51
|
Sugihara F, Kasahara K, Kokubo T. Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 39:59-75. [PMID: 20805245 PMCID: PMC3017598 DOI: 10.1093/nar/gkq741] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, protein-coding genes are transcribed by RNA polymerase II (pol II) together with general transcription factors (GTFs). TFIID, the largest GTF composed of TATA element-binding protein (TBP) and 14 TBP-associated factors (TAFs), plays a critical role in transcription from TATA-less promoters. In metazoans, several core promoter elements other than the TATA element are thought to be recognition sites for TFIID. However, it is unclear whether functionally homologous elements also exist in TATA-less promoters in Saccharomyces cerevisiae. Here, we identify the cis-elements required to support normal levels of transcription and accurate initiation from sites within the TATA-less and TFIID-dependent RPS5 core promoter. Systematic mutational analyses show that multiple AT-rich sequences are required for these activities and appear to function as recognition sites for TFIID. A single copy of these sequences can support accurate initiation from the endogenous promoter, indicating that they carry highly redundant functions. These results show a novel architecture of yeast TATA-less promoters and support a model in which pol II scans DNA downstream from a recruited site, while searching for appropriate initiation site(s).
Collapse
Affiliation(s)
- Fuminori Sugihara
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | |
Collapse
|
52
|
Ohtsuki K, Kasahara K, Shirahige K, Kokubo T. Genome-wide localization analysis of a complete set of Tafs reveals a specific effect of the taf1 mutation on Taf2 occupancy and provides indirect evidence for different TFIID conformations at different promoters. Nucleic Acids Res 2009; 38:1805-20. [PMID: 20026583 PMCID: PMC2847235 DOI: 10.1093/nar/gkp1172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae, TFIID and SAGA principally mediate transcription of constitutive housekeeping genes and stress-inducible genes, respectively, by delivering TBP to the core promoter. Both are multi-protein complexes composed of 15 and 20 subunits, respectively, five of which are common and which may constitute a core sub-module in each complex. Although genome-wide gene expression studies have been conducted extensively in several TFIID and/or SAGA mutants, there are only a limited number of studies investigating genome-wide localization of the components of these two complexes. Specifically, there are no previous reports on localization of a complete set of Tafs and the effects of taf mutations on localization. Here, we examine the localization profiles of a complete set of Tafs, Gcn5, Bur6/Ncb2, Sua7, Tfa2, Tfg1, Tfb3 and Rpb1, on chromosomes III, IV and V by chromatin immunoprecipitation (ChIP)-chip analysis in wild-type and taf1-T657K mutant strains. In addition, we conducted conventional and sequential ChIP analysis of several ribosomal protein genes (RPGs) and non-RPGs. Intriguingly, the results revealed a novel relationship between TFIIB and NC2, simultaneous co-localization of SAGA and TFIID on RPG promoters, specific effects of taf1 mutation on Taf2 occupancy, and an indirect evidence for the existence of different TFIID conformations.
Collapse
Affiliation(s)
- Kazushige Ohtsuki
- Division of Molecular and Cellular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
53
|
Distinct modes of gene regulation by a cell-specific transcriptional activator. Proc Natl Acad Sci U S A 2009; 106:4213-8. [PMID: 19251649 DOI: 10.1073/pnas.0808347106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.
Collapse
|
54
|
Wright KJ, Tjian R. Wnt signaling targets ETO coactivation domain of TAF4/TFIID in vivo. Proc Natl Acad Sci U S A 2009; 106:55-60. [PMID: 19116271 PMCID: PMC2629200 DOI: 10.1073/pnas.0811914106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Indexed: 01/27/2023] Open
Abstract
Understanding the diverse activities of the multisubunit core promoter recognition complex TFIID in vivo requires knowledge of how individual subunits contribute to overall functions of this TATA box-binding protein (TBP)/TBP-associated factor (TAF) complex. By generating altered holo-TFIID complexes in Drosophila we identify the ETO domain of TAF4 as a coactivator domain likely targeted by Pygopus, a protein that is required for Wingless-induced transcription of naked cuticle. These results establish a coactivator function of TAF4 and provide a strategy to dissect mechanisms of TFIID function in vivo.
Collapse
Affiliation(s)
- Kevin J. Wright
- Howard Hughes Medical Institute, Li Ka-Shing Center for Biomedical and Sciences, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Robert Tjian
- Howard Hughes Medical Institute, Li Ka-Shing Center for Biomedical and Sciences, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
55
|
Azmy YY, Gupta A, Pugh BF. Computational modelling of genome-wide [corrected] transcription assembly networks using a fluidics analogy. PLoS One 2008; 3:e3095. [PMID: 18769485 PMCID: PMC2518210 DOI: 10.1371/journal.pone.0003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 08/04/2008] [Indexed: 11/29/2022] Open
Abstract
Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations in regulatory proteins is achieved by adjusting valves' on/off settings. The topology of the lattice is designed by the experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with experimental data. This computational model provides a means to test the plausibility of transcription regulation models derived from large genomic data sets.
