51
|
Stam M. Paramutation: a heritable change in gene expression by allelic interactions in trans. MOLECULAR PLANT 2009; 2:578-588. [PMID: 19825640 DOI: 10.1093/mp/ssp020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Epigenetic gene regulation involves the stable propagation of gene activity states through mitotic, and sometimes even meiotic, cell divisions without changes in DNA sequence. Paramutation is an epigenetic phenomenon involving changes in gene expression that are stably transmitted through mitosis as well as meiosis. These heritable changes are mediated by in trans interactions between homologous DNA sequences on different chromosomes. During these in trans interactions, epigenetic information is transferred from one allele of a gene to another allele of the same gene, resulting in a change in gene expression. Although paramutation was initially discovered in plants, it has recently been observed in mammals as well, suggesting that the mechanisms underlying paramutation might be evolutionarily conserved. Recent findings point to a crucial role for small RNAs in the paramutation process. In mice, small RNAs appear sufficient to induce paramutation, whereas in maize, it seems not to be the only player in the process. In this review, potential mechanisms are discussed in relation to the various paramutation phenomena.
Collapse
Affiliation(s)
- Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
52
|
He L, Dooner HK. Haplotype structure strongly affects recombination in a maize genetic interval polymorphic for Helitron and retrotransposon insertions. Proc Natl Acad Sci U S A 2009; 106:8410-6. [PMID: 19416860 PMCID: PMC2688972 DOI: 10.1073/pnas.0902972106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Indexed: 11/18/2022] Open
Abstract
We have asked here how the remarkable variation in maize haplotype structure affects recombination. We compared recombination across a genetic interval of 9S in 2 highly dissimilar heterozygotes that shared 1 parent. The genetic interval in the common haplotype is approximately 100 kb long and contains 6 genes interspersed with gene-fragment-bearing Helitrons and retrotransposons that, together, comprise 70% of its length. In one heterozygote, most intergenic insertions are homozygous, although polymorphic, enabling us to determine whether any recombination junctions fall within them. In the other, most intergenic insertions are hemizygous and, thus, incapable of homologous recombination. Our analysis of the frequency and distribution of recombination in the interval revealed that: (i) Most junctions were circumscribed to the gene space, where they showed a highly nonuniform distribution. In both heterozygotes, more than half of the junctions fell in the stc1 gene, making it a clear recombination hotspot in the region. However, the genetic size of stc1 was 2-fold lower when flanked by a hemizygous 25-kb retrotransposon cluster. (ii) No junctions fell in the hypro1 gene in either heterozygote, making it a genic recombination coldspot. (iii) No recombination occurred within the gene fragments borne on Helitrons nor within retrotransposons, so neither insertion class contributes to the interval's genetic length. (iv) Unexpectedly, several junctions fell in an intergenic region not shared by all 3 haplotypes. (v) In general, the ability of a sequence to recombine correlated inversely with its methylation status. Our results show that haplotypic structural variability strongly affects the frequency and distribution of recombination events in maize.
Collapse
Affiliation(s)
- Limei He
- The Waksman Institute, Rutgers University, Piscataway, NJ 08855; and
| | - Hugo K. Dooner
- The Waksman Institute, Rutgers University, Piscataway, NJ 08855; and
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
53
|
Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M. Tissue- and expression level-specific chromatin looping at maize b1 epialleles. THE PLANT CELL 2009; 21:832-42. [PMID: 19336692 PMCID: PMC2671708 DOI: 10.1105/tpc.108.064329] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work examines the involvement of chromatin looping in the transcriptional regulation of two epialleles of the maize (Zea mays) b1 gene, B-I and B'. These two epialleles are tissue-specifically regulated and are involved in paramutation. B-I and B' are expressed at high and low levels, respectively. A hepta-repeat approximately 100 kb upstream of the transcription start site (TSS) is required for both paramutation and high b1 expression. Using chromosome conformation capture, we show that the hepta-repeat physically interacts with the TSS region in a tissue- and expression level-specific manner. Multiple repeats are required to stabilize this interaction. High b1 expression is mediated by a multiloop structure; besides the hepta-repeat, other sequence regions physically interact with the TSS as well, and these interactions are epiallele- and expression level-specific. Formaldehyde-assisted isolation of regulatory elements uncovered multiple interacting regions as potentially regulatory.
Collapse
Affiliation(s)
- Marieke Louwers
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
54
|
Nelson W, Luo M, Ma J, Estep M, Estill J, He R, Talag J, Sisneros N, Kudrna D, Kim H, Ammiraju JSS, Collura K, Bharti AK, Messing J, Wing RA, SanMiguel P, Bennetzen JL, Soderlund C. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains. BMC Genomics 2008; 9:621. [PMID: 19099592 PMCID: PMC2628917 DOI: 10.1186/1471-2164-9-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 12/19/2008] [Indexed: 11/30/2022] Open
Abstract
Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR) and methylation spanning linker libraries (MSLL). These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig), while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%). These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of epigenetic boundaries are barely understood at this time, MSLL technology flags both approximate boundaries and methylated genes that deserve additional investigation. MSLL and HMPR sequences provide a valuable resource for maize genome annotation, and are a uniquely valuable complement to any plant genome sequencing project. In order to make these results fully accessible to the community, a web display was developed that shows the alignment of MSLL, HMPR, and other gene-rich sequences to the BACs; this display is continually updated with the latest ESTs and BAC sequences.
