51
|
Iyer CC, McGovern VL, Murray JD, Gombash SE, Zaworski PG, Foust KD, Janssen PML, Burghes AHM. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA. Hum Mol Genet 2015; 24:6160-73. [PMID: 26276812 DOI: 10.1093/hmg/ddv332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, Department of Neurology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA and
| |
Collapse
|
52
|
Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse. PLoS One 2015; 10:e0132364. [PMID: 26134627 PMCID: PMC4489873 DOI: 10.1371/journal.pone.0132364] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons.
Collapse
|
53
|
Palacino J, Swalley SE, Song C, Cheung AK, Shu L, Zhang X, Van Hoosear M, Shin Y, Chin DN, Keller CG, Beibel M, Renaud NA, Smith TM, Salcius M, Shi X, Hild M, Servais R, Jain M, Deng L, Bullock C, McLellan M, Schuierer S, Murphy L, Blommers MJJ, Blaustein C, Berenshteyn F, Lacoste A, Thomas JR, Roma G, Michaud GA, Tseng BS, Porter JA, Myer VE, Tallarico JA, Hamann LG, Curtis D, Fishman MC, Dietrich WF, Dales NA, Sivasankaran R. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol 2015; 11:511-7. [PMID: 26030728 DOI: 10.1038/nchembio.1837] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/06/2015] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.
Collapse
Affiliation(s)
- James Palacino
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Susanne E Swalley
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Cheng Song
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Atwood K Cheung
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Lei Shu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Xiaolu Zhang
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Mailin Van Hoosear
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Youngah Shin
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Donovan N Chin
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Martin Beibel
- Novartis Institutes for Biomedical Research, Forum 1, Basel, Switzerland
| | - Nicole A Renaud
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Thomas M Smith
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Michael Salcius
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Xiaoying Shi
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Marc Hild
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Rebecca Servais
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Monish Jain
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Lin Deng
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Caroline Bullock
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Michael McLellan
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Sven Schuierer
- Novartis Institutes for Biomedical Research, Forum 1, Basel, Switzerland
| | - Leo Murphy
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Cecile Blaustein
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Frada Berenshteyn
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Arnaud Lacoste
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jason R Thomas
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Forum 1, Basel, Switzerland
| | - Gregory A Michaud
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Brian S Tseng
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jeffery A Porter
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Vic E Myer
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - John A Tallarico
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Lawrence G Hamann
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Daniel Curtis
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Mark C Fishman
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - William F Dietrich
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Natalie A Dales
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | | |
Collapse
|
54
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
55
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
56
|
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder pathologically characterized by the degeneration of motor neurons in the spinal cord and muscle atrophy. Motor neuron loss often results in severe muscle weakness causing affected infants to die before reaching 2 years of age. Patients with milder forms of SMA exhibit slowly progressive muscle weakness over many years. SMA is caused by the loss of SMN1 and the retention of at least 1 copy of a highly homologous SMN2. An alternative splicing event in the pre-mRNA arising from SMN2 results in the production of low levels of functional SMN protein. To date, there are no effective treatments available to treat patients with SMA. However, over the last 2 decades, the development of SMA mouse models and the identification of therapeutic targets have resulted in a promising drug pipeline for SMA. Here, we highlight some of the therapeutic strategies that have been developed to activate SMN2 expression, modulate splicing of the SMN2 pre-mRNA, or replace SMN1 by gene therapy. After 2 decades of translational research, we now stand within reach of a treatment for SMA.
Collapse
Affiliation(s)
- Constantin d’Ydewalle
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| |
Collapse
|
57
|
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The disease originates from low levels of SMN protein due to deletion and/or mutations of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1. While SMN1 and SMN2 are nearly identical, SMN2 predominantly generates a truncated protein (SMNΔ7) due to skipping of exon 7, the last coding exon. Several avenues for SMA therapy are being explored, including means to enhance SMN2 transcription, correct SMN2 exon 7 splicing, stabilize SMN/SMNΔ7 protein, manipulate SMN-regulated pathways and SMN1 gene delivery by viral vectors. This review focuses on the aspects of target discovery, validations and outcome measures for a promising therapy of SMA.
Collapse
|
58
|
Duque SI, Arnold WD, Odermatt P, Li X, Porensky PN, Schmelzer L, Meyer K, Kolb SJ, Schümperli D, Kaspar BK, Burghes AHM. A large animal model of spinal muscular atrophy and correction of phenotype. Ann Neurol 2015; 77:399-414. [PMID: 25516063 DOI: 10.1002/ana.24332] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/29/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.
Collapse
Affiliation(s)
- Sandra I Duque
- Department of Molecular and Cellular Biochemistry, Ohio State University Wexner Medical Center, Columbus, OH
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Heier CR, DiDonato CJ. ECG in neonate mice with spinal muscular atrophy allows assessment of drug efficacy. Front Biosci (Elite Ed) 2015; 7:107-16. [PMID: 25553367 DOI: 10.2741/e721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Molecular technologies have produced diverse arrays of animal models for studying genetic diseases and potential therapeutics. Many have neonatal phenotypes. Spinal muscular atrophy (SMA) is a neuromuscular disorder primarily affecting children, and is of great interest in translational medicine. The most widely used SMA mouse models require all phenotyping to be performed in neonates since they do not survive much past weaning. Pre-clinical studies in neonate mice can be hindered by toxicity and a lack of quality phenotyping assays, since many assays are invalid in pups or require subjective scoring with poor inter-rater variability. We find, however, that passive electrocardiography (ECG) recording in conscious 11-day old SMA mice provides sensitive outcome measures, detecting large differences in heart rate, cardiac conduction, and autonomic control resulting from disease. We find significant drug benefits upon treatment with G418, an aminoglycoside targeting the underlying protein deficiency, even in the absence of overt effects on growth and survival. These findings provide several quantitative physiological biomarkers for SMA preclinical studies, and will be of utility to diverse disease models featuring neonatal cardiac arrhythmias.
Collapse
Affiliation(s)
- Christopher R Heier
- Center for Genetic Medicine Research, Childrens National Medical Center, Washington, DC
| | - Christine J DiDonato
- Center for Genetic Medicine Research, Childrens National Medical Center, Washington, DC
| |
Collapse
|
60
|
Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 2014; 51:157-67. [PMID: 25346245 DOI: 10.1002/mus.24497] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) describes a group of disorders associated with spinal motor neuron loss. In this review we provide an update regarding the most common form of SMA, proximal or 5q-SMA, and discuss the contemporary approach to diagnosis and treatment. Electromyography and muscle biopsy features of denervation were once the basis for diagnosis, but molecular testing for homozygous deletion or mutation of the SMN1 gene allows efficient and specific diagnosis. In combination with loss of SMN1, patients retain variable numbers of copies of a second similar gene, SMN2, which produces reduced levels of the survival motor neuron (SMN) protein that are insufficient for normal motor neuron function. Despite the fact that understanding of how ubiquitous reduction of SMN protein leads to motor neuron loss remains incomplete, several promising therapeutics are now being tested in early-phase clinical trials.