Collapse
Affiliation(s)
- Yousry Y. Azmy
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Anshuman Gupta
- Department of Academic Services & Emerging Technologies, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - B. Franklin Pugh
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
56
|
Wilhelm E, Pellay FX, Benecke A, Bell B. TAF6delta controls apoptosis and gene expression in the absence of p53. PLoS One 2008; 3:e2721. [PMID: 18628956 PMCID: PMC2444026 DOI: 10.1371/journal.pone.0002721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/18/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Xavier Pellay
- Institut des Hautes Études Scientifiques and Institut de Recherche Interdisciplinaire – CNRS USR3078 - Université de Lille, Bures sur Yvette, France
| | - Arndt Benecke
- Institut des Hautes Études Scientifiques and Institut de Recherche Interdisciplinaire – CNRS USR3078 - Université de Lille, Bures sur Yvette, France
| | - Brendan Bell
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
57
|
Tian W, Zhang LV, Taşan M, Gibbons FD, King OD, Park J, Wunderlich Z, Cherry JM, Roth FP. Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome Biol 2008; 9 Suppl 1:S7. [PMID: 18613951 PMCID: PMC2447541 DOI: 10.1186/gb-2008-9-s1-s7] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Learning the function of genes is a major goal of computational genomics. Methods for inferring gene function have typically fallen into two categories: 'guilt-by-profiling', which exploits correlation between function and other gene characteristics; and 'guilt-by-association', which transfers function from one gene to another via biological relationships. Results: We have developed a strategy ('Funckenstein') that performs guilt-by-profiling and guilt-by-association and combines the results. Using a benchmark set of functional categories and input data for protein-coding genes in Saccharomyces cerevisiae, Funckenstein was compared with a previous combined strategy. Subsequently, we applied Funckenstein to 2,455 Gene Ontology terms. In the process, we developed 2,455 guilt-by-profiling classifiers based on 8,848 gene characteristics and 12 functional linkage graphs based on 23 biological relationships. Conclusion: Funckenstein outperforms a previous combined strategy using a common benchmark dataset. The combination of 'guilt-by-profiling' and 'guilt-by-association' gave significant improvement over the component classifiers, showing the greatest synergy for the most specific functions. Performance was evaluated by cross-validation and by literature examination of the top-scoring novel predictions. These quantitative predictions should help prioritize experimental study of yeast gene functions.
Collapse
Affiliation(s)
- Weidong Tian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci U S A 2008; 105:5367-72. [PMID: 18391197 DOI: 10.1073/pnas.0801637105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription consists of a series of highly regulated steps: assembly of the preinitiation complex (PIC) at the promoter, initiation, elongation, and termination. PIC assembly is nucleated by TFIID, a complex composed of the TATA-binding protein (TBP) and a series of TBP-associated factors (TAFs). One component, TAF7, is incorporated in the PIC through its interaction with TFIID but is released from TFIID upon transcription initiation. We now report that TAF7 interacts with the transcription factors, TFIIH and P-TEFb, resulting in the inhibition of their Pol II CTD kinase activities. Importantly, in in vitro transcription reactions, TAF7 inhibits steps after PIC assembly and formation of the first phosphodiester bonds. Further, in vivo TAF7 coelongates with P-TEFb and Pol II downstream of the promoter. We propose a model in which TAF7 contributes to the regulation of the transition from PIC assembly to initiation and elongation.
Collapse
|
59
|
Bjornsdottir G, Myers LC. Minimal components of the RNA polymerase II transcription apparatus determine the consensus TATA box. Nucleic Acids Res 2008; 36:2906-16. [PMID: 18385157 PMCID: PMC2396422 DOI: 10.1093/nar/gkn130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In Saccharomyces cerevisiae, multiple approaches have arrived at a consensus TATA box sequence of TATA(T/A)A(A/T)(A/G). TATA-binding protein (TBP) affinity alone does not determine TATA box function. To discover how a minimal set of factors required for basal and activated transcription contributed to the sequence requirements for a functional TATA box, we performed transcription reactions using highly purified proteins and CYC1 promoter TATA box mutants. The TATA box consensus sequence is a good predictor of promoter activity. However, several nonconsensus sequences are almost fully functional, indicating that mechanistic requirements are not the only selective pressure on the TATA box. We also found that the effect of a mutation at a certain position is often dependent on other bases within a particular TATA box. Although activators and coactivators strongly influence TBP recruitment and stability at promoters, neither Mediator, the activator Gal4-V16, nor TFIID specifically compensate for the low transcription levels of the weak TATA boxes. The addition of Mediator to purified transcription reactions did, however, increase the functional selectivity for certain consensus TATA sequences. Transcription in whole-cell extracts or in vivo with these TATA box mutants indicated that factors, other than those in our purified system, may help initiate transcription from weak TATA boxes.