Collapse
Affiliation(s)
- William Nelson
- Arizona Genomics Computational Laboratory, BIO5 Institute, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Epigenetic Phenomena and Epigenomics in Maize. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
56
|
Holding DR, Larkins BA. Zein Storage Proteins. MOLECULAR GENETIC APPROACHES TO MAIZE IMPROVEMENT 2008. [DOI: 10.1007/978-3-540-68922-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
57
|
Henderson IR, Jacobsen SE. Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 2008; 22:1597-606. [PMID: 18559476 DOI: 10.1101/gad.1667808] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plants use siRNAs to target cytosine DNA methylation to both symmetrical CG and nonsymmetrical (CHG and CHH) sequence contexts. DNA methylation and siRNA clusters most frequently overlap with transposons in the Arabidopsis thaliana genome. However, a significant number of protein-coding genes also show promoter DNA methylation, and this can be used to silence their expression. Loss of the majority of non-CG DNA methylation in drm1 drm2 cmt3 triple mutants leads to developmental phenotypes. We identified the gene responsible for these phenotypes as SUPPRESSOR OF drm1 drm2 cmt3 (SDC), which encodes an F-box protein and possesses seven promoter tandem repeats. The SDC repeats show a unique silencing requirement for non-CG DNA methylation directed redundantly by histone methylation and siRNAs, and display spreading of siRNAs and methylation beyond the repeated region. In addition to revealing the complexity of DNA methylation control in A. thaliana, SDC has important implications for how plant genomes utilize gene silencing to repress endogenous genes.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
58
|
Chandler V, Alleman M. Paramutation: epigenetic instructions passed across generations. Genetics 2008; 178:1839-44. [PMID: 18430919 DOI: 10.1093/genetics/178.4.1839] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vicki Chandler
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | |
Collapse
|
59
|
Abstract
Using the compiled human genome sequence, we systematically cataloged all tandem repeats with periods between 20 and 2000 bp and defined two subsets whose consensus sequences were found at either single-locus tandem repeats (slTRs) or multilocus tandem repeats (mlTRs). Parameters compiled for these subsets provide insights into mechanisms underlying the creation and evolution of tandem repeats. Both subsets of tandem repeats are nonrandomly distributed in the genome, being found at higher frequency at many but not all chromosome ends and internal clusters of mlTRs were also observed. Despite the integral role of recombination in the biology of tandem repeats, recombination hotspots colocalized only with shorter microsatellites and not the longer repeats examined here. An increased frequency of slTRs was observed near imprinted genes, consistent with a functional role, while both slTRs and mlTRs were found more frequently near genes implicated in triplet expansion diseases, suggesting a general instability of these regions. Using our collated parameters, we identified 2230 slTRs as candidates for highly informative molecular markers.
Collapse
|
60
|
Robbins ML, Sekhon RS, Meeley R, Chopra S. A Mutator transposon insertion is associated with ectopic expression of a tandemly repeated multicopy Myb gene pericarp color1 of maize. Genetics 2008; 178:1859-74. [PMID: 18430921 PMCID: PMC2323782 DOI: 10.1534/genetics.107.082503] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/28/2008] [Indexed: 12/17/2022] Open
Abstract
The molecular basis of tissue-specific pigmentation of maize carrying a tandemly repeated multicopy allele of pericarp color1 (p1) was examined using Mutator (Mu) transposon-mediated mutagenesis. The P1-wr allele conditions a white or colorless pericarp and a red cob glumes phenotype. However, a Mu-insertion allele, designated as P1-wr-mum6, displayed an altered phenotype that was first noted as occasional red stripes on pericarp tissue. This gain-of-pericarp-pigmentation phenotype was heritable, yielding families that displayed variable penetrance and expressivity. In one fully penetrant family, deep red pericarp pigmentation was observed. Several reports on Mu suppressible alleles have shown that Mu transposons can affect gene expression by mechanisms that depend on transposase activity. Conversely, the P1-wr-mum6 phenotype is not affected by transposase activity. The increased pigmentation was associated with elevated mRNA expression of P1-wr-mum6 copy (or copies) that was uninterrupted by the transposons. Genomic bisulfite sequencing analysis showed that the elevated expression was associated with hypomethylation of a floral-specific enhancer that is approximately 4.7 kb upstream of the Mu1 insertion site and may be proximal to an adjacent repeated copy. We propose that the Mu1 insertion interferes with the DNA methylation and related chromatin packaging of P1-wr, thereby inducing expression from gene copy (or copies) that is otherwise suppressed.
Collapse
Affiliation(s)
- Michael L Robbins
- Department of Crop and Soil Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
61
|
Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 2007; 104:11376-81. [PMID: 17595297 PMCID: PMC2040906 DOI: 10.1073/pnas.0704145104] [Citation(s) in RCA: 386] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major flowering-time quantitative trait locus, Vegetative to generative transition 1 (Vgt1), to an approximately 2-kb noncoding region positioned 70 kb upstream of an Ap2-like transcription factor that we have shown to be involved in flowering-time control. Vgt1 functions as a cis-acting regulatory element as indicated by the correlation of the Vgt1 alleles with the transcript expression levels of the downstream gene. Additionally, within Vgt1, we identified evolutionarily conserved noncoding sequences across the maize-sorghum-rice lineages. Our results support the notion that changes in distant cis-acting regulatory regions are a key component of plant genetic adaptation throughout breeding and evolution.