Collapse
Affiliation(s)
- W David Arnold
- Division of Neuromuscular Disorders, Department of Neurology, Wexner Medical Center, The Ohio State University, 395 West 12th Avenue, Columbus, Ohio, 43210, USA; Department of Physical Medicine and Rehabilitation, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
61
|
Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PLoS One 2014; 9:e110846. [PMID: 25338097 PMCID: PMC4206449 DOI: 10.1371/journal.pone.0110846] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deficiency of the ubiquitously expressed survival motoneuron (SMN) protein. SMN is crucial component of a complex for the assembly of spliceosomal small nuclear ribonucleoprotein (snRNP) particles. Other cellular functions of SMN are less characterized so far. SMA predominantly affects lower motoneurons, but the cellular basis for this relative specificity is still unknown. In contrast to nonneuronal cells where the protein is mainly localized in perinuclear regions and the nucleus, Smn is also present in dendrites, axons and axonal growth cones of isolated motoneurons invitro. However, this distribution has not been shown invivo and it is not clear whether Smn and hnRNP R are also present in presynaptic axon terminals of motoneurons in postnatal mice. Smn also associates with components not included in the classical SMN complex like RNA-binding proteins FUS, TDP43, HuD and hnRNP R which are involved in RNA processing, subcellular localization and translation. We show here that Smn and hnRNP R are present in presynaptic compartments at neuromuscular endplates of embryonic and postnatal mice. Smn and hnRNP R are localized in close proximity to each other in axons and axon terminals both invitro and invivo. We also provide new evidence for a direct interaction of Smn and hnRNP R invitro and invivo, particularly in the cytosol of motoneurons. These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis.
Collapse
|
62
|
Borg R, Cauchi RJ. GEMINs: potential therapeutic targets for spinal muscular atrophy? Front Neurosci 2014; 8:325. [PMID: 25360080 PMCID: PMC4197776 DOI: 10.3389/fnins.2014.00325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
The motor neuron degenerative disease spinal muscular atrophy (SMA) remains one of the most frequently inherited causes of infant mortality. Afflicted patients loose the survival motor neuron 1 (SMN1) gene but retain one or more copies of SMN2, a homolog that is incorrectly spliced. Primary treatment strategies for SMA aim at boosting SMN protein levels, which are insufficient in patients. SMN is known to partner with a set of diverse proteins collectively known as GEMINs to form a macromolecular complex. The SMN-GEMINs complex is indispensible for chaperoning the assembly of small nuclear ribonucleoproteins (snRNPs), which are key for pre-mRNA splicing. Pharmaceutics that alleviate the neuromuscular phenotype by restoring the fundamental function of SMN without augmenting its levels are also crucial in the development of an effective treatment. Their use as an adjunct therapy is predicted to enhance benefit to patients. Inspired by the surprising discovery revealing a premier role for GEMINs in snRNP biogenesis together with in vivo studies documenting their requirement for the correct function of the motor system, this review speculates on whether GEMINs constitute valid targets for SMA therapeutic development.
Collapse
Affiliation(s)
- Rebecca Borg
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta Msida, Malta
| |
Collapse
|
63
|
Abstract
Spinal muscular atrophy (SMA) is a frequently fatal neuromuscular disorder and the most common inherited cause of infant mortality. SMA results from reduced levels of the survival of motor neuron (SMN) protein. Although the disease was first described more than a century ago, a precise understanding of its genetics was not obtained until the SMA genes were cloned in 1995. This was followed in rapid succession by experiments that assigned a role to the SMN protein in the proper splicing of genes, novel animal models of the disease, and the eventual use of the models in the pre clinical development of rational therapies for SMA. These successes have led the scientific and clinical communities to the cusp of what are expected to be the first truly promising treatments for the human disorder. Yet, important questions remain, not the least of which is how SMN paucity triggers a predominantly neuromuscular phenotype. Here we review how our understanding of the disease has evolved since the SMA genes were identified. We begin with a brief description of the genetics of SMA and the proposed roles of the SMN protein. We follow with an examination of how the genetics of the disease was exploited to develop genetically faithful animal models, and highlight the insights gained from their analysis. We end with a discussion of ongoing debates, future challenges, and the most promising treatments to have emerged from our current knowledge of the disease.
Collapse
Affiliation(s)
- Tomoyuki Awano
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Jeong-Ki Kim
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Umrao R. Monani
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Department of Neurology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| |
Collapse
|
64
|
Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, Khoo B. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 2014; 25:587-98. [PMID: 24826963 DOI: 10.1089/hum.2013.234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synthetic splice-switching oligonucleotides (SSOs) target nuclear pre-mRNA molecules to change exon splicing and generate an alternative protein isoform. Clinical trials with two competitive SSO drugs are underway to treat Duchenne muscular dystrophy (DMD). Beyond DMD, many additional therapeutic applications are possible, with some in phase 1 clinical trials or advanced preclinical evaluation. Here, we present an overview of the central factors involved in developing therapeutic SSOs for the treatment of diseases. The selection of susceptible pre-mRNA target sequences, as well as the design and chemical modification of SSOs to increase SSO stability and effectiveness, are key initial considerations. Identification of effective SSO target sequences is still largely empirical and published guidelines are not a universal guarantee for success. Specifically, exon-targeted SSOs, which are successful in modifying dystrophin splicing, can be ineffective for splice-switching in other contexts. Chemical modifications, importantly, are associated with certain characteristic toxicities, which need to be addressed as target diseases require chronic treatment with SSOs. Moreover, SSO delivery in adequate quantities to the nucleus of target cells without toxicity can prove difficult. Last, the means by which these SSOs are administered needs to be acceptable to the patient. Engineering an efficient therapeutic SSO, therefore, necessarily entails a compromise between desirable qualities and effectiveness. Here, we describe how the application of optimal solutions may differ from case to case.
Collapse
Affiliation(s)
- Petra Disterer
- 1 Institute for Liver and Digestive Health, Division of Medicine, University College London , London, NW3 2PF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
65
|
Kang PB, Gooch CL, McDermott MP, Darras BT, Finkel RS, Yang ML, Sproule DM, Chung WK, Kaufmann P, de Vivo DC. The motor neuron response to SMN1 deficiency in spinal muscular atrophy. Muscle Nerve 2014; 49:636-44. [PMID: 23893312 DOI: 10.1002/mus.23967] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The purpose of this study was to measure and analyze motor unit number estimation (MUNE) values longitudinally in spinal muscular atrophy (SMA). METHODS Sixty-two children with SMA types 2 and 3 were observed prospectively for up to 42 months. Longitudinal electrophysiological data were collected, including compound motor action potential (CMAP), single motor unit action potential (SMUP), and MUNE. RESULTS Significant motor neuron loss and compensatory collateral reinnervation were noted at baseline. Over time, there was a significant mean increase in MUNE (4.92 units/year, P = 0.009), a mean decrease in SMUP amplitude (-6.32 μV/year, P = 0.10), and stable CMAP amplitude. CONCLUSIONS The unexpected longitudinal results differ from findings in amyotrophic lateral sclerosis studies, perhaps indicating that compensatory processes in SMA involve new motor unit development. A better understanding of the mechanisms of motor unit decline and compensation in SMA is important for assessing novel therapeutic strategies and for providing key insights into disease pathophysiology.