Collapse
Affiliation(s)
- Gudrun Bjornsdottir
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
60
|
Ghosh T, Pandey N, Maitra A, Brahmachari SK, Pillai B. A role for voltage-dependent anion channel Vdac1 in polyglutamine-mediated neuronal cell death. PLoS One 2007; 2:e1170. [PMID: 18000542 PMCID: PMC2064964 DOI: 10.1371/journal.pone.0001170] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/19/2007] [Indexed: 12/04/2022] Open
Abstract
Expansion of trinucleotide repeats in coding and non-coding regions of genes is associated with sixteen neurodegenerative disorders. However, the molecular effects that lead to neurodegeneration have remained elusive. We have explored the role of transcriptional dysregulation by TATA-box binding protein (TBP) containing an expanded polyglutamine stretch in a mouse neuronal cell culture based model. We find that mouse neuronal cells expressing a variant of human TBP harboring an abnormally expanded polyQ tract not only form intranuclear aggregates, but also show transcription dysregulation of the voltage dependent anion channel, Vdac1, increased cytochrome c release from the mitochondria and upregulation of genes involved in localized neuronal translation. On the other hand, unfolded protein response seemed to be unaffected. Consistent with an increased transcriptional effect, we observe an elevated promoter occupancy by TBP in vivo in TATA containing and TATA-less promoters of differentially expressed genes. Our study suggests a link between transcriptional dysfunction and cell death in trinucleotide repeat mediated neuronal dysfunction through voltage dependent anion channel, Vdac1, which has been recently recognized as a critical determinant of cell death.
Collapse
Affiliation(s)
- Tanay Ghosh
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Neeraj Pandey
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | | | | | - Beena Pillai
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
61
|
Xu W, Kasper LH, Lerach S, Jeevan T, Brindle PK. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. EMBO J 2007; 26:2890-903. [PMID: 17525731 PMCID: PMC1894772 DOI: 10.1038/sj.emboj.7601734] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/03/2007] [Indexed: 11/09/2022] Open
Abstract
CREB is a key mediator of cAMP- and calcium-inducible transcription, where phosphorylation of serine 133 in its Kinase-Inducible Domain (KID) is often equated with transactivation. Phospho-Ser133 is required for CREB to bind the KIX domain of the coactivators CBP and p300 (CBP/p300) in vitro, although the importance of this archetype coactivator interaction for endogenous gene expression is unclear. Here, we show that the CREB interaction with KIX is necessary for only a part of cAMP-inducible transcription and CBP/p300 recruitment. Surprisingly, individual cAMP-inducible genes with CREB bound at their promoters differed in their reliance on KIX and none examined showed complete dependence. Alternatively, we found that arginine 314 (Arg314) in the CREB basic-leucine zipper (bZIP) domain contributed to CBP/p300 recruitment and KIX-independent CREB transactivation function. This implicates Transducer Of Regulated CREB (TORC), an unrelated cAMP-responsive coactivator that binds via Arg314, and which can bind CBP/p300, in these functions. Interestingly, KIX was also required for the full cAMP induction of a gene that did not require CREB. Thus, individual CREB-target gene context dictates the relative contribution of at least two different cAMP-responsive coactivation mechanisms.
Collapse
Affiliation(s)
- Wu Xu
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lawryn H Kasper
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Lerach
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trushar Jeevan
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul K Brindle
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
62
|
Wang X, Truckses DM, Takada S, Matsumura T, Tanese N, Jacobson RH. Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators. Proc Natl Acad Sci U S A 2007; 104:7839-44. [PMID: 17483474 PMCID: PMC1876534 DOI: 10.1073/pnas.0608570104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Indexed: 11/18/2022] Open
Abstract
TBP-associated factor 4 (TAF4), an essential subunit of the TFIID complex acts as a coactivator for multiple transcriptional regulators, including Sp1 and CREB. However, little is known regarding the structural properties of the TAF4 subunit that lead to the coactivator function. Here, we report the crystal structure at 2.0-A resolution of the human TAF4-TAFH domain, a conserved domain among all metazoan TAF4, TAF4b, and ETO family members. The hTAF4-TAFH structure adopts a completely helical fold with a large hydrophobic groove that forms a binding surface for TAF4 interacting factors. Using peptide phage display, we have characterized the binding preference of the hTAF4-TAFH domain for a hydrophobic motif, DPsiPsizetazetaPsiPhi, that is present in a number of nuclear factors, including several important transcriptional regulators with roles in activating, repressing, and modulating posttranslational modifications. A comparison of the hTAF4-TAFH structure with the homologous ETO-TAFH domain reveals several critical residues important for hTAF4-TAFH target specificity and suggests that TAF4 has evolved in response to the increased transcriptional complexity of metazoans.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| | - Dagmar M. Truckses
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| | - Tatsushi Matsumura
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Naoko Tanese
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Raymond H. Jacobson
- Department of Biochemistry and Molecular Biology, Graduate School in Biomedical Sciences Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030; and
| |
Collapse
|
63
|
Fossey SC, Vnencak-Jones CL, Olsen NJ, Sriram S, Garrison G, Deng X, Crooke PS, Aune TM. Identification of molecular biomarkers for multiple sclerosis. J Mol Diagn 2007; 9:197-204. [PMID: 17384211 PMCID: PMC1867435 DOI: 10.2353/jmoldx.2007.060147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis is a demyelinating disease of the central nervous system with a presumed autoimmune etiology. Previous microarray analyses identified conserved gene expression signatures in peripheral blood mononuclear cells of patients with autoimmune diseases. We used quantitative real-time polymerase chain reaction analysis to identify a minimum number of genes of which transcript levels discriminated multiple sclerosis patients from patients with other chronic diseases and from controls. We used a computer program to search quantitative transcript levels to identify optimum ratios that distinguished among the different categories. A combination of a 4-ratio equation using expression levels of five genes segregated the multiple sclerosis cohort (n=55) from the control cohort (n=49) with a sensitivity of 91% and specificity of 98%. When autoimmune and other chronic disease groups were included (n=78), this discriminator still performed with a sensitivity of 79% and a specificity of 87%. This approach may have diagnostic utility not only for multiple sclerosis but also for other clinically complex autoimmune diseases.