Collapse
Affiliation(s)
- Silvio Salvi
- *Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin, 44, 40127 Bologna, Italy
- To whom correspondence may be addressed. E-mail: or
| | - Giorgio Sponza
- *Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin, 44, 40127 Bologna, Italy
| | - Michele Morgante
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, 208, 33100 Udine, Italy
| | - Dwight Tomes
- Pioneer Hi-Bred International, 7250 NW 62nd Avenue, Johnston, IA 50131
| | - Xiaomu Niu
- Pioneer Hi-Bred International, 7250 NW 62nd Avenue, Johnston, IA 50131
| | - Kevin A. Fengler
- Experimental Station, Crop Genetics Research and Development, DuPont, Wilmington, DE 19880; and
| | - Robert Meeley
- Pioneer Hi-Bred International, 7250 NW 62nd Avenue, Johnston, IA 50131
| | | | - Sergei Svitashev
- Pioneer Hi-Bred International, 7250 NW 62nd Avenue, Johnston, IA 50131
| | - Edward Bruggemann
- Pioneer Hi-Bred International, 7250 NW 62nd Avenue, Johnston, IA 50131
| | - Bailin Li
- Experimental Station, Crop Genetics Research and Development, DuPont, Wilmington, DE 19880; and
| | - Christine F. Hainey
- Experimental Station, Crop Genetics Research and Development, DuPont, Wilmington, DE 19880; and
| | - Slobodanka Radovic
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, 208, 33100 Udine, Italy
| | - Giusi Zaina
- Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze, 208, 33100 Udine, Italy
| | - J.-Antoni Rafalski
- Experimental Station, Crop Genetics Research and Development, DuPont, Wilmington, DE 19880; and
| | - Scott V. Tingey
- Experimental Station, Crop Genetics Research and Development, DuPont, Wilmington, DE 19880; and
| | - Guo-Hua Miao
- Pioneer Hi-Bred International, 7250 NW 62nd Avenue, Johnston, IA 50131
| | - Ronald L. Phillips
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108
- To whom correspondence may be addressed. E-mail: or
| | - Roberto Tuberosa
- *Department of Agroenvironmental Science and Technology, University of Bologna, Viale Fanin, 44, 40127 Bologna, Italy
| |
Collapse
|
62
|
Abstract
The function of plant genomes depends on chromatin marks such as the methylation of DNA and the post-translational modification of histones. Techniques for studying model plants such as Arabidopsis thaliana have enabled researchers to begin to uncover the pathways that establish and maintain chromatin modifications, and genomic studies are allowing the mapping of modifications such as DNA methylation on a genome-wide scale. Small RNAs seem to be important in determining the distribution of chromatin modifications, and RNA might also underlie the complex epigenetic interactions that occur between homologous sequences. Plants use these epigenetic silencing mechanisms extensively to control development and parent-of-origin imprinted gene expression.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Molecular, Cell and Developmental Biology, Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
63
|
Bond DM, Finnegan EJ. Passing the message on: inheritance of epigenetic traits. TRENDS IN PLANT SCIENCE 2007; 12:211-6. [PMID: 17434332 DOI: 10.1016/j.tplants.2007.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/13/2007] [Accepted: 03/27/2007] [Indexed: 05/14/2023]
Abstract
Epigenetic modifiers play an important role in genome organization, stability and the control of gene expression. Three research groups that are exploring the transfer of epigenetic information between generations have recently published papers. Mary Alleman et al. have shown that RNA-directed chromatin changes mediate paramutation in maize, and Minoo Rassoulzadegan et al. have demonstrated that RNA also plays a role in paramutation in mice. A new aspect of epigenetic regulation has been revealed by Jean Molinier et al. - they have demonstrated that the memory of exposure to stress is transferred through several generations.
Collapse
Affiliation(s)
- Donna M Bond
- CSIRO, Plant Industry, Canberra, ACT 2601, Australia
| | | |
Collapse
|
64
|
Gross SM, Hollick JB. Multiple trans-sensing interactions affect meiotically heritable epigenetic states at the maize pl1 locus. Genetics 2007; 176:829-39. [PMID: 17435245 PMCID: PMC1894611 DOI: 10.1534/genetics.107.072496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions between specific maize purple plant1 (pl1) alleles result in heritable changes of gene regulation that are manifested as differences in anthocyanin pigmentation. Transcriptionally repressed states of Pl1-Rhoades alleles (termed Pl') are remarkably stable and invariably facilitate heritable changes of highly expressed states (termed Pl-Rh) in Pl'/Pl-Rh plants. However, Pl' can revert to Pl-Rh when hemizygous, when heterozygous with pl1 alleles other than Pl1-Rhoades, or in the absence of trans-acting factors required to maintain repressed states. Cis-linked features of Pl1-Rhoades responsible for these trans-sensing behaviors remain unknown. Here, genetic tests of a pl1 allelic series identify two potentially separate cis-linked features: one facilitating repression of Pl-Rh and another stabilizing Pl' in trans. Neither function is affected in ethyl-methanesulfonate-induced Pl1-Rhoades derivatives that produce truncated PL1 peptides, indicating that PL1 is unlikely to mediate trans interactions. Both functions, however, are impaired in a spontaneous Pl1-Rhoades derivative that fails to produce detectable pl1 RNA. Pl'-like states can also repress expression of a pl1-W22 allele, but this repression is not meiotically heritable. As the Pl' state is not associated with unique small RNA species representing the pl1-coding region, the available data suggest that interactions between elements required for transcription underlie Pl1-Rhoades epigenetic behaviors.
