coventry House, the University of Warwick, Coventry, United Kingdom; and
| | - Sascha Ott
- Systems Biology Centre, Coventry House, the University of Warwick, Coventry, United Kingdom; and
| | - Andrew D. Millard
- Department of Biological Sciences, the University of Warwick, Coventry, United Kingdom
| | - David C. Grainger
- Department of Biological Sciences, the University of Warwick, Coventry, United Kingdom
| |
Collapse
|
85
|
Olliver A, Saggioro C, Herrick J, Sclavi B. DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. Mol Microbiol 2010; 76:1555-71. [PMID: 20487274 DOI: 10.1111/j.1365-2958.2010.07185.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) is the bottleneck enzyme in the synthesis of dNTPs required for DNA replication. In order to avoid the mutagenic effects of imbalances in dNTPs the amount and activity of RNR enzyme in the cell is tightly regulated. RNR expression from the nrdAB operon is thus coupled to coincide with the initiation of DNA replication. However, the mechanism for the co-ordination of gene transcription and DNA replication remains to be elucidated. The timing and synchrony of DNA replication initiation in Escherichia coli is controlled in part by the binding of the DnaA protein to the origin of replication. DnaA is also a transcription factor of the nrdAB operon and could thus be the link between these two processes. Here we show that RNA polymerase can form a stable transcription initiation complex at the nrdAB promoter by direct interaction with the far upstream sites required for the timing of expression as a function of DNA replication. In addition, we show that the binding of DnaA on the promoter can either activate or repress transcription as a function of its concentration and its nucleotide-bound state. However, transcription regulation by DnaA does not significantly affect the timing of expression of RNR from the nrdAB operon.
Collapse
Affiliation(s)
- Anne Olliver
- LBPA, UMR 8113 du CNRS, ENS Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | |
Collapse
|
86
|
Smits WK, Goranov AI, Grossman AD. Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 2009; 75:452-61. [PMID: 19968790 DOI: 10.1111/j.1365-2958.2009.06999.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The essential proteins DnaB, DnaD and DnaI of Bacillus subtilis are required for initiation, but not elongation, of DNA replication, and for replication restart at stalled forks. The interactions and functions of these proteins have largely been determined in vitro based on their roles in replication restart. During replication initiation in vivo, it is not known if these proteins, and the replication initiator DnaA, associate with oriC independently of each other by virtue of their DNA binding activities, as a (sub)complex like other loader proteins, or in a particular dependent order. We used temperature-sensitive mutants or a conditional degradation system to inactivate each protein and test for association of the other proteins with oriC in vivo. We found that there was a clear order of stable association with oriC; DnaA, DnaD, DnaB, and finally DnaI-mediated loading of helicase. The loading of helicase via stable intermediates resembles that of eukaryotes and the established hierarchy provides several potential regulatory points. The general approach described here can be used to analyse assembly of other complexes.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
87
|
Stepankiw N, Kaidow A, Boye E, Bates D. The right half of the Escherichia coli replication origin is not essential for viability, but facilitates multi-forked replication. Mol Microbiol 2009; 74:467-79. [PMID: 19737351 DOI: 10.1111/j.1365-2958.2009.06877.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
88
|
Meyer R. Replication and conjugative mobilization of broad host-range IncQ plasmids. Plasmid 2009; 62:57-70. [PMID: 19465049 PMCID: PMC2752045 DOI: 10.1016/j.plasmid.2009.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/21/2022]
Abstract
The IncQ plasmids have a broader host-range than any other known replicating element in bacteria. Studies on the replication and conjugative mobilization of these plasmids, which have mostly been focused on the nearly identical RSF1010 and R1162, are summarized with a view to understanding how this broad host-range is achieved. Several significant features of IncQ plasmids emerge from these studies: (1) initiation of replication, involving DnaA-independent activation of the origin and a dedicated primase, is strictly host-independent. (2) The plasmids can be conjugatively mobilized by a variety of different type IV transporters, including those engaged in the secretion of proteins involved in pathogenesis. (3) Stability is insured by a combination of high copy-number and modulated gene expression to reduce metabolic load.