Collapse
Affiliation(s)
- Peter B Kang
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts, 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Robbins KL, Glascock JJ, Osman EY, Miller MR, Lorson CL. Defining the therapeutic window in a severe animal model of spinal muscular atrophy. Hum Mol Genet 2014; 23:4559-68. [PMID: 24722206 DOI: 10.1093/hmg/ddu169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by the loss of a single gene, Survival Motor Neuron-1 (SMN1). Administration of a self-complementary Adeno-Associated Virus vector expressing full-length SMN cDNA (scAAV-SMN) has proven an effective means to rescue the SMA phenotype in SMA mice, either by intravenous (IV) or intracerebroventricular (ICV) administration at very early time points. We have recently shown that ICV delivery of scAAV9-SMN is more effective than a similar dose of vector administered via an IV injection, thereby providing an important mechanism to examine a timeline for rescuing the disease and determining the therapeutic window in a severe model of SMA. In this report, we utilized a relatively severe mouse model of SMA, SMNΔ7. Animals were injected with scAAV9-SMN vector via ICV injection on a single day, from P2 through P8. At each delivery point from P2 through P8, scAAV9-SMN decreased disease severity. A near complete rescue was obtained following P2 injection while a P8 injection produced a ∼ 40% extension in survival. Analysis of the underlying neuromuscular junction (NMJ) pathology revealed that late-stage delivery of the vector failed to provide protection from NMJ defects despite robust SMN expression in the central nervous system. While our study demonstrates that a maximal benefit is obtained when treatment is delivered during pre-symptomatic stages, significant therapeutic benefit can still be achieved after the onset of disease symptoms.
Collapse
Affiliation(s)
- Kate L Robbins
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center
| | - Jacqueline J Glascock
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine and
| | - Erkan Y Osman
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine and
| | - Madeline R Miller
- Genetics Area Program, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine and
| |
Collapse
|
67
|
Iyer CC, McGovern VL, Wise DO, Glass DJ, Burghes AHM. Deletion of atrophy enhancing genes fails to ameliorate the phenotype in a mouse model of spinal muscular atrophy. Neuromuscul Disord 2014; 24:436-44. [PMID: 24656734 DOI: 10.1016/j.nmd.2014.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/16/2014] [Accepted: 02/11/2014] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease causing degeneration of lower motor neurons and muscle atrophy. One therapeutic avenue for SMA is targeting signaling pathways in muscle to ameliorate atrophy. Muscle Atrophy F-box, MAFbx, and Muscle RING Finger 1, MuRF1, are muscle-specific ubiquitin ligases upregulated in skeletal and cardiac muscle during atrophy. Homozygous knock-out of MAFbx or MuRF1 causes muscle sparing in adult mice subjected to atrophy by denervation. We wished to determine whether blockage of the major muscle atrophy pathways by deletion of MAFbx or MuRF1 in a mouse model of SMA would improve the phenotype. Deletion of MAFbx in the Δ7 SMA mouse model had no effect on the weight and the survival of the mice while deletion of MuRF1 was deleterious. MAFbx(-/-)-SMA mice showed a significant alteration in fiber size distribution tending towards larger fibers. In skeletal and cardiac tissue MAFbx and MuRF1 transcripts were upregulated whereas MuRF2 and MuRF3 levels were unchanged in Δ7 SMA mice. We conclude that deletion of the muscle ubiquitin ligases does not improve the phenotype of a Δ7 SMA mouse. Furthermore, it seems unlikely that the beneficial effect of HDAC inhibitors is mediated through inhibition of MAFbx and MuRF1.
Collapse
Affiliation(s)
- Chitra C Iyer
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Vicki L McGovern
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dawnne O Wise
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA
| | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA; Department of Neurology, The Ohio State University, Columbus, OH, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
68
|
Zanetta C, Riboldi G, Nizzardo M, Simone C, Faravelli I, Bresolin N, Comi GP, Corti S. Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA). J Cell Mol Med 2014; 18:187-96. [PMID: 24400925 PMCID: PMC3930406 DOI: 10.1111/jcmm.12224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease. It is the first genetic cause of infant mortality. It is caused by mutations in the survival motor neuron 1 (SMN1) gene, leading to the reduction of SMN protein. The most striking component is the loss of alpha motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment other than supportive care, although the past decade has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials. In this review, we would like to outline the most interesting therapeutic strategies that are currently developing, which are represented by molecular, gene and stem cell-mediated approaches for the treatment of SMA.
Collapse
Affiliation(s)
- Chiara Zanetta
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore PoliclinicoMilan, Italy
| |
Collapse
|
69
|
Swoboda KJ. SMN-targeted therapeutics for spinal muscular atrophy: are we SMArt enough yet? J Clin Invest 2014; 124:487-90. [PMID: 24463455 DOI: 10.1172/jci74142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) remains one of the most common and lethal autosomal recessive diseases. Homozygous deletion of survival of motor neuron 1 (SMN1) and resulting SMN protein deficiency manifests predominantly with motor neuron degeneration; however, a wealth of emerging data supports a broader influence of SMN deficiency in disease pathogenesis. In this issue of the JCI, Kariya and colleagues demonstrate the relatively selective impact of SMN depletion on the distal motor unit using a series of SMN2-expressing transgenic mice in which constitutive SMN knockdown follows variable periods of normal development. Their observations provide further insights regarding the temporal requirements for SMN in mice, renewing speculation about when and where repletion of SMN is necessary for optimal outcomes in SMA patients.
Collapse
|
70
|
Kariya S, Obis T, Garone C, Akay T, Sera F, Iwata S, Homma S, Monani UR. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 2014; 124:785-800. [PMID: 24463453 DOI: 10.1172/jci72017] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023] Open
Abstract
Spinal muscular atrophy is a common motor neuron disease caused by low survival motoneuron (SMN), a key protein in the proper splicing of genes. Restoring the protein is therefore a promising therapeutic strategy. Implementation of this strategy, however, depends on defining the temporal requirements for SMN. Here, we used controlled knockdown of SMN in transgenic mice to determine the precise postnatal stage requirements for this protein. Reducing SMN in neonatal mice resulted in a classic SMA-like phenotype. Unexpectedly, depletion of SMN in adults had relatively little effect. Insensitivity to low SMN emerged abruptly at postnatal day 17, which coincided with establishment of the fully mature neuromuscular junction (NMJ). Mature animals depleted of SMN eventually exhibited evidence of selective neuromuscular pathology that was made worse by traumatic injury. The ability to regenerate the mature NMJ in aged or injured SMN-depleted mice was grossly impaired, a likely consequence of the inability to meet the surge in demand for motoneuronal SMN that was seen in controls. Our results demonstrate that relative maturity of the NMJ determines the temporal requirement for the SMN protein. These observations suggest that the use of potent but potentially deleterious SMN-enhancing agents could be tapered in human patients once the neuromuscular system matures and reintroduced as needed to enhance SMN for remodeling aged or injured NMJs.
Collapse
|
71
|
Wyatt EJ, Sweeney HL, McNally EM. Meeting Report: New Directions in the Biology and Disease of Skeletal Muscle 2014. J Neuromuscul Dis 2014; 1:197-206. [PMID: 26207203 PMCID: PMC4508866 DOI: 10.3233/jnd-149003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The New Directions in the Biology and Disease of Skeletal Muscle is a scientific meeting, held every other year, with the stated purpose of bringing together scientists, clinicians, industry representatives and patient advocacy groups to disseminate new discovery useful for treatment inherited forms of neuromuscular disease, primarily the muscular dystrophies. This meeting originated as a response the Muscular Dystrophy Care Act in order to provide a venue for the free exchange of information, with the emphasis on unpublished or newly published data. Highlights of this years' meeting included results from early phase clinical trials for Duchenne Muscular Dystrophy, progress in understanding the epigenetic defects in Fascioscapulohumeral Muscular Dystrophy and new mechanisms of muscle membrane repair. The following is a brief report of the highlights from the conference.