Collapse
Affiliation(s)
| | - Jay B. Hollick
- Corresponding author: Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102. E-mail:
| |
Collapse
|
65
|
Haun WJ, Laoueillé-Duprat S, O'connell MJ, Spillane C, Grossniklaus U, Phillips AR, Kaeppler SM, Springer NM. Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:325-37. [PMID: 17181776 DOI: 10.1111/j.1365-313x.2006.02965.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Imprinted gene expression refers to differential transcription of alleles depending on their parental origin. To date, most examples of imprinted gene expression in plants occur in the triploid endosperm tissue. The Arabidopsis gene MEDEA displays an imprinted pattern of gene expression and has homology to the Drosophila Polycomb group (PcG) protein Enhancer-of-zeste (E(z)). We have tested the allele-specific expression patterns of the three maize E(z)-like genes Mez1, Mez2 and Mez3. The expression of Mez2 and Mez3 is not imprinted, with a bi-allelic pattern of transcription for both genes in both the endosperm and embryonic tissue. In contrast, Mez1 displays a bi-allelic expression pattern in the embryonic tissue, and a mono-allelic expression pattern in the developing endosperm tissue. We demonstrate that mono-allelic expression of the maternal Mez1 allele occurs throughout endosperm development. We have identified a 556 bp differentially methylated region (DMR) located approximately 700 bp 5' of the Mez1 transcription start site. This region is heavily methylated at CpG and CpNpG nucleotides on the non-expressed paternal allele but has low levels of methylation on the expressed maternal allele. Molecular evolutionary analysis indicates that conserved domains of all three Mez genes are under purifying selection. The common imprinted expression of Mez1 and MEDEA, in concert with their likely evolutionary origins, suggests that there may be a requirement for imprinting of at least one E(z)-like gene in angiosperms.
Collapse
Affiliation(s)
- William J Haun
- Department of Plant Biology, University of Minnesota, 1445 Gortner Avenue, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Bruggmann R, Bharti AK, Gundlach H, Lai J, Young S, Pontaroli AC, Wei F, Haberer G, Fuks G, Du C, Raymond C, Estep MC, Liu R, Bennetzen JL, Chan AP, Rabinowicz PD, Quackenbush J, Barbazuk WB, Wing RA, Birren B, Nusbaum C, Rounsley S, Mayer KF, Messing J. Uneven chromosome contraction and expansion in the maize genome. Genes Dev 2006; 16:1241-51. [PMID: 16902087 PMCID: PMC1581433 DOI: 10.1101/gr.5338906] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Maize (Zea mays or corn), both a major food source and an important cytogenetic model, evolved from a tetraploid that arose about 4.8 million years ago (Mya). As a result, maize has extensive duplicated regions within its genome. We have sequenced the two copies of one such region, generating 7.8 Mb of sequence spanning 17.4 cM of the short arm of chromosome 1 and 6.6 Mb (25.6 cM) from the long arm of chromosome 9. Rice, which did not undergo a similar whole genome duplication event, has only one orthologous region (4.9 Mb) on the short arm of chromosome 3, and can be used as reference for the maize homoeologous regions. Alignment of the three regions allowed identification of syntenic blocks, and indicated that the maize regions have undergone differential contraction in genic and intergenic regions and expansion by the insertion of retrotransposable elements. Approximately 9% of the predicted genes in each duplicated region are completely missing in the rice genome, and almost 20% have moved to other genomic locations. Predicted genes within these regions tend to be larger in maize than in rice, primarily because of the presence of predicted genes in maize with larger introns. Interestingly, the general gene methylation patterns in the maize homoeologous regions do not appear to have changed with contraction or expansion of their chromosomes. In addition, no differences in methylation of single genes and tandemly repeated gene copies have been detected. These results, therefore, provide new insights into the diploidization of polyploid species.
Collapse
Affiliation(s)
- Rémy Bruggmann
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Arvind K. Bharti
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Heidrun Gundlach
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Jinsheng Lai
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Ana C. Pontaroli
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Fusheng Wei
- Arizona Genomics Institute (AGI), University of Arizona, Tucson, Arizona 85721, USA
| | - Georg Haberer
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Galina Fuks
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Chunguang Du
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Christina Raymond
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Matt C. Estep
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Renyi Liu
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | - Agnes P. Chan
- The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA
| | | | - John Quackenbush
- The Institute for Genomic Research (TIGR), Rockville, Maryland 20850, USA
| | - W. Brad Barbazuk
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Rod A. Wing
- Arizona Genomics Institute (AGI), University of Arizona, Tucson, Arizona 85721, USA
| | - Bruce Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Steve Rounsley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Klaus F.X. Mayer
- Munich Information Center for Protein Sequences (MIPS), Institute for Bioinformatics, GSF Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | - Joachim Messing
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
67
|
Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S. Inheritance of inflorescence architecture in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:931-42. [PMID: 16847662 DOI: 10.1007/s00122-006-0352-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 06/21/2006] [Indexed: 05/02/2023]
Abstract
The grass inflorescence is the primary food source for humanity, and has been repeatedly shaped by human selection during the domestication of different cereal crops. Of all major cultivated cereals, sorghum [Sorghum bicolor (L.) Moench] shows the most striking variation in inflorescence architecture traits such as branch number and branch length, but the genetic basis of this variation is little understood. To study the inheritance of inflorescence architecture in sorghum, 119 recombinant inbred lines from an elite by exotic cross were grown in three environments and measured for 15 traits, including primary, secondary, and tertiary inflorescence branching. Eight characterized genes that are known to control inflorescence architecture in maize (Zea mays L.) and other grasses were mapped in sorghum. Two of these candidate genes, Dw3 and the sorghum ortholog of ramosa2, co-localized precisely with QTL of large effect for relevant traits. These results demonstrate the feasibility of using genomic and mutant resources from maize and rice (Oryza sativa L.) to investigate the inheritance of complex traits in related cereals.