Collapse
Affiliation(s)
- Richard Meyer
- Institute for Cell and Molecular Biology, University of Texas at Austin, 78712-0162, USA.
| |
Collapse
|
89
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
90
|
Eisenberg S, Korza G, Carson J, Liachko I, Tye BK. Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae. J Biol Chem 2009; 284:25412-20. [PMID: 19605346 DOI: 10.1074/jbc.m109.033175] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mcm10 protein is essential for chromosomal DNA replication in eukaryotic cells. We purified the Saccharomyces cerevisiae Mcm10 (ScMcm10) and characterized its DNA binding properties. Electrophoretic mobility shift assays and surface plasmon resonance analysis showed that ScMcm10 binds stably to both double strand (ds) DNA and single strand (ss) DNA. On short DNA templates of 25 or 50 bp, surface plasmon resonance analysis showed a approximately 1:1 stoichiometry of ScMcm10 to dsDNA. On longer dsDNA templates, however, multiple copies of ScMcm10 cooperated in the rapid assembly of a large, stable nucleoprotein complex. The amount of protein bound was directly proportional to the length of the DNA, with an average occupancy spacing of 21-24 bp. This tight spacing is consistent with a nucleoprotein structure in which ScMcm10 is aligned along the helical axis of the dsDNA. In contrast, the stoichiometry of ScMcm10 bound to ssDNA of 20-50 nucleotides was approximately 3:1 suggesting that interaction with ssDNA induces the assembly of a multisubunit ScMcm10 complex composed of at least three subunits. The tight packing of ScMcm10 on dsDNA and the assembly of a multisubunit complex on ssDNA suggests that, in addition to protein-DNA, protein-protein interactions may be involved in forming the nucleoprotein complex. We propose that these DNA binding properties have an important role in (i) initiation of DNA replication and (ii) formation and maintenance of a stable replication fork during the elongation phase of chromosomal DNA replication.
Collapse
Affiliation(s)
- Shlomo Eisenberg
- Department of Molecular, Microbial, and Structural Biology, The University of Connecticut Medical School, Farmington, Connecticut 06030, USA.
| | | | | | | | | |
Collapse
|
91
|
Ozaki S, Katayama T. DnaA structure, function, and dynamics in the initiation at the chromosomal origin. Plasmid 2009; 62:71-82. [PMID: 19527752 DOI: 10.1016/j.plasmid.2009.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/06/2009] [Accepted: 06/08/2009] [Indexed: 01/13/2023]
Abstract
Escherichia coli DnaA is the initiator of chromosomal replication. Multiple ATP-DnaA molecules assemble at the oriC replication origin in a highly regulated manner, and the resultant initiation complexes promote local duplex unwinding within oriC, resulting in open complexes. DnaB helicase is loaded onto the unwound single-stranded region within oriC via interaction with the DnaA multimers. The tertiary structure of the functional domains of DnaA has been determined and several crucial residues in the initiation process, as well as their unique functions, have been identified. These include specific DNA binding, inter-DnaA interaction, specific and regulatory interactions with ATP and with the unwound single-stranded oriC DNA, and functional interaction with DnaB helicase. An overall structure of the initiation complex is also proposed. These are important for deepening our understanding of the molecular mechanisms that underlie DnaA assembly, oriC duplex unwinding, regulation of the initiation reaction, and DnaB helicase loading. In this review, we summarize recent progress on the molecular mechanisms of the functions of DnaA on oriC. In addition, some members of the AAA+ protein family related to the initiation of replication and its regulation (e.g., DnaA) are briefly discussed.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
92
|
Nozaki S, Yamada Y, Ogawa T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 2009; 14:329-41. [PMID: 19170757 DOI: 10.1111/j.1365-2443.2008.01269.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The initiation of replication in Escherichia coli is negatively controlled by a mechanism referred to as 'initiator titration', a process by which the initiator protein, DnaA, is titrated to newly replicated binding sequences on the chromosome to reduce the initiation potential for replication. Initiator titration occurs predominantly at the datA locus that binds exceptionally large amounts of DnaA molecules to prevent aberrant initiations. We found that this was enabled by integration host factor (IHF). Within datA, there is a consensus IHF recognition sequence between the two DnaA recognition sequences (DnaA boxes) essential for its function. Binding of IHF to this site was demonstrated both in vitro and in vivo. Disruption of the core sequence in the consensus of the IHF-binding resulted in increased origin concentration as observed in Delta datA cells. Furthermore, the number of DnaA molecules bound to datA was reduced in cells carrying a disruption in the IHF-binding core sequence. The IHF-binding site and the essential DnaA boxes had to be located at a proper distance and orientation to maintain the accurate initiation timing. Therefore, IHF is a unique element in the control of replication initiation that acts negatively at datA, while known to act as a positive regulator at oriC.