Collapse
Affiliation(s)
- Sallyanne C Fossey
- Department of Pathology, Vanderbilt University School of Medicine, Nashvill, Tennessee, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S. The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters. Mol Cell Biol 2007; 27:1844-58. [PMID: 17210644 PMCID: PMC1820453 DOI: 10.1128/mcb.01363-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides -8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C(+1)-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.
Collapse
Affiliation(s)
- Yumiko Tokusumi
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
65
|
Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 2007; 27:297-311. [PMID: 17074814 PMCID: PMC1800639 DOI: 10.1128/mcb.01558-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/06/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UAS(RAP1) enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UAS(RAP1) enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.
Collapse
Affiliation(s)
- Krassimira A Garbett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|
66
|
Abstract
Transcription factor IID (TFIID) plays a central role in regulating the expression of most eukaryotic genes. Of the 14 TBP-associated factor (TAF) subunits that compose TFIID, TAF1 is one of the largest and most functionally diverse. Yeast TAF1 can be divided into four regions including a putative histone acetyltransferase domain and TBP, TAF, and promoter binding domains. Establishing the importance of each region in gene expression through deletion analysis has been hampered by the cellular requirement of TAF1 for viability. To circumvent this limitation we introduced galactose-inducible deletion derivatives of previously defined functional regions of TAF1 into a temperature-sensitive taf1ts2 yeast strain. After galactose induction of the TAF1 mutants and temperature-induced elimination of the resident Taf1ts2 protein, we examined the properties and phenotypes of the mutants, including their impact on genome-wide transcription. Virtually all TAF1-dependent genes, which comprise approximately 90% of the yeast genome, displayed a strong dependence upon all regions of TAF1 that were tested. This finding might reflect the need for each region of TAF1 to stabilize TAF1 against degradation or may indicate that all TAF1-dependent genes require the many activities of TAF1. Paradoxically, deletion of the region of TAF1 that is important for promoter binding interfered with the expression of many genes that are normally TFIID-independent/SAGA (Spt-Ada-Gcn5-acetyltransferase)-dominated, suggesting that this region normally prevents TAF1 (TFIID) from interfering with the expression of SAGA-regulated genes.
Collapse
Affiliation(s)
- Jordan D Irvin
- Department of Biochemistry and Molecular Biology, Center for Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
67
|
Abstract
Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested approximately 6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix-loop-helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2).
Collapse
Affiliation(s)
| | | | | | - Tomoko Chiba
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Takashi Ito
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Peter Uetz
- To whom correspondence should be addressed. Tel: +49 7247 82 6103; Fax: +49 7247 82 3354;
| |
Collapse
|
68
|
Gegonne A, Weissman JD, Zhou M, Brady JN, Singer DS. TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci U S A 2006; 103:602-7. [PMID: 16407123 PMCID: PMC1325967 DOI: 10.1073/pnas.0510031103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription consists of a series of highly regulated steps: assembly of a preinitiation complex (PIC) at the promoter nucleated by TFIID, followed by initiation, elongation, and termination. The present study has focused on the role of the TFIID component, TAF7, in regulating transcription initiation. In TFIID, TAF7 binds to TAF1 and inhibits its intrinsic acetyl transferase activity. We now report that although TAF7 remains bound to TAF1 and associated with TFIID during the formation of the PIC, TAF7 dissociates from the PIC upon transcription initiation. Entry of polymerase II into the assembling PIC is associated with TAF1 and TAF7 phosphorylation, coincident with TAF7 release. We propose that the TFIID composition is dynamic and that TAF7 functions as a check-point regulator suppressing premature transcription initiation until PIC assembly is complete.