Collapse
Affiliation(s)
- P J Brown
- Institute for Genomic Diversity, Cornell University, 158 Biotechnology Building, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
68
|
|
69
|
McGinnis KM, Springer C, Lin Y, Carey CC, Chandler V. Transcriptionally silenced transgenes in maize are activated by three mutations defective in paramutation. Genetics 2006; 173:1637-47. [PMID: 16702420 PMCID: PMC1526669 DOI: 10.1534/genetics.106.058669] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/09/2006] [Indexed: 11/18/2022] Open
Abstract
Plants with mutations in one of three maize genes, mop1, rmr1, and rmr2, are defective in paramutation, an allele-specific interaction that leads to meiotically heritable chromatin changes. Experiments reported here demonstrate that these genes are required to maintain the transcriptional silencing of two different transgenes, suggesting that paramutation and transcriptional silencing of transgenes share mechanisms. We hypothesize that the transgenes are silenced through an RNA-directed chromatin mechanism, because mop1 encodes an RNA-dependent RNA polymerase. In all the mutants, DNA methylation was reduced in the active transgenes relative to the silent transgenes at all of the CNG sites monitored within the transgene promoter. However, asymmetrical methylation persisted at one site within the reactivated transgene in the rmr1-1 mutant. With that one mutant, rmr1-1, the transgene was efficiently resilenced upon outcrossing to reintroduce the wild-type protein. In contrast, with the mop1-1 and rmr2-1 mutants, the transgene remained active in a subset of progeny even after the wild-type proteins were reintroduced by outcrossing. Interestingly, this immunity to silencing increased as the generations progressed, consistent with a heritable chromatin state being formed at the transgene in plants carrying the mop1-1 and rmr2-1 mutations that becomes more resistant to silencing in subsequent generations.
Collapse
Affiliation(s)
- Karen M McGinnis
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
70
|
Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet 2006; 38:594-7. [PMID: 16642024 DOI: 10.1038/ng1784] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/16/2006] [Indexed: 11/10/2022]
Abstract
Although quantitative trait locus (QTL) mapping has been successful in describing the genetic architecture of complex traits, the molecular basis of quantitative variation is less well understood, especially in plants such as maize that have large genome sizes. Regulatory changes at the teosinte branched1 (tb1) gene have been proposed to underlie QTLs of large effect for morphological differences that distinguish maize (Zea mays ssp. mays) from its wild ancestors, the teosintes (Z. mays ssp. parviglumis and mexicana). We used a fine mapping approach to show that intergenic sequences approximately 58-69 kb 5' to the tb1 cDNA confer pleiotropic effects on Z. mays morphology. Moreover, using an allele-specific expression assay, we found that sequences >41 kb upstream of tb1 act in cis to alter tb1 transcription. Our findings show that the large stretches of noncoding DNA that comprise the majority of many plant genomes can be a source of variation affecting gene expression and quantitative phenotypes.
Collapse
Affiliation(s)
- Richard M Clark
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
71
|
Shepherd DN, Martin DP, Varsani A, Thomson JA, Rybicki EP, Klump HH. Restoration of native folding of single-stranded DNA sequences through reverse mutations: an indication of a new epigenetic mechanism. Arch Biochem Biophys 2006; 453:108-22. [PMID: 16427599 DOI: 10.1016/j.abb.2005.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/15/2005] [Indexed: 11/27/2022]
Abstract
We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.
Collapse
Affiliation(s)
- Dionne N Shepherd
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | | | | | | | | |
Collapse
|
72
|
Chandler VL. Poetry of b1 paramutation: cis- and trans-chromatin communication. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:355-61. [PMID: 16117668 DOI: 10.1101/sqb.2004.69.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- V L Chandler
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
73
|
Hollick JB, Kermicle JL, Parkinson SE. Rmr6 maintains meiotic inheritance of paramutant states in Zea mays. Genetics 2005; 171:725-40. [PMID: 16020780 PMCID: PMC1456783 DOI: 10.1534/genetics.105.045260] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/08/2005] [Indexed: 11/18/2022] Open
Abstract
Paramutation generates heritable changes affecting regulation of specific alleles found at several Zea mays (maize) loci that encode transcriptional regulators of anthocyanin biosynthetic genes. Although the direction and extent of paramutation is influenced by poorly understood allelic interactions occurring in diploid sporophytes, two required to maintain repression loci (rmr1 and rmr2), as well as mediator of paramutation1 (mop1), affect this process at the purple plant1 (pl1) locus. Here we show that the rmr6 locus is required for faithful transmission of weakly expressed paramutant states previously established at both pl1 and red1 (r1) loci. Transcriptional repression occurring at both pl1 and booster1 (b1) loci as a result of paramutation also requires Rmr6 action. Reversions to highly expressed, nonparamutant states at both r1 and pl1 occur in plants homozygous for rmr6 mutations. Pedigree analysis of reverted pl1 alleles reveals variable latent susceptibilities to spontaneous paramutation in future generations, suggesting a quantitative nature of Rmr6-based alterations. Genetic tests demonstrate that Rmr6 encodes a common component required for establishing paramutations at diverse maize loci. Our analyses at pl1 and r1 suggest that this establishment requires Rmr6-dependent somatic maintenance of meiotically heritable epigenetic marks.