Collapse
Affiliation(s)
- Eugene J Wyatt
- Department of Medicine, The University of Chicago, Chicago, IL USA
| | - H Lee Sweeney
- Department of Physiology, The University of Pennsylvania, Philadelphia, PA USA
| | - Elizabeth M McNally
- Department of Medicine, The University of Chicago, Chicago, IL USA ; Department of Human Genetics, The University of Chicago, Chicago, IL USA
| |
Collapse
|
72
|
Monani UR, De Vivo DC. Neurodegeneration in spinal muscular atrophy: from disease phenotype and animal models to therapeutic strategies and beyond. FUTURE NEUROLOGY 2014; 9:49-65. [PMID: 24648831 DOI: 10.2217/fnl.13.58] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Of the numerous inherited diseases known to afflict the pediatric population, spinal muscular atrophy (SMA) is among the most common. It has an incidence of approximately one in 10,000 newborns and a carrier frequency of one in 50. Despite its relatively high incidence, SMA remains somewhat obscure among the many neurodegenerative diseases that affect humans. Nevertheless, the last two decades have witnessed remarkable progress in our understanding of the pathology, underlying biology and especially the molecular genetics of SMA. This has led to a genuine expectation within the scientific community that a robust treatment will be available to patients before the end of the decade. The progress made in our understanding of SMA and, therefore, towards a viable therapy for affected individuals is in large measure a consequence of the simple yet fascinating genetics of the disease. Nevertheless, important questions remain. Addressing these questions promises not only to accelerate the march towards a cure for SMA, but also to uncover novel therapies for related neurodegenerative disorders. This review discusses our current understanding of SMA, considers the challenges ahead, describes existing treatment options and highlights state-of-the-art research being conducted as a means to a better, safer and more effective treatment for the disease.
Collapse
Affiliation(s)
- Umrao R Monani
- Department of Pathology & Cell Biology, 630 West 168th Street, Columbia University Medical Center, New York, NY 10032, USA ; Department of Neurology, 630 West 168th Street, Columbia University Medical Center, New York, NY 10032, USA ; Center for Motor Neuron Biology & Disease, 630 West 168th Street, Columbia University Medical Center, New York, NY 10032, USA
| | - Darryl C De Vivo
- Department of Neurology, 630 West 168th Street, Columbia University Medical Center, New York, NY 10032, USA ; Center for Motor Neuron Biology & Disease, 630 West 168th Street, Columbia University Medical Center, New York, NY 10032, USA ; Department of Pediatrics, 630 West 168th Street, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
73
|
Porensky PN, Burghes AHM. Antisense oligonucleotides for the treatment of spinal muscular atrophy. Hum Gene Ther 2013; 24:489-98. [PMID: 23544870 DOI: 10.1089/hum.2012.225] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease affecting ∼1 in 10,000 live births. The most striking component is the loss of α-motor neurons in the ventral horn of the spinal cord, resulting in progressive paralysis and eventually premature death. There is no current treatment paradigm other than supportive care, though the past 15 years has seen a striking advancement in understanding of both SMA genetics and molecular mechanisms. A variety of disease-modifying interventions are rapidly bridging the translational gap from the laboratory to clinical trials, including the application of antisense oligonucleotide (ASO) therapy for the correction of aberrant RNA splicing characteristic of SMA. Survival motor neuron (SMN) is a ubiquitously expressed 38-kD protein. Humans have two genes that produce SMN, SMN1 and SMN2, the former of which is deleted or nonfunctional in the majority of patients with SMA. These two genes are nearly identical with one exception, a C to T transition (C6T) within exon 7 of SMN2. C6T disrupts a modulator of splicing, leading to the exclusion of exon 7 from ∼90% of the mRNA transcript. The resultant truncated Δ7SMN protein does not oligomerize efficiently and is rapidly degraded. SMA can therefore be considered a disease of too little SMN protein. A number of cis-acting splice modifiers have been identified in the region of exon 7, the steric block of which enhances the retention of the exon and a resultant full-length mRNA sequence. ASOs targeted to these splice motifs have shown impressive phenotype rescue in multiple SMA mouse models.
Collapse
Affiliation(s)
- Paul N Porensky
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
74
|
Arnold WD, Burghes AHM. Spinal muscular atrophy: development and implementation of potential treatments. Ann Neurol 2013; 74:348-62. [PMID: 23939659 DOI: 10.1002/ana.23995] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/13/2013] [Accepted: 08/01/2013] [Indexed: 12/13/2022]
Abstract
In neurodegenerative disorders, effective treatments are urgently needed, along with methods to determine whether treatment worked. In this review, we discuss the rapid progress in the understanding of recessive proximal spinal muscular atrophy and how this is leading to exciting potential treatments of the disease. Spinal muscular atrophy is caused by loss of the survival motor neuron 1 (SMN1) gene and reduced levels of SMN protein. The critical downstream targets of SMN deficiency that result in motor neuron loss are not known. However, increasing SMN levels has a marked impact in mouse models, and these therapeutics are rapidly moving toward clinical trials. Promising preclinical therapies, the varying degree of impact on the mouse models, and potential measures of treatment effect are reviewed. One key issue discussed is the variable outcome of increasing SMN at different stages of disease progression.
Collapse
Affiliation(s)
- W David Arnold
- Neuromuscular Division, Department of Neurology, Wexner Medical Center, the Ohio State University, Columbus, OH; Department of Physical Medicine and Rehabilitation, Wexner Medical Center, the Ohio State University, Columbus, OH
| | | |
Collapse
|
75
|
Arnold WD, Porensky PN, McGovern VL, Iyer CC, Duque S, Li X, Meyer K, Schmelzer L, Kaspar BK, Kolb SJ, Kissel JT, Burghes AHM. Electrophysiological Biomarkers in Spinal Muscular Atrophy: Preclinical Proof of Concept. Ann Clin Transl Neurol 2013; 1:34-44. [PMID: 24511555 PMCID: PMC3914317 DOI: 10.1002/acn3.23] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective Preclinical therapies that restore survival motor neuron (SMN) protein levels can dramatically extend survival in spinal muscular atrophy (SMA) mouse models. Biomarkers are needed to effectively translate these promising therapies to clinical trials. Our objective was to investigate electrophysiological biomarkers of compound muscle action potential (CMAP), motor unit number estimation (MUNE) and electromyography (EMG) using an SMA mouse model. Methods Sciatic CMAP, MUNE, and EMG were obtained in SMNΔ7 mice at ages 3–13 days and at 21 days in mice with SMN selectively reduced in motor neurons (ChATCre). To investigate these measures as biomarkers of treatment response, measurements were obtained in SMNΔ7 mice treated with antisense oligonucleotide (ASO) or gene therapy. Results CMAP was significantly reduced in SMNΔ7 mice at days 6–13 (P < 0.01), and MUNE was reduced at days 7–13 (P < 0.01). Fibrillations were present on EMG in SMNΔ7 mice but not controls (P = 0.02). Similar findings were seen at 21 days in ChATCre mice. MUNE in ASO-treated SMNΔ7 mice were similar to controls at day 12 and 30. CMAP reduction persisted in ASO-treated SMNΔ7 mice at day 12 but was corrected at day 30. Similarly, CMAP and MUNE responses were corrected with gene therapy to restore SMN. Interpretation These studies confirm features of preserved neuromuscular function in the early postnatal period and subsequent motor unit loss in SMNΔ7 mice. SMN restoring therapies result in preserved MUNE and gradual repair of CMAP responses. This provides preclinical evidence for the utilization of CMAP and MUNE as biomarkers in future SMA clinical trials.