Collapse
Affiliation(s)
- Anne Gegonne
- Experimental Immunology Branch, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
69
|
Reeves WM, Hahn S. Targets of the Gal4 transcription activator in functional transcription complexes. Mol Cell Biol 2005; 25:9092-102. [PMID: 16199885 PMCID: PMC1265783 DOI: 10.1128/mcb.25.20.9092-9102.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although biochemical and genetic methods have detected many activator-transcription factor interactions, the direct functional targets of most activators remain undetermined. For this study, photo-cross-linkers positioned within the Gal4 C-terminal acidic activating region were used to identify polypeptides in close physical proximity to Gal4 during transcription activation in vitro. Of six specifically cross-linked polypeptides, three (Tra1, Taf12, and Gal11) are subunits of four complexes (SAGA, Mediator, NuA4, and TFIID) known to play a role in gene regulation. These cross-linking targets had differential effects on activation. SAGA was critical for activation by Gal4, Gal11 contributed modestly to activation, and TFIID and NuA4 were not important for activation under our conditions. Tra1, Taf12, and Gal11 have also been identified as cross-linking targets of the Gcn4 acidic central activating region. Our results demonstrate that two unrelated acidic activators converge on the same set of functional targets.
Collapse
Affiliation(s)
- Wendy M Reeves
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
70
|
Lee DH, Gershenzon N, Gupta M, Ioshikhes IP, Reinberg D, Lewis BA. Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Mol Cell Biol 2005; 25:9674-86. [PMID: 16227614 PMCID: PMC1265815 DOI: 10.1128/mcb.25.21.9674-9686.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/10/2004] [Accepted: 08/05/2005] [Indexed: 11/20/2022] Open
Abstract
Downstream elements are a newly appreciated class of core promoter elements of RNA polymerase II-transcribed genes. The downstream core element (DCE) was discovered in the human beta-globin promoter, and its sequence composition is distinct from that of the downstream promoter element (DPE). We show here that the DCE is a bona fide core promoter element present in a large number of promoters and with high incidence in promoters containing a TATA motif. Database analysis indicates that the DCE is found in diverse promoters, supporting its functional relevance in a variety of promoter contexts. The DCE consists of three subelements, and DCE function is recapitulated in a TFIID-dependent manner. Subelement 3 can function independently of the other two and shows a TFIID requirement as well. UV photo-cross-linking results demonstrate that TAF1/TAF(II)250 interacts with the DCE subelement DNA in a sequence-dependent manner. These data show that downstream elements consist of at least two types, those of the DPE class and those of the DCE class; they function via different DNA sequences and interact with different transcription activation factors. Finally, these data argue that TFIID is, in fact, a core promoter recognition complex.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Biochemistry, Robert Woods Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
71
|
Milgrom E, West RW, Gao C, Shen WCW. TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele. Genetics 2005; 171:959-73. [PMID: 16118188 PMCID: PMC1456853 DOI: 10.1534/genetics.105.046557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TAF9 is a TATA-binding protein associated factor (TAF) conserved from yeast to humans and shared by two transcription coactivator complexes, TFIID and SAGA. The essentiality of the TAFs has made it difficult to ascertain their roles in TFIID and SAGA function. Here we performed a genomic synthetic genetic array analysis using a temperature-sensitive allele of TAF9 as a query. Results from this experiment showed that TAF9 interacts genetically with: (1) genes for multiple transcription factor complexes predominantly involving Mediator, chromatin modification/remodeling complexes, and regulators of transcription elongation; (2) virtually all nonessential genes encoding subunits of the SWR-C chromatin-remodeling complex and both TAF9 and SWR-C required for expressing the essential housekeeping gene RPS5; and (3) key genes for cell cycle control at the G1/S transition, as well as genes involved in cell polarity, cell integrity, and protein synthesis, suggesting a link between TAF9 function and cell growth control. We also showed that disruption of SAGA by deletion of SPT20 alters histone-DNA contacts and phosphorylated forms of RNA polymerase II at coding sequences. Our results raise the possibility of an unappreciated role for TAF9 in transcription elongation, perhaps in the context of SAGA, and provide further support for TAF9 involvement in cell cycle progression and growth control.
Collapse
Affiliation(s)
- Elena Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
72
|
Mengus G, Fadloun A, Kobi D, Thibault C, Perletti L, Michel I, Davidson I. TAF4 inactivation in embryonic fibroblasts activates TGF beta signalling and autocrine growth. EMBO J 2005; 24:2753-67. [PMID: 16015375 PMCID: PMC1182243 DOI: 10.1038/sj.emboj.7600748] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 06/24/2005] [Indexed: 01/04/2023] Open
Abstract
We have inactivated transcription factor TFIID subunit TBP-associated factor 4 (TAF4) in mouse embryonic fibroblasts. Mutant taf4(-/-) cells are viable and contain intact TFIID comprising the related TAF4b showing that TAF4 is not an essential protein. TAF4 inactivation deregulates more than 1000 genes indicating that TFIID complexes containing TAF4 and TAF4b have distinct target gene specificities. However, taf4(-/-) cell lines have altered morphology and exhibit serum-independent autocrine growth correlated with the induced expression of several secreted mitotic factors and activators of the transforming growth factor beta signalling pathway. In addition to TAF4 inactivation, many of these genes can also be induced by overexpression of TAF4b. A competitive equilibrium between TAF4 and TAF4b therefore regulates expression of genes controlling cell proliferation. We have further identified a set of genes that are regulated both by TAF4 and upon adaptation to serum starvation and which may be important downstream mediators of serum-independent growth. Our study also shows that TAF4 is an essential cofactor for activation by the retinoic acid receptor and CREB, but not for Sp1 and the vitamin D3 receptor.