Collapse
Affiliation(s)
- Jay B Hollick
- Laboratory of Genetics, University of Wisconsin, Madison, 53706, USA.
| | | | | |
Collapse
|
74
|
Abstract
Small RNAs (sRNAs) can regulate transcript and protein abundance. Previously, they have been identified using traditional cloning approaches, which has limited how many could be characterized. Now, the Meyers and Green laboratories have used massively parallel signature sequencing technology to find over 1.5 million sRNAs in Arabidopsis thaliana. These new sRNAs reveal a greater-than-expected potential role for sRNAs in gene regulation, preferential expression or usage of sRNAs in flowers, and the prospect of targeted sRNA-mediated regulation of pseudogenes. In addition, new plant microRNAs have been identified, some of which may be unique to Arabidopsis.
Collapse
Affiliation(s)
- Matthew W Vaughn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
75
|
Cigan AM, Unger-Wallace E, Haug-Collet K. Transcriptional gene silencing as a tool for uncovering gene function in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:929-40. [PMID: 16146530 DOI: 10.1111/j.1365-313x.2005.02492.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcriptional gene silencing has broad applications for studying gene function in planta. In maize, a large number of genes have been identified as tassel-preferred in their expression pattern, both by traditional genetic methods and by recent high-throughput expression profiling platforms. Approaches using RNA suppression may provide a rapid alternative means to identify genes directly related to pollen development in maize. The male fertility gene Ms45 and several anther-expressed genes of unknown function were used to evaluate the efficacy of generating male-sterile plants by transcriptional gene silencing. A high frequency of male-sterile plants was obtained by constitutively expressing inverted repeats (IR) of the Ms45 promoter. These sterile plants lacked MS45 mRNA due to transcriptional inactivity of the target promoter. Moreover, fertility was restored to these promoter IR-containing plants by expressing the Ms45 coding region using heterologous promoters. Transcriptional silencing of other anther-expressed genes also significantly affected male fertility phenotypes and led to increased methylation of the target promoter DNA sequences. These studies provide evidence of disruption of gene activity in monocots by RNA interference constructs directed against either native or transformed promoter regions. This approach not only enables the correlation of monocot anther-expressed genes with functions that are important for reproduction in maize, but may also provide a tool for studying gene function and identifying regulatory components unique to transcriptional gene control.
Collapse
Affiliation(s)
- A Mark Cigan
- Agronomic Traits Department, Pioneer Hi-Bred International, 7300 NW 62nd Ave., Johnston, IA 50131, USA.
| | | | | |
Collapse
|
76
|
Zhang F, Peterson T. Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region. THE PLANT CELL 2005; 17:903-14. [PMID: 15722466 PMCID: PMC1069707 DOI: 10.1105/tpc.104.029660] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 12/21/2004] [Indexed: 05/22/2023]
Abstract
The maize (Zea mays) p1 (for pericarp color1) gene encodes an R2R3 Myb-like transcription factor that regulates the flavonoid biosynthetic pathway in floral organs, most notably kernel pericarp and cob. Alleles of the p1 gene condition distinct tissue-specific pigmentation patterns; to elucidate the molecular basis of these allele-specific expression patterns, we characterized two novel P1-rw (for red pericarp/white cob) alleles, P1-rw1077 and P1-rw751Ac. Structural analysis of P1-rw1077 indicated that this allele was generated by recombination between p1 and the tightly linked paralogous gene, p2. In the resulting gene, the p1 coding sequence was replaced by the p2 coding sequence, whereas the flanking p1 regulatory sequences remained largely preserved. The red pericarp color specified by P1-rw1077 suggests that the p1- and p2-encoded proteins are functionally equivalent as regulatory factors in the flavonoid biosynthesis pathway. Sequence analysis shows that the P1-rw1077 allele lacks a 386-bp sequence in a distal enhancer region 5 kb upstream of the transcription start site. An independently derived P1-rw allele contains an Ac insertion into the same sequence, indicating that this site likely contains cob glume-specific regulatory elements.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50010, USA
| | | |
Collapse
|
77
|
Abstract
During the development of a multicellular organism, cell differentiation involves activation and repression of transcription programs that must be stably maintained during subsequent cell divisions. Chromatin remodeling plays a crucial role in regulating chromatin states that conserve transcription programs and provide a mechanism for chromatin states to be maintained as cells proliferate, a process referred to as epigenetic inheritance. A large number of factors and protein complexes are now known to be involved in regulating the dynamic states of chromatin structure. Their biological functions and molecular mechanisms are beginning to be revealed.