Collapse
Affiliation(s)
- W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12 Ave, Columbus, Ohio 43210 ; Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, 480 Medical Center Drive Columbus, Ohio 43210
| | - Paul N Porensky
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, 410 West 10th Avenue Columbus Ohio 43210
| | - Vicki L McGovern
- Department of Molecular & Cellular Biochemistry, Wexner Medical Center, The Ohio State University, 363 Hamilton Hall, 1645 Neil Ave, Columbus, Ohio 43210
| | - Chitra C Iyer
- Department of Molecular & Cellular Biochemistry, Wexner Medical Center, The Ohio State University, 363 Hamilton Hall, 1645 Neil Ave, Columbus, Ohio 43210
| | - Sandra Duque
- Department of Molecular & Cellular Biochemistry, Wexner Medical Center, The Ohio State University, 363 Hamilton Hall, 1645 Neil Ave, Columbus, Ohio 43210
| | - Xiaobai Li
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210
| | - Kathrin Meyer
- Nationwide Children's Hospital Research Institute, Columbus, Ohio 43205
| | - Leah Schmelzer
- Nationwide Children's Hospital Research Institute, Columbus, Ohio 43205
| | - Brian K Kaspar
- Nationwide Children's Hospital Research Institute, Columbus, Ohio 43205 ; Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12 Ave, Columbus, Ohio 43210 ; Department of Molecular & Cellular Biochemistry, Wexner Medical Center, The Ohio State University, 363 Hamilton Hall, 1645 Neil Ave, Columbus, Ohio 43210
| | - John T Kissel
- Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12 Ave, Columbus, Ohio 43210 ; Department of Pediatrics, The Ohio State University, Columbus, Ohio 43210
| | - Arthur H M Burghes
- Department of Molecular & Cellular Biochemistry, Wexner Medical Center, The Ohio State University, 363 Hamilton Hall, 1645 Neil Ave, Columbus, Ohio 43210 ; Department of Neurology, The Ohio State University Wexner Medical Center, 395 W. 12 Ave, Columbus, Ohio 43210
| |
Collapse
|
76
|
Van Meerbeke JP, Gibbs RM, Plasterer HL, Miao W, Feng Z, Lin MY, Rucki AA, Wee CD, Xia B, Sharma S, Jacques V, Li DK, Pellizzoni L, Rusche JR, Ko CP, Sumner CJ. The DcpS inhibitor RG3039 improves motor function in SMA mice. Hum Mol Genet 2013; 22:4074-83. [PMID: 23727836 PMCID: PMC3781637 DOI: 10.1093/hmg/ddt257] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by mutations of the survival motor neuron 1 (SMN1) gene, retention of the survival motor neuron 2 (SMN2) gene and insufficient expression of full-length survival motor neuron (SMN) protein. Quinazolines increase SMN2 promoter activity and inhibit the ribonucleic acid scavenger enzyme DcpS. The quinazoline derivative RG3039 has advanced to early phase clinical trials. In preparation for efficacy studies in SMA patients, we investigated the effects of RG3039 in severe SMA mice. Here, we show that RG3039 distributed to central nervous system tissues where it robustly inhibited DcpS enzyme activity, but minimally activated SMN expression or the assembly of small nuclear ribonucleoproteins. Nonetheless, treated SMA mice showed a dose-dependent increase in survival, weight and motor function. This was associated with improved motor neuron somal and neuromuscular junction synaptic innervation and function and increased muscle size. RG3039 also enhanced survival of conditional SMA mice in which SMN had been genetically restored to motor neurons. As this systemically delivered drug may have therapeutic benefits that extend beyond motor neurons, it could act additively with SMN-restoring therapies delivered directly to the central nervous system such as antisense oligonucleotides or gene therapy.
Collapse
Affiliation(s)
| | - Rebecca M. Gibbs
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ming-Yi Lin
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Bing Xia
- Repligen Corporation, Watham, MA, USA
| | | | | | - Darrick K. Li
- Department of Pathology and Cell Biology and
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology and
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | | | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Charlotte J. Sumner
- Department of Neurology and
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
77
|
Tiziano FD, Melki J, Simard LR. Solving the puzzle of spinal muscular atrophy: what are the missing pieces? Am J Med Genet A 2013; 161A:2836-45. [PMID: 24124019 DOI: 10.1002/ajmg.a.36251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, lower motor neuron disease. Clinical heterogeneity is pervasive: three infantile (type I-III) and one adult-onset (type IV) forms are recognized. Type I SMA is the most common genetic cause of death in infancy and accounts for about 50% of all patients with SMA. Most forms of SMA are caused by mutations of the survival motor neuron (SMN1) gene. A second gene that is 99% identical to SMN1 (SMN2) is located in the same region. The only functionally relevant difference between the two genes identified to date is a C → T transition in exon 7 of SMN2, which determines an alternative spliced isoform that predominantly excludes exon 7. Thus, SMN2 genes do not produce sufficient full length SMN protein to prevent the onset of the disease. Since the identification of the causative mutation, biomedical research of SMA has progressed by leaps and bounds: from clues on the function of SMN protein, to the development of different models of the disease, to the identification of potential treatments, some of which are currently in human trials. The aim of this review is to elucidate the current state of knowledge, emphasizing how close we are to the solution of the puzzle that is SMA, and, more importantly, to highlight the missing pieces of this puzzle. Filling in these gaps in our knowledge will likely accelerate the development and delivery of efficient treatments for SMA patients and be a prerequisite towards achieving our final goal, the cure of SMA.
Collapse
|
78
|
Sahashi K, Ling KKY, Hua Y, Wilkinson JE, Nomakuchi T, Rigo F, Hung G, Xu D, Jiang YP, Lin RZ, Ko CP, Bennett CF, Krainer AR. Pathological impact of SMN2 mis-splicing in adult SMA mice. EMBO Mol Med 2013; 5:1586-601. [PMID: 24014320 PMCID: PMC3799581 DOI: 10.1002/emmm.201302567] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022] Open
Abstract
Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose–response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA.