Collapse
Affiliation(s)
- Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Anas Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Dominique Kobi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Christelle Thibault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Lucia Perletti
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Isabelle Michel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| |
Collapse
|
73
|
Frontini M, Soutoglou E, Argentini M, Bole-Feysot C, Jost B, Scheer E, Tora L. TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9. Mol Cell Biol 2005; 25:4638-49. [PMID: 15899866 PMCID: PMC1140618 DOI: 10.1128/mcb.25.11.4638-4649.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TFIID plays a key role in transcription initiation of RNA polymerase II preinitiation complex assembly. TFIID is comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). A second set of transcriptional regulatory multiprotein complexes containing TAFs has been described (called SAGA, TFTC, STAGA, and PCAF/GCN5). Using matrix-assisted laser desorption ionization mass spectrometry, we identified a novel TFTC subunit, human TAF9Like, encoded by a TAF9 paralogue gene. We show that TAF9Like is a subunit of TFIID, and thus, it will be called TAF9b. TFIID and TFTC complexes in which both TAF9 and TAF9b are present exist. In vitro and in vivo experiments indicate that the interactions between TAF9b and TAF6 or TAF9 and TAF6 histone fold pairs are similar. We observed a differential induction of TAF9 and TAF9b during apoptosis that, together with their different ability to stabilize p53, points to distinct requirements for the two proteins in gene regulation. Small interfering RNA (siRNA) knockdown of TAF9 and TAF9b revealed that both genes are essential for cell viability. Gene expression analysis of cells treated with either TAF9 or TAF9b siRNAs indicates that the two proteins regulate different sets of genes with only a small overlap. Taken together, these data demonstrate that TAF9 and TAF9b share some of their functions, but more importantly, they have distinct roles in the transcriptional regulatory process.
Collapse
Affiliation(s)
- Mattia Frontini
- Department of Transcription, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
74
|
Fishburn J, Mohibullah N, Hahn S. Function of a eukaryotic transcription activator during the transcription cycle. Mol Cell 2005; 18:369-78. [PMID: 15866178 DOI: 10.1016/j.molcel.2005.03.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/19/2005] [Accepted: 03/24/2005] [Indexed: 11/15/2022]
Abstract
Site-specific photocrosslinkers positioned within the central transcription-activating region of yeast Gcn4 were used to identify, in an unbiased way, three polypeptides in direct physical proximity to the activator during the process of transcription activation. Crosslinking was specific and did not change during different steps of the transcription cycle. The crosslinking targets were identified as Tra1, Gal11, and Taf12, subunits of four complexes (SAGA, NuA4, Mediator, and TFIID) known to play a role in gene regulation. Using this crosslinking assay, an activating region mutant, and extracts depleted of individual complexes containing the crosslinking targets, we found that contact with Tra1/SAGA is critical for activation, Gal11 contact has a modest effect on activation, and contact with TFIID and NuA4 is of little or no importance for activation under our conditions. Thus, a single activating region contacts multiple factors, and each contact makes differential contributions to transcriptional activation.
Collapse
Affiliation(s)
- James Fishburn
- Howard Hughes Medical Institute, 1100 Fairview Ave North, Mailstop A1-162, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
75
|
|
76
|
Robinson MM, Yatherajam G, Ranallo RT, Bric A, Paule MR, Stargell LA. Mapping and functional characterization of the TAF11 interaction with TFIIA. Mol Cell Biol 2005; 25:945-57. [PMID: 15657423 PMCID: PMC543996 DOI: 10.1128/mcb.25.3.945-957.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIA interacts with TFIID via association with TATA binding protein (TBP) and TBP-associated factor 11 (TAF11). We previously identified a mutation in the small subunit of TFIIA (toa2-I27K) that is defective for interaction with TAF11. To further explore the functional link between TFIIA and TAF11, the toa2-I27K allele was utilized in a genetic screen to isolate compensatory mutants in TAF11. Analysis of these compensatory mutants revealed that the interaction between TAF11 and TFIIA involves two distinct regions of TAF11: the highly conserved histone fold domain and the N-terminal region. Cells expressing a TAF11 allele defective for interaction with TFIIA exhibit conditional growth phenotypes and defects in transcription. Moreover, TAF11 imparts changes to both TFIIA-DNA and TBP-DNA contacts in the context of promoter DNA. These alterations appear to enhance the formation and stabilization of the TFIIA-TBP-DNA complex. Taken together, these studies provide essential information regarding the molecular organization of the TAF11-TFIIA interaction and define a mechanistic role for this association in the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- M M Robinson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
77
|