Collapse
Affiliation(s)
- Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.
| | | |
Collapse
|
78
|
Kellogg EA, Bennetzen JL. The evolution of nuclear genome structure in seed plants. AMERICAN JOURNAL OF BOTANY 2004; 91:1709-25. [PMID: 21652319 DOI: 10.3732/ajb.91.10.1709] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant nuclear genomes exhibit extensive structural variation in size, chromosome number, number and arrangement of genes, and number of genome copies per nucleus. This variation is the outcome of a set of highly active processes, including gene duplication and deletion, chromosomal duplication followed by gene loss, amplification of retrotransposons separating genes, and genome rearrangement, the latter often following hybridization and/or polyploidy. While these changes occur continuously, it is not surprising that some of them should be fixed evolutionarily and come to mark major clades. Large-scale duplications pre-date the radiation of Brassicaceae and Poaceae and correlate with the origin of many smaller clades as well. Nuclear genomes are largely colinear among closely related species, but more rearrangements are observed with increasing phylogenetic distance; however, the correlation between amount of rearrangement and time since divergence is not perfect. By changing patterns of gene expression and triggering genome rearrangements, novel combinations of genomes (hybrids) may be a driving force in evolution.
Collapse
Affiliation(s)
- Elizabeth A Kellogg
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121 USA
| | | |
Collapse
|
79
|
Chandler VL, Stam M. Chromatin conversations: mechanisms and implications of paramutation. Nat Rev Genet 2004; 5:532-44. [PMID: 15211355 DOI: 10.1038/nrg1378] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vicki L Chandler
- Department of Plant Sciences, 303 Forbes Building, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
80
|
Remington DL, Vision TJ, Guilfoyle TJ, Reed JW. Contrasting modes of diversification in the Aux/IAA and ARF gene families. PLANT PHYSIOLOGY 2004; 135:1738-52. [PMID: 15247399 PMCID: PMC519086 DOI: 10.1104/pp.104.039669] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/22/2004] [Accepted: 04/26/2004] [Indexed: 05/18/2023]
Abstract
The complete genomic sequence for Arabidopsis provides the opportunity to combine phylogenetic and genomic approaches to study the evolution of gene families in plants. The Aux/IAA and ARF gene families, consisting of 29 and 23 loci in Arabidopsis, respectively, encode proteins that interact to mediate auxin responses and regulate various aspects of plant morphological development. We developed scenarios for the genomic proliferation of the Aux/IAA and ARF families by combining phylogenetic analysis with information on the relationship between each locus and the previously identified duplicated genomic segments in Arabidopsis. This analysis shows that both gene families date back at least to the origin of land plants and that the major Aux/IAA and ARF lineages originated before the monocot-eudicot divergence. We found that the extant Aux/IAA loci arose primarily through segmental duplication events, in sharp contrast to the ARF family and to the general pattern of gene family proliferation in Arabidopsis. Possible explanations for the unusual mode of Aux/IAA duplication include evolutionary constraints imposed by complex interactions among proteins and pathways, or the presence of long-distance cis-regulatory sequences. The antiquity of the two gene families and the unusual mode of Aux/IAA diversification have a number of potential implications for understanding both the functional and evolutionary roles of these genes.
Collapse
Affiliation(s)
- David L Remington
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402-6170, USA.
| | | | | | | |
Collapse
|
81
|
Affiliation(s)
- Chris B Della Vedova
- Division of Biological Sciences University of Missouri-Columbia Columbia, MO 65211
| | | |
Collapse
|
82
|
Rafalski A, Morgante M. Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 2004; 20:103-11. [PMID: 14746992 DOI: 10.1016/j.tig.2003.12.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two species with genomes of almost identical size, maize and human, have different evolutionary histories, and as a result their genomes differ greatly in their content of retroelements, average size of the genes and amount of genetic diversity. However, there are also significant similarities: they both have undergone bottlenecks during their recent history and seem to have non-uniform distribution of recombination events. The human genome has been shown to contain large linkage blocks characterized by a limited number of haplotypes. A similar linkage block structure is likely to exist in maize. Although highly diverse maize populations show rapid decline of linkage disequilibrium, as in humans, it is possible to define populations with strong linkage disequilibrium, suitable for whole-genome scan association mapping. The genetic diversity and lack of sequence homology found in maize influences recombinational properties and local linkage disequilibrium levels but also challenges our understanding of the relationship between the genome sequence and species definition.
Collapse
Affiliation(s)
- Antoni Rafalski
- DuPont Crop Genetics, Experimental Station E353, PO Box 80353, Wilmington DE 19880-0353, USA.
| | | |
Collapse
|
83
|
Clark RM, Linton E, Messing J, Doebley JF. Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci U S A 2004; 101:700-7. [PMID: 14701910 PMCID: PMC321743 DOI: 10.1073/pnas.2237049100] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Domesticated maize and its wild ancestor (teosinte) differ strikingly in morphology and afford an opportunity to examine the connection between strong selection and diversity in a major crop species. The tb1 gene largely controls the increase in apical dominance in maize relative to teosinte, and a region of the tb1 locus 5' to the transcript sequence was a target of selection during maize domestication. To better characterize the impact of selection at a major "domestication" locus, we have sequenced the upstream tb1 genomic region and systematically sampled nucleotide diversity for sites located as far as 163 kb upstream to tb1. Our analyses define a selective sweep of approximately 60-90 kb 5' to the tb1 transcribed sequence. The selected region harbors a mixture of unique sequences and large repetitive elements, but it contains no predicted genes. Diversity at the nearest 5' gene to tb1 is typical of that for neutral maize loci, indicating that selection at tb1 has had a minimal impact on the surrounding chromosomal region. Our data also show low intergenic linkage disequilibrium in the region and suggest that selection has had a minor role in shaping the pattern of linkage disequilibrium that is observed. Finally, our data raise the possibility that maize-like tb1 haplotypes are present in extant teosinte populations, and our findings also suggest a model of tb1 gene regulation that differs from traditional views of how plant gene expression is controlled.