Collapse
|
79
|
Shababi M, Lorson CL, Rudnik-Schöneborn SS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J Anat 2013; 224:15-28. [PMID: 23876144 DOI: 10.1111/joa.12083] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder that is the leading genetic cause of infantile death. SMA is characterized by loss of motor neurons in the ventral horn of the spinal cord, leading to weakness and muscle atrophy. SMA occurs as a result of homozygous deletion or mutations in Survival Motor Neuron-1 (SMN1). Loss of SMN1 leads to a dramatic reduction in SMN protein, which is essential for motor neuron survival. SMA disease severity ranges from extremely severe to a relatively mild adult onset form of proximal muscle atrophy. Severe SMA patients typically die mostly within months or a few years as a consequence of respiratory insufficiency and bulbar paralysis. SMA is widely known as a motor neuron disease; however, there are numerous clinical reports indicating the involvement of additional peripheral organs contributing to the complete picture of the disease in severe cases. In this review, we have compiled clinical and experimental reports that demonstrate the association between the loss of SMN and peripheral organ deficiency and malfunction. Whether defective peripheral organs are a consequence of neuronal damage/muscle atrophy or a direct result of SMN loss will be discussed.
Collapse
Affiliation(s)
- Monir Shababi
- Department of Veterinary Pathobiology, Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
80
|
Gogliotti RG, Cardona H, Singh J, Bail S, Emery C, Kuntz N, Jorgensen M, Durens M, Xia B, Barlow C, Heier CR, Plasterer HL, Jacques V, Kiledjian M, Jarecki J, Rusche J, DiDonato CJ. The DcpS inhibitor RG3039 improves survival, function and motor unit pathologies in two SMA mouse models. Hum Mol Genet 2013; 22:4084-101. [PMID: 23736298 DOI: 10.1093/hmg/ddt258] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by insufficient levels of the survival motor neuron (SMN) protein due to the functional loss of the SMN1 gene and the inability of its paralog, SMN2, to fully compensate due to reduced exon 7 splicing efficiency. Since SMA patients have at least one copy of SMN2, drug discovery campaigns have sought to identify SMN2 inducers. C5-substituted quinazolines increase SMN2 promoter activity in cell-based assays and a derivative, RG3039, has progressed to clinical testing. It is orally bioavailable, brain-penetrant and has been shown to be an inhibitor of the mRNA decapping enzyme, DcpS. Our pharmacological characterization of RG3039, reported here, demonstrates that RG3039 can extend survival and improve function in two SMA mouse models of varying disease severity (Taiwanese 5058 Hemi and 2B/- SMA mice), and positively impacts neuromuscular pathologies. In 2B/- SMA mice, RG3039 provided a >600% survival benefit (median 18 days to >112 days) when dosing began at P4, highlighting the importance of early intervention. We determined the minimum effective dose and the associated pharmacokinetic (PK) and exposure relationship of RG3039 and DcpS inhibition ex vivo. These data support the long PK half-life with extended pharmacodynamic outcome of RG3039 in 2B/- SMA mice. In motor neurons, RG3039 significantly increased both the average number of cells with gems and average number of gems per cell, which is used as an indirect measure of SMN levels. These studies contribute to dose selection and exposure estimates for the first studies with RG3039 in human subjects.
Collapse
|
81
|
Taylor AS, Glascock JJ, Rose FF, Lutz C, Lorson CL. Restoration of SMN to Emx-1 expressing cortical neurons is not sufficient to provide benefit to a severe mouse model of Spinal Muscular Atrophy. Transgenic Res 2013; 22:1029-36. [PMID: 23512182 DOI: 10.1007/s11248-013-9702-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
Spinal Muscular Atrophy (SMA), an autosomal recessive neuromuscular disorder, is a leading genetic cause of infant mortality. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). However, low, but essential, levels of SMN protein are produced by a nearly identical copy gene called SMN2. Detailed analysis of neuromuscular junctions in SMA mice has revealed a selective vulnerability in a subset of muscle targets, suggesting that while SMN is reduced uniformly, the functional deficits manifest sporadically. Additionally, in severe SMA models, it is becoming increasing apparent that SMA is not restricted solely to motor neurons. Rather, additional tissues including the heart, vasculature, and the pancreas contribute to the complete SMA-associated pathology. Recently, transgenic models have been utilized to examine the tissue-specific requirements of SMN, including selective depletion and restoration of SMN in motor neurons. To determine whether the cortical neuronal populations expressing the Emx-1 promoter are involved in SMA pathology, we generated a novel SMA mouse model in which SMN expression was specifically induced in Emx-1 expressing cortical neurons utilizing an Emx-1-Cre transgene. While SMN expression was robust in the central nervous system as expected, SMA mice did not live longer. Weight and time-to-right motor function were not significantly improved.
Collapse
Affiliation(s)
- Alexander S Taylor
- Department of Veterinary Pathobiology, Life Sciences Center, University of Missouri, Room 471G, Columbia, MO, 65211, USA
| | | | | | | | | |
Collapse
|
82
|
Hao LT, Duy PQ, Jontes JD, Wolman M, Granato M, Beattie CE. Temporal requirement for SMN in motoneuron development. Hum Mol Genet 2013; 22:2612-25. [PMID: 23459934 DOI: 10.1093/hmg/ddt110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.
Collapse
Affiliation(s)
- Le T Hao
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
83
|
Liu HC, Ting CH, Wen HL, Tsai LK, Hsieh-Li HM, Li H, Lin-Chao S. Sodium vanadate combined with L-ascorbic acid delays disease progression, enhances motor performance, and ameliorates muscle atrophy and weakness in mice with spinal muscular atrophy. BMC Med 2013; 11:38. [PMID: 23409868 PMCID: PMC3682891 DOI: 10.1186/1741-7015-11-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/14/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. METHODS Sodium vanadate (200 μM), L-ascorbic acid (400 μM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. RESULTS Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation in these organs. CONCLUSIONS Combined treatment beginning at birth and continuing for 1 month conferred protection against neuromuscular damage in mice with milder types of SMA. Further, these mice exhibited enhanced motor performance in adulthood. Therefore, combined treatment could present a feasible treatment option for patients with late-onset SMA.
Collapse
Affiliation(s)
- Huei-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
84
|
Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 2013; 19:40-50. [DOI: 10.1016/j.molmed.2012.11.002] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/23/2012] [Accepted: 11/02/2012] [Indexed: 12/16/2022]
|
85
|
Farrar MA, Vucic S, Johnston HM, du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr 2013; 162:155-9. [PMID: 22809660 DOI: 10.1016/j.jpeds.2012.05.067] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/23/2012] [Accepted: 06/13/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine the natural history of spinal muscular atrophy (SMA) to gain further insight into the clinical course and pathogenesis. STUDY DESIGN Survival pattern, age of onset, and ambulatory status were retrospectively analyzed in 70 patients with SMA with deletions of the survival motor neuron 1 genes that presented to a specialized neuromuscular clinic. The Kaplan-Meier method was used to obtain survival curves. Hammersmith Functional Motor Scale-Expanded and abductor pollicis brevis compound muscle action potential amplitudes were assessed in 25 of the surviving cohort and correlated with survival motor neuron 2 copy number. RESULTS Survival probabilities at ages 1, 2, 4, 10, 20, and 40 years were 40%, 25%, 6%, and 0%, respectively, for patients with SMA type 1; 100%, 100%, 97%, 93%, 93%, and 52% for patients with SMA type 2 and all patients with SMA type 3 were alive (age range 7-33 years). There were significant associations between age of onset and long-term outcome, specifically survival in SMA type 1 (P < .01) and Hammersmith Functional Motor Scale-Expanded (P < .0001), and compound muscle action potential (P = .001) in SMA types 2 and 3. Motor function in patients with long-standing SMA reduced over prolonged periods or remained stable. Survival motor neuron 2 copy number related to continuing changes in motor function with age. CONCLUSION The natural history of SMA suggests considerable early loss of motor neurons, with severity related to differences in the number of remaining motor neurons. As the ensuing chronic course in milder phenotypes suggests relative stability of remaining motor neurons, the maximal therapeutic window presents early.