Hamard PJ, Dalbies-Tran R, Hauss C, Davidson I, Kedinger C, Chatton B. A functional interaction between ATF7 and TAF12 that is modulated by TAF4. Oncogene 2005; 24:3472-83. [PMID: 15735663 DOI: 10.1038/sj.onc.1208565] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ATF7 proteins, which are members of the cyclic AMP responsive binding protein (CREB)/activating transcription factor (ATF) family of transcription factors, display quite versatile properties: they can interact with the adenovirus E1a oncoprotein, mediating part of its transcriptional activity; they heterodimerize with the Jun, Fos or related transcription factors, likely modulating their DNA-binding specificity; they also recruit to the promoter a stress-induced protein kinase (JNK2). In the present study, we investigate the functional relationships of ATF7 with hsTAF12 (formerly hsTAF(II)20/15), which has originally been identified as a component of the general transcription factor TFIID. We show that overexpression of hsTAF12 potentiates ATF7-induced transcriptional activation through direct interaction with ATF7, suggesting that TAF12 is a functional partner of ATF7. In support of this conclusion, chromatin immunoprecipitation experiments confirm the interaction of ATF7 with TAF12 on an ATF7-responsive promoter, in the absence of any artificial overexpression of both proteins. We also show that the TAF12-dependent transcriptional activation is competitively inhibited by TAF4. Although both TAF12 isoforms (TAF12-1 and -2, formerly TAF(II)20 and TAF(II)15) interact with the ATF7 activation region through their histone-fold domain, only the largest, hsTAF12-1, mediates transcriptional activation through its N-terminal region.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Ecole Supérieure de Biotechnologie de Strasbourg, Université Louis Pasteur, Parc d'innovation, UMR7100 CNRS-ULP, Bd. Sebastien Brant-BP10413, 67412 Strasbourg, Illkirch Cedex, France
| | | | | | | | | | | |
Collapse
|
78
|
Abstract
Gene expression occurs through a complex mRNA-protein (mRNP) system that stretches from transcription to translation. Gene expression processes are increasingly studied from global perspectives in order to understand their pathways, properties, and behaviors as a system. Here we review these beginnings of mRNP systems biology, as they have emerged from recent large-scale investigation of mRNP components, interactions, and dynamics. Such work has begun to lay the foundation for a broader, integrated view of mRNP organization in gene expression.
Collapse
Affiliation(s)
- Haley Hieronymus
- Department of Systems Biology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
79
|
Sapra AK, Arava Y, Khandelia P, Vijayraghavan U. Genome-wide Analysis of Pre-mRNA Splicing. J Biol Chem 2004; 279:52437-46. [PMID: 15452114 DOI: 10.1074/jbc.m408815200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Removal of pre-mRNA introns is an essential step in eukaryotic genome interpretation. The spliceosome, a ribonucleoprotein performs this critical function; however, precise roles for many of its proteins remain unknown. Genome-wide consequences triggered by the loss of a specific factor can elucidate its function in splicing and its impact on other cellular processes. We have employed splicing-sensitive DNA microarrays, with yeast open reading frames and intron sequences, to detect changes in splicing efficiency and global expression. Comparison of expression profiles, for intron-containing transcripts, among mutants of two second-step factors, Prp17 and Prp22, reveals their unique and shared effects on global splicing. This analysis enabled the identification of substrates dependent on Prp17. We find a significant Prp17 role in splicing of introns which are longer than 200nts and note its dispensability when introns have a < or =13-nucleotide spacing between their branch point nucleotide and 3 ' splice site. In vitro splicing of substrates with varying branch nucleotide to 3 ' splice site distances supports the differential Prp17 dependencies inferred from the in vivo analysis. Furthermore, we tested the predicted dispensability of Prp17 for splicing short introns in the evolutionarily distant yeast, Schizosaccharomyces pombe, where the genome contains predominantly short introns. SpPrp17 was non-essential at all growth temperatures implying that functional evolution of splicing factors is integrated with genome evolution. Together our studies point to a role for budding yeast Prp17 in splicing of subsets of introns and have predictive value for deciphering the functions of splicing factors in gene expression and regulation in other eukaryotes.
Collapse
Affiliation(s)
- Aparna K Sapra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
80
|
Gao C, Wang L, Milgrom E, Shen WCW. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures. J Biol Chem 2004; 279:42677-86. [PMID: 15294907 DOI: 10.1074/jbc.m406363200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drug resistance as a result of overexpression of drug transporter genes presents a major obstacle in the treatment of cancers and infections. The molecular mechanisms underlying transcriptional up-regulation of drug transporter genes remains elusive. Employing Saccharomyces cerevisiae as a model, we analyzed here transcriptional regulation of the drug transporter gene PDR5 in a drug-resistant pdr1-3 strain. This mutant bears a gain-of-function mutation in PDR1, which encodes a transcriptional activator for PDR5. Similar to the well studied model gene GAL1, we provide evidence showing that PDR5 belongs to a group of genes whose transcription requires the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex. We also show that the drugindependent PDR5 transcription is associated with enhanced promoter occupancy of coactivator complexes, including SAGA, Mediator, chromatin remodeling SWI/SNF complex, and TATA-binding protein. Analyzed by chromatin immunoprecipitations, loss of contacts between histones and DNA occurs at both promoter and coding sequences of PDR5. Consistently, micrococcal nuclease susceptibility analysis revealed altered chromatin structure at the promoter and coding sequences of PDR5. Our data provide molecular description of the changes associated with constitutive PDR5 transcription, and reveal the molecular mechanism underlying drug-independent transcriptional up-regulation of PDR5.