Collapse
Affiliation(s)
- Shingo Nozaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
93
|
Flåtten I, Morigen, Skarstad K. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol Microbiol 2008; 71:1018-30. [PMID: 19170875 DOI: 10.1111/j.1365-2958.2008.06585.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Escherichia coli DnaA protein forms an oligomer at the origin and initiates chromosome replication with the aid of architectural elements and transcription by RNA polymerase. Rifampicin inhibits initiation of transcription by RNA polymerase and thus also initiation of replication. Here, we report that wild-type cells undergo rifampicin-resistant initiation of replication during slow growth in acetate medium. The rifampicin-resistant initiation was prevented by reducing the availability of DnaA. In vitro experiments showed that the DnaA protein interacted with RNA polymerase and that it afforded a partial protection from the negative effect of rifampicin. It is possible that rifampicin-resistant rounds of replication occur when a surplus of DnaA is available at the origin. In rich medium wild-type cells do not exhibit rifampicin-resistant rounds of replication, possibly indicating that there is no surplus DnaA, and that DnaA activity is the factor limiting the process of initiation. During growth in acetate medium, on the contrary, DnaA activity is not limiting in the same way because an initiation potential is present and can be turned into extra rounds of replication when rifampicin is added. The result suggests that regulation of replication initiation may differ at different growth rates.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
94
|
Mott ML, Erzberger JP, Coons MM, Berger JM. Structural synergy and molecular crosstalk between bacterial helicase loaders and replication initiators. Cell 2008; 135:623-34. [PMID: 19013274 PMCID: PMC2610854 DOI: 10.1016/j.cell.2008.09.058] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 07/18/2008] [Accepted: 09/26/2008] [Indexed: 11/23/2022]
Abstract
The loading of oligomeric helicases onto replication origins marks an essential step in replisome assembly. In cells, dedicated AAA+ ATPases regulate loading, however, the mechanism by which these factors recruit and deposit helicases has remained unclear. To better understand this process, we determined the structure of the ATPase region of the bacterial helicase loader DnaC from Aquifex aeolicus to 2.7 A resolution. The structure shows that DnaC is a close paralog of the bacterial replication initiator, DnaA, and unexpectedly shares an ability to form a helical assembly similar to that of ATP-bound DnaA. Complementation and ssDNA-binding assays validate the importance of homomeric DnaC interactions, while pull-down experiments show that the DnaC and DnaA AAA+ domains interact in a nucleotide-dependent manner. These findings implicate DnaC as a molecular adaptor that uses ATP-activated DnaA as a docking site for regulating the recruitment and correct spatial deposition of the DnaB helicase onto origins.
Collapse
Affiliation(s)
- Melissa L Mott
- Quantitative Biosciences Institute, Molecular and Cell Biology Department, 374D Stanley Hall, #3220, University of California, Berkeley, CA 94720
| | - Jan P Erzberger
- Inst. f. Molekularbiologie u. Biophysik, ETH Zurich, Schafmattstr. 20, HPK H 13, CH-8093 Zürich
| | - Mary M Coons
- Quantitative Biosciences Institute, Molecular and Cell Biology Department, 374D Stanley Hall, #3220, University of California, Berkeley, CA 94720
| | - James M Berger
- Quantitative Biosciences Institute, Molecular and Cell Biology Department, 374D Stanley Hall, #3220, University of California, Berkeley, CA 94720
| |
Collapse
|
95
|
Riber L, Fujimitsu K, Katayama T, Løbner-Olesen A. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli. Mol Microbiol 2008; 71:107-22. [PMID: 19007419 DOI: 10.1111/j.1365-2958.2008.06516.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.