Collapse
|
86
|
Piazzon N, Schlotter F, Lefebvre S, Dodré M, Méreau A, Soret J, Besse A, Barkats M, Bordonné R, Branlant C, Massenet S. Implication of the SMN complex in the biogenesis and steady state level of the signal recognition particle. Nucleic Acids Res 2012; 41:1255-72. [PMID: 23221635 PMCID: PMC3553995 DOI: 10.1093/nar/gks1224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy is a severe motor neuron disease caused by reduced levels of the ubiquitous Survival of MotoNeurons (SMN) protein. SMN is part of a complex that is essential for spliceosomal UsnRNP biogenesis. Signal recognition particle (SRP) is a ribonucleoprotein particle crucial for co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum. SRP biogenesis is a nucleo-cytoplasmic multistep process in which the protein components, except SRP54, assemble with 7S RNA in the nucleolus. Then, SRP54 is incorporated after export of the pre-particle into the cytoplasm. The assembly factors necessary for SRP biogenesis remain to be identified. Here, we show that 7S RNA binds to purified SMN complexes in vitro and that SMN complexes associate with SRP in cellular extracts. We identified the RNA determinants required. Moreover, we report a specific reduction of 7S RNA levels in the spinal cord of SMN-deficient mice, and in a Schizosaccharomyces pombe strain carrying a temperature-degron allele of SMN. Additionally, microinjected antibodies directed against SMN or Gemin2 interfere with the association of SRP54 with 7S RNA in Xenopus laevis oocytes. Our data show that reduced levels of the SMN protein lead to defect in SRP steady-state level and describe the SMN complex as the first identified cellular factor required for SRP biogenesis.
Collapse
Affiliation(s)
- Nathalie Piazzon
- Laboratoire ARN-RNP structure-fonction-maturation, Enzymologie Moléculaire et Structurale (AREMS), Nancy Université-CNRS, UMR 7214, FR 3209, Faculté de Médecine de Nancy, BP 184, 9 avenue de la forêt de Haye, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Electrophysiological and motor function scale association in a pre-symptomatic infant with spinal muscular atrophy type I. Neuromuscul Disord 2012; 23:112-5. [PMID: 23146148 DOI: 10.1016/j.nmd.2012.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 11/20/2022]
Abstract
A term infant, at familial risk for spinal muscular atrophy (SMA), had the diagnosis genetically confirmed on day 3 of life. Clinical evaluation, the CHOP INTEND motor scale and the CMAP amplitude were obtained on days 5 (pre-symptomatic), 20 (mildly weak), 34 (moderately weak) and 63 (severely weak). Palliative care was provided and he expired of an acute pulmonary infection on day 81. The CMAP amplitude and INTEND scores were initially in the normal range, then followed a corresponding decline to a nadir at day 34 and remained so at the 4th assessment. A log-transformed plot of CMAP amplitude from days 5-34 was linear. These data suggest that early motor neuron loss in SMA type I may be logarithmic and demonstrates that the INTEND motor scale closely follows the CMAP electrophysiological biomarker. This single case report supports the consideration that early intervention with a potential therapy is necessary, before the pool of functional motor neurons has plummeted. Further study of these parameters in pre-symptomatic infants with SMA type I will help guide the design of future intervention studies.
Collapse
|
88
|
Sahashi K, Hua Y, Ling KKY, Hung G, Rigo F, Horev G, Katsuno M, Sobue G, Ko CP, Bennett CF, Krainer AR. TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals. Genes Dev 2012; 26:1874-84. [PMID: 22895255 DOI: 10.1101/gad.197418.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics.
Collapse
Affiliation(s)
- Kentaro Sahashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Lorson MA, Lorson CL. SMN-inducing compounds for the treatment of spinal muscular atrophy. Future Med Chem 2012; 4:2067-84. [PMID: 23157239 PMCID: PMC3589915 DOI: 10.4155/fmc.12.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. A neurodegenerative disease, it is caused by loss of SMN1, although low, but essential, levels of SMN protein are produced by the nearly identical gene SMN2. While no effective treatment or therapy currently exists, a new wave of therapeutics has rapidly progressed from cell-based and preclinical animal models to the point where clinical trials have initiated for SMA-specific compounds. There are several reasons why SMA has moved relatively rapidly towards novel therapeutics, including: SMA is monogenic; the molecular understanding of SMN gene regulation has been building for nearly 20 years; and all SMA patients retain one or more copies of SMN2 that produces low levels of full-length, fully functional SMN protein. This review primarily focuses upon the biology behind the disease and examines SMN1- and SMN2-targeted therapeutics.
Collapse
Affiliation(s)
- Monique A Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, Room 440C, University of Missouri, MO 65211 USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, Room 471G, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| |
Collapse
|
90
|
Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci 2012; 32:8703-15. [PMID: 22723710 DOI: 10.1523/jneurosci.0204-12.2012] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Collapse
|
91
|
Donnelly EM, Boulis NM. Update on gene and stem cell therapy approaches for spinal muscular atrophy. Expert Opin Biol Ther 2012; 12:1463-71. [PMID: 22849423 DOI: 10.1517/14712598.2012.711306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is the leading genetic cause of pediatric death to which at present there is no effective therapeutic. The genetic defect is well characterized as a mutation in exon 7 of the survival of motor neuron (SMN) gene. The current gene therapy approach focuses on two main methodologies, the replacement of SMN1 or augmentation of SMN2 readthrough. The most promising of the current work focuses on the delivery of SMN via AAV9 vectors via intravenous delivery. AREAS COVERED In the review the authors examine the current research in the field of stem cell and gene therapy approaches for SMA. Also focusing on delivery methods, timing of administration and general caveats that must be considered with translational work for SMA. EXPERT OPINION Gene therapy currently offers the most promising avenue of research for a successful therapeutic for SMA. There are many important practical and ethical considerations which must be carefully considered when dealing with clinical trial in infants such as the invasiveness of the surgery, the correct patient cohort and the potential risks.
Collapse
|
92
|
Kariya S, Re DB, Jacquier A, Nelson K, Przedborski S, Monani UR. Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum Mol Genet 2012; 21:3421-34. [PMID: 22581780 DOI: 10.1093/hmg/dds174] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are among the most common motor neuron diseases to afflict the human population. A deficiency of the survival of motor neuron (SMN) protein causes SMA and is also reported to be an exacerbating factor in the development of ALS. However, pathways linking the two diseases have yet to be defined and it is not clear precisely how the pathology of ALS is aggravated by reduced SMN or whether mutant proteins underlying familial forms of ALS interfere with SMN-related biochemical pathways to exacerbate the neurodegenerative process. In this study, we show that mutant superoxide dismutase-1 (SOD1), a cause of familial ALS, profoundly alters the sub-cellular localization of the SMN protein, preventing the formation of nuclear 'gems' by disrupting the recruitment of the protein to Cajal bodies. Overexpressing the SMN protein in mutant SOD1 mice, a model of familial ALS, alleviates this phenomenon, most likely in a cell-autonomous manner, and significantly mitigates the loss of motor neurons in the spinal cord and in culture dishes. In the mice, the onset of the neuromuscular phenotype is delayed and motor function enhanced, suggestive of a therapeutic benefit for ALS patients treated with agents that augment the SMN protein. Nevertheless, this finding is tempered by an inability to prolong survival, a limitation most likely imposed by the inexorable denervation that characterizes ALS and eventually disrupts the neuromuscular synapses even in the presence of increased SMN.