Collapse
Affiliation(s)
- Chen Gao
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
81
|
Coulombe B, Jeronimo C, Langelier MF, Cojocaru M, Bergeron D. Interaction networks of the molecular machines that decode, replicate, and maintain the integrity of the human genome. Mol Cell Proteomics 2004; 3:851-6. [PMID: 15215308 PMCID: PMC4494826 DOI: 10.1074/mcp.r400009-mcp200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of many proteins with genomic DNA is required for the expression, replication, and maintenance of the integrity of mammalian genomes. These proteins participate in processes as diverse as gene transcription and mRNA processing, as well as in DNA replication, recombination, and repair. This intricate system, where the various nuclear machineries interact with one another and bind to either common or distinct DNA regions to create an impressive network of protein-protein and protein-DNA interactions, is made even more complex by the need for a very stringent control in order to ensure normal cell growth and differentiation. A general methodology based on the in vivo pull-down of tagged components of nuclear machines and regulatory proteins was used to study genome-wide protein-protein and protein-DNA interactions in mammalian cells. In particular, this approach has been used in defining the interaction networks (or "interactome") formed by RNA polymerase II, a molecular machine that decodes the human genome. In addition, because this methodology allows for the purification of variant forms of tagged complexes having site-directed mutations in key elements, it can also be used for deciphering the relationship between the structure and the function of the molecular machines, such as RNA polymerase II, that by binding DNA play a central role in the pathway from the genome to the organism.
Collapse
Affiliation(s)
- Benoit Coulombe
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7.
| | | | | | | | | |
Collapse
|
82
|
Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 2004; 11:394-403. [PMID: 15114340 PMCID: PMC1189732 DOI: 10.1038/nsmb763] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/22/2004] [Indexed: 11/09/2022]
Abstract
Advances in structure determination of the bacterial and eukaryotic transcription machinery have led to a marked increase in the understanding of the mechanism of transcription. Models for the specific assembly of the RNA polymerase II transcription machinery at a promoter, conformational changes that occur during initiation of transcription, and the mechanism of initiation are discussed in light of recent developments.
Collapse
Affiliation(s)
- Steven Hahn
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Ave N., A1-162, Seattle, Washington 98109, USA.
| |
Collapse
|
83
|
Huisinga KL, Pugh BF. A Genome-Wide Housekeeping Role for TFIID and a Highly Regulated Stress-Related Role for SAGA in Saccharomyces cerevisiae. Mol Cell 2004; 13:573-85. [PMID: 14992726 DOI: 10.1016/s1097-2765(04)00087-5] [Citation(s) in RCA: 438] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Revised: 11/26/2003] [Accepted: 12/12/2003] [Indexed: 11/17/2022]
Abstract
TFIID and SAGA share a common set of TAFs, regulate chromatin, and deliver TBP to promoters. Here we examine their relationship within the context of the Saccharomyces cerevisiae genome-wide regulatory network. We find that while TFIID and SAGA make overlapping contributions to the expression of all genes, TFIID function predominates at approximately 90% and SAGA at approximately 10% of the measurable genome. Strikingly, SAGA-dominated genes are largely stress induced and TAF independent, and are downregulated by the coordinate action of a variety of chromatin, TBP, and RNA polymerase II regulators. In contrast, the TFIID-dominated class is less regulated, but is highly dependent upon TAFs, including those shared between TFIID and SAGA. These two distinct modes of transcription regulation might reflect the need to balance inducible stress responses with the steady output of housekeeping genes.
Collapse
Affiliation(s)
- Kathryn L Huisinga
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
84
|
Walker AK, Shi Y, Blackwell TK. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J Biol Chem 2004; 279:15339-47. [PMID: 14726532 DOI: 10.1074/jbc.m310731200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.
Collapse
Affiliation(s)
- Amy K Walker
- Section of Developmental and Stem Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
85
|
Kuras L, Borggrefe T, Kornberg RD. Association of the Mediator complex with enhancers of active genes. Proc Natl Acad Sci U S A 2003; 100:13887-91. [PMID: 14623974 PMCID: PMC283516 DOI: 10.1073/pnas.2036346100] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multiprotein Mediator complex has been shown to interact with gene-specific regulatory proteins and RNA polymerase II in vitro. Here, we use chromatin immunoprecipitation to analyze the recruitment of Mediator to GAL genes of yeast in vivo. We find that Mediator associates exclusively with transcriptionally active and not inactive GAL genes. This association maps to the upstream activating sequence, rather than the core promoter, and is independent of RNA polymerase II, general transcription factors, and core promoter sequences. These findings support the idea of Mediator as a primary conduit of regulatory information from enhancers to promoters in eukaryotic cells.
Collapse
Affiliation(s)
- Laurent Kuras
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
86
|
Current awareness on yeast. Yeast 2003; 20:1309-16. [PMID: 14664230 DOI: 10.1002/yea.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|