Collapse
Affiliation(s)
- Leise Riber
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
96
|
Kato JI. Regulatory Network of the Initiation of Chromosomal Replication inEscherichia coli. Crit Rev Biochem Mol Biol 2008; 40:331-42. [PMID: 16338685 DOI: 10.1080/10409230500366090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.
Collapse
Affiliation(s)
- Jun-ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan
| |
Collapse
|
97
|
Bach T, Morigen, Skarstad K. The initiator protein DnaA contributes to keeping new origins inactivated by promoting the presence of hemimethylated DNA. J Mol Biol 2008; 384:1076-85. [PMID: 18835566 DOI: 10.1016/j.jmb.2008.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/10/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
The Escherichia coli replication origin oriC and other regions with high numbers of GATC sites remain hemimethylated after replication much longer than regions with average numbers of GATC sites. The prolonged period of hemimethylation has been attributed to the presence of bound SeqA protein. Here, it was found that a GATC cluster inserted at the datA site, which binds large amounts of DnaA in vivo, did not become remethylated at all, unless the availability of the DnaA protein was severely reduced. Sequestration of oriC was also found to be affected by the availability of DnaA. The period of origin hemimethylation was reduced by approximately 30% upon a reduction in the availability of DnaA. The result shows that not only SeqA binding but also DnaA binding to newly replicated origins contributes to keeping them hemimethylated. It was also found that the number of SeqA foci increased in cells with a combination of DnaA-mediated protection and sequestration at the GATC::datA cluster.
Collapse
Affiliation(s)
- Trond Bach
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
98
|
Løbner-Olesen A, Slominska-Wojewodzka M, Hansen FG, Marinus MG. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes. PLoS One 2008; 3:e2984. [PMID: 18714349 PMCID: PMC2500167 DOI: 10.1371/journal.pone.0002984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 07/29/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. METHODOLOGY/PRINCIPAL FINDINGS DNA microarrays were used to measure mRNA steady-state levels in initiation-deficient dnaA46 and dnaC2 bacteria at permissive and non-permissive temperatures and their expression profiles were compared to MG1655 wildtype cells. For both mutants there was altered expression of genes involved in nucleotide biosynthesis at the non-permissive temperature. Transcription of the dnaA and dnaC genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non-permissive temperature had completed the early stages of chromosome replication initiation. CONCLUSION/SIGNIFICANCE We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart.
Collapse
Affiliation(s)
- Anders Løbner-Olesen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | | | - Flemming G. Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Martin G. Marinus
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
99
|
Specific mutations within the AT-rich region of a plasmid replication origin affect either origin opening or helicase loading. Proc Natl Acad Sci U S A 2008; 105:11134-9. [PMID: 18685104 DOI: 10.1073/pnas.0805662105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prokaryotic and eukaryotic replicons possess a distinctive region containing a higher than average number of adenine and thymine residues (the AT-rich region) where, during the process of replication initiation, the initial destabilization (opening) of the double helix takes place. In many prokaryotic origins, this region consists of repeated 13-mer motifs whose function has not yet been specified. Here we identify specific mutations within the 13-mer sequences of the broad-host-range plasmid RK2 that can result in defective origin opening or that do not affect opening but induce defects in helicase loading. We also show that after the initial recruitment of helicase at the DnaA-box sequences of the plasmid origin, the helicase is translocated to the AT-rich region in a reaction requiring specific sequence of the 13-mers and appropriate facing of the origin motifs. Our results demonstrate that specific sequences within the AT-rich region of a replication origin are required for either origin opening or helicase loading.
Collapse
|
100
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|