Collapse
Affiliation(s)
- Shingo Kariya
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
93
|
Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci 2012; 32:3818-29. [PMID: 22423102 DOI: 10.1523/jneurosci.5775-11.2012] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The loss of motor neurons (MNs) is a hallmark of the neuromuscular disease spinal muscular atrophy (SMA); however, it is unclear whether this phenotype autonomously originates within the MN. To address this question, we developed an inducible mouse model of severe SMA that has perinatal lethality, decreased motor function, motor unit pathology, and hyperexcitable MNs. Using an Hb9-Cre allele, we increased Smn levels autonomously within MNs and demonstrate that MN rescue significantly improves all phenotypes and pathologies commonly described in SMA mice. MN rescue also corrects hyperexcitability in SMA motor neurons and prevents sensory-motor synaptic stripping. Survival in MN-rescued SMA mice is extended by only 5 d, due in part to failed autonomic innervation of the heart. Collectively, this work demonstrates that the SMA phenotype autonomously originates in MNs and that sensory-motor synapse loss is a consequence, not a cause, of MN dysfunction.
Collapse
|
94
|
Bebee TW, Dominguez CE, Chandler DS. Mouse models of SMA: tools for disease characterization and therapeutic development. Hum Genet 2012; 131:1277-93. [DOI: 10.1007/s00439-012-1171-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/13/2012] [Indexed: 12/30/2022]
|
95
|
Bowerman M, Murray LM, Boyer JG, Anderson CL, Kothary R. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Med 2012; 10:24. [PMID: 22397316 PMCID: PMC3310724 DOI: 10.1186/1741-7015-10-24] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/07/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (SMN1) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (ROCK) pathway is misregulated in cellular and animal SMA models, and that inhibition of ROCK with the chemical Y-27632 significantly increased the lifespan of a mouse model of SMA. In the present study, we evaluated the therapeutic potential of the clinically approved ROCK inhibitor fasudil. METHODS Fasudil was administered by oral gavage from post-natal day 3 to 21 at a concentration of 30 mg/kg twice daily. The effects of fasudil on lifespan and SMA pathological hallmarks of the SMA mice were assessed and compared to vehicle-treated mice. For the Kaplan-Meier survival analysis, the log-rank test was used and survival curves were considered significantly different at P < 0.05. For the remaining analyses, the Student's two-tail t test for paired variables and one-way analysis of variance (ANOVA) were used to test for differences between samples and data were considered significantly different at P < 0.05. RESULTS Fasudil significantly improves survival of SMA mice. This dramatic phenotypic improvement is not mediated by an up-regulation of Smn protein or via preservation of motor neurons. However, fasudil administration results in a significant increase in muscle fiber and postsynaptic endplate size, and restores normal expression of markers of skeletal muscle development, suggesting that the beneficial effects of fasudil could be muscle-specific. CONCLUSIONS Our work underscores the importance of muscle as a therapeutic target in SMA and highlights the beneficial potential of ROCK inhibitors as a therapeutic strategy for SMA and for other degenerative diseases characterized by muscular atrophy and postsynaptic immaturity.
Collapse
Affiliation(s)
- Melissa Bowerman
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, Canada K1H 8L6
| | | | | | | | | |
Collapse
|
96
|
Workman E, Kolb SJ, Battle DJ. Spliceosomal small nuclear ribonucleoprotein biogenesis defects and motor neuron selectivity in spinal muscular atrophy. Brain Res 2012; 1462:93-9. [PMID: 22424789 DOI: 10.1016/j.brainres.2012.02.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 12/22/2022]
Abstract
The SMN protein is essential and participates in the assembly of macromolecular complexes of RNA and protein in all cells. The best-characterized function of SMN is as an assembler of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN performs this function as part of a complex with several other proteins called Gemins. snRNPs are assembled in the cytoplasm in a stepwise manner and then are imported to the nucleus where they participate globally in the splicing of pre-mRNA. Mutations in the SMN1 gene result in the motor neuron disease, spinal muscular atrophy (SMA). Most of these mutations result in a reduction in the expression levels of the SMN protein, which, in turn, results in a reduction in snRNP assembly capacity. This review highlights current studies that have investigated the mechanism of SMN-dependent snRNP assembly, as well as the downstream effects on pre-mRNA splicing that result from a decrease in SMN. This article is part of a Special Issue entitled "RNA-Binding Proteins".
Collapse
Affiliation(s)
- Eileen Workman
- Department of Molecular and Cellular Biochemistry, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
97
|
Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, Wilton SD, Burghes AHM. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2011; 21:1625-38. [PMID: 22186025 DOI: 10.1093/hmg/ddr600] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(-10,-29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn-/-, SMN2+/+, SMNΔ7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients.
Collapse
Affiliation(s)
- Paul N Porensky
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Donnelly EM, Quach ET, Hillery TM, Heeke BL, Snyder BR, Handy CR, O'Connor DM, Boulis NM, Federici T. Characterization of a murine model of SMA. Neurobiol Dis 2011; 45:992-8. [PMID: 22198571 DOI: 10.1016/j.nbd.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/09/2011] [Accepted: 12/04/2011] [Indexed: 11/30/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease, which is the leading genetic cause of mortality in children. To date no effective treatment exists for SMA. The genetic basis for SMA has been well documented as a mutation in the gene for survival of motor neuron (SMN). Because there is an understanding of which gene needs to be replaced (SMN) and where it needs to be replaced (spinal motor systems), SMA is an ideal target for gene replacement via gene therapy. While a variety of animal models for SMA exist, they are either too fulminant to realistically test most gene delivery strategies, or too mild to provide a robust read out of the therapeutic effect. The field, therefore, requires a robust model with a slower symptomatic progression. A conditional knockout of SMN in neuronal cell types, giving a phenotype of functional motor defects, weight loss and reduced life expectancy partially satisfies this need (Frugier, Tiziano et al. 2000). This Cre/LoxP mediated neuron specific model presents an attractive alternative. In the present manuscript, we characterize the functional motor deficits of the model. We observed a decline in locomotor ability, as assessed by open field testing. The finer functions of motor skills such as righting reflex and grip strength were also observed to degenerate in the SMA mice. The decline in motor function that we observed here correlates with the anatomical decline in motor neurons and motor axons presented in the literature (Ferri, Melki et al. 2004). This work adds to our understanding and knowledge base of this Cre/LoxP model and provides a basis from which functional recovery, following interventions can be assessed.
Collapse
Affiliation(s)
- Eleanor M Donnelly
- Department of Neurosurgery, Emory University School of Medicine, 101 Woodruff Circle, Rm 6339, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ling KKY, Gibbs RM, Feng Z, Ko CP. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum Mol Genet 2011; 21:185-95. [PMID: 21968514 DOI: 10.1093/hmg/ddr453] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.
Collapse
Affiliation(s)
- Karen K Y Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | |
Collapse
|