Collapse
Affiliation(s)
- Richard M Clark
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
84
|
Reddy VS, Reddy ASN. Developmental and cell-specific expression of ZWICHEL is regulated by the intron and exon sequences of its gene. PLANT MOLECULAR BIOLOGY 2004; 54:273-93. [PMID: 15159628 DOI: 10.1023/b:plan.0000028793.88757.8b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Functional studies with ZWICHEL ( ZWI ), which encodes a Ca(2+)-calmodulin-regulated kinesin, have shown its involvement in trichome morphogenesis and cell division. To identify regulatory regions that control the ZWI expression pattern, we generated transgenic Arabidopsis plants with a GUS reporter driven by different lengths of the ZWI gene 5' region alone or 5' and 3' regions together. The 5' fusions contain varying lengths of the coding and non-coding regions of beta - HYDROXYISOBUTYRYL-CoA HYDROLASE 1 ( CHY1 ), which is upstream of ZWI, and a 162 bp intergenic region. In transgenic plants with 5' 460::GUS, GUS activity was observed primarily in the root hairs whereas transgenic plants with an additional 5' 266 bp region from the CHY1 gene (5' 726::GUS) showed strong GUS accumulation in the entire root including root hairs and root tip, calli and at various developmental stages in trichomes and pollen. However, very little GUS accumulation was detected in roots of dark-grown or root tips of cold-treated seedlings with 5' ZWI constructs. These results were further confirmed by quantifying GUS enzyme activity and transcripts in these seedlings. Calli and pollen transformed with the 5' distal 268 bp fused in antisense orientation to the proximal 460 bp did not show GUS expression. Further, IAA-treated dark-grown seedlings with 726::GUS, but not with 460::GUS, showed high GUS expression in specific regions (outer layer 2a cells) at the base of the lateral roots. The ZWI 3' region (3 kb) did not influence the GUS expression pattern driven by the 5' 726 bp. The absence of CHY1 transcripts in the chy1-2 mutant did not alter either ZWI expression or ZWI-mediated trichome morphogenesis. Thus, our data suggest that the 3' part of the CHY1 gene contains regulatory elements that control ZWI gene expression in dividing cells and other cells that exhibit polarized growth such as root hairs, pollen and trichomes. This is the first evidence that the regulatory regions conferring developmental and cell-specific expression of a gene reside in the introns and exons of its upstream protein-coding gene.
Collapse
Affiliation(s)
- Vaka S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, 200 W Lake Street, Fort Collins, CO 80523, USA
| | | |
Collapse
|
85
|
Abstract
New alleles are constantly accumulated during intentional crop selection. The molecular understanding of these alleles has stimulated new genomic approaches to mapping quantitative trait loci (QTL) and haplotype multiplicity of the genes concerned. A limited number of quantitative trait nucleotides responsible for QTL variation have been described, but an acceleration in their rate of discovery is expected with the adoption of linkage disequilibrium and candidate gene strategies for QTL fine mapping and cloning. Additional layers of regulatory variation have been studied that could also contribute to the molecular basis of quantitative genetics of crop traits. Despite this progress, the role of marker-assisted selection in plant breeding will ultimately depend on the genetic model underlying quantitative variation.
Collapse
Affiliation(s)
- Michele Morgante
- Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universita' di Udine, Via delle Scienze 208, 33100, Udine, Italy.
| | | |
Collapse
|
86
|
Stam M, Belele C, Dorweiler JE, Chandler VL. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev 2002; 16:1906-18. [PMID: 12154122 PMCID: PMC186425 DOI: 10.1101/gad.1006702] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination mapping defined a 6-kb region, 100 kb upstream of the transcription start site, that is required for B-I enhancer activity and paramutation-a stable, heritable change in transcription caused by allele interactions in maize (Zea mays). In this region, B-I and B' (the only b1 alleles that participate in paramutation) have seven tandem repeats of an 853-bp sequence otherwise unique in the genome; other alleles have one. Examination of recombinant alleles with different numbers of tandem repeats indicates that the repeats are required for both paramutation and enhancer function. The 6-kb region is identical in B-I and B', showing that epigenetic mechanisms mediate the stable silencing associated with paramutation. This is the first endogenous gene for which sequences required for paramutation have been defined and examined for methylation and chromatin structure. The tandem repeat sequences are more methylated in B-I (high expressing) relative to B' (low expressing), opposite of the typical correlation. Furthermore, the change in repeat methylation follows establishment of the B' epigenetic state. B-I has a more open chromatin structure in the repeats relative to B'. The nuclease hypersensitivity differences developmentally precede transcription, suggesting that the repeat chromatin structure could be the heritable imprint distinguishing the two transcription states.
Collapse
Affiliation(s)
- Maike Stam
- Plant Sciences Department, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|