51
|
Wu T, Huang KC, Yan JF, Zhang JJ, Wang SX. Extracellular matrix-derived scaffolds in constructing artificial ovaries for ovarian failure: a systematic methodological review. Hum Reprod Open 2023; 2023:hoad014. [PMID: 37180603 PMCID: PMC10174707 DOI: 10.1093/hropen/hoad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
STUDY QUESTION What is the current state-of-the-art methodology assessing decellularized extracellular matrix (dECM)-based artificial ovaries for treating ovarian failure? SUMMARY ANSWER Preclinical studies have demonstrated that decellularized scaffolds support the growth of ovarian somatic cells and follicles both in vitro and in vivo. WHAT IS KNOWN ALREADY Artificial ovaries are a promising approach for rescuing ovarian function. Decellularization has been applied in bioengineering female reproductive tract tissues. However, decellularization targeting the ovary lacks a comprehensive and in-depth understanding. STUDY DESIGN SIZE DURATION PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials were searched from inception until 20 October 2022 to systematically review all studies in which artificial ovaries were constructed using decellularized extracellular matrix scaffolds. The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. PARTICIPANTS/MATERIALS SETTING METHODS Two authors selected studies independently based on the eligibility criteria. Studies were included if decellularized scaffolds, regardless of their species origin, were seeded with ovarian cells or follicles. Review articles and meeting papers were removed from the search results, as were articles without decellularized scaffolds or recellularization or decellularization protocols, or control groups or ovarian cells. MAIN RESULTS AND THE ROLE OF CHANCE The search returned a total of 754 publications, and 12 papers were eligible for final analysis. The papers were published between 2015 and 2022 and were most frequently reported as coming from Iran. Detailed information on the decellularization procedure, evaluation method, and preclinical study design was extracted. In particular, we concentrated on the type and duration of detergent reagent, DNA and extracellular matrix detection methods, and the main findings on ovarian function. Decellularized tissues derived from humans and experimental animals were reported. Scaffolds loaded with ovarian cells have produced estrogen and progesterone, though with high variability, and have supported the growth of various follicles. Serious complications have not been reported. LIMITATIONS REASONS FOR CAUTION A meta-analysis could not be performed. Therefore, only data pooling was conducted. Additionally, the quality of some studies was limited mainly due to incomplete description of methods, which impeded specific data extraction and quality analysis. Several studies that used dECM scaffolds were performed or authored by the same research group with a few modifications, which might have biased our evaluation. WIDER IMPLICATIONS OF THE FINDINGS Overall, the decellularization-based artificial ovary is a promising but experimental choice for substituting insufficient ovaries. A generic and comparable standard should be established for the decellularization protocols, quality implementation, and cytotoxicity controls. Currently, decellularized materials are far from being clinically applicable to artificial ovaries. STUDY FUNDING/COMPETING INTERESTS This study was funded by the National Natural Science Foundation of China (Nos. 82001498 and 81701438). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This systematic review is registered with the International Prospective Register of Systematic Reviews (PROSPERO, ID CRD42022338449).
Collapse
Affiliation(s)
- Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke-Cheng Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Feng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Jin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Xuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Ai G, Meng M, Guo J, Li C, Zhu J, Liu L, Liu B, Yang W, Shao X, Cheng Z, Wang L. Adipose-derived stem cells promote the repair of chemotherapy-induced premature ovarian failure by inhibiting granulosa cells apoptosis and senescence. Stem Cell Res Ther 2023; 14:75. [PMID: 37038203 PMCID: PMC10088140 DOI: 10.1186/s13287-023-03297-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Chemotherapeutic drugs, particularly alkylating cytotoxics such as cyclophosphamide (CTX), play an important role to induce premature ovarian failure (POF). Hormone replacement therapy (HRT) is a widely used treatment to improve hormone secretion. However, the long-term HRT increases the risk of breast cancer and cardiovascular disease are attracting concerns. Therefore, there is an urgent need to develop a safe and effective treatment for POF. METHOD Adipose-derived stem cells (ADSCs) were isolated and identified from human adipose tissue. For POF modeling, CTX were intraperitoneal injected into CTX-acute group, CTX-chronic group, CTX-acute + ADSCs group and CTX-chronic + ADSCs group rats; For transplantation, ADSCs were transplanted into POF rats through tail-vein. The control group rats were injected with PBS. The effects of POF modeling and transplantation were determined by estrous cycle analysis, histopathological analysis, immunohistochemical staining and apoptosis-related marker. To evaluate the effects of ADSC on granulosa cells in vitro, CTX-induced senescent KGN cells were co-cultured with ADSCs, and senescent-related marker expression was investigated by immunofluorescent staining. RESULTS In vivo studies revealed that ADSCs transplantation reduced the apoptosis of ovarian granulosa cells and secretion of follicle-stimulating hormone. The number of total follicles, primordial follicles, primary follicles, and mature follicles and secretion of anti-Müllerian hormone and estradiol (E2) were also increased by ADSCs. The estrous cycle was also improved by ADSC transplantation. Histopathological analysis showed that CTX-damaged ovarian microenvironment was improved by ADSCs. Furthermore, TUNEL staining indicated that apoptosis of granulosa cells was decreased by ADSCs. In vitro assay also demonstrated that ADSC markedly attenuated CTX-induced senescence and apoptosis of granulosa cell. Mechanistically, both in vivo and in vitro experiments proved that ADSC transplantation suppressed activation of the PI3K/Akt/mTOR axis. CONCLUSION Our experiment demonstrated that a single injection of high-dose CTX was a less damaging chemotherapeutic strategy than continuous injection of low-dose CTX, and tail-vein injection of ADSCs was a potential approach to promote the restoration of CTX-induced POF.
Collapse
Affiliation(s)
- Guihai Ai
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Meng Meng
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Jing Guo
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Caixia Li
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jihui Zhu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Li Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Biting Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenhan Yang
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaowen Shao
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lian Wang
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
53
|
Ruan X, Cheng J, Du J, Jin F, Gu M, Ju R, Wu Y, Li L, Wang Y, Jiang L, Yang Y, Li Y, Wang Z, Ma J, Zhang M, Mueck AO. Ovarian tissue cryopreservation in the pediatric with rare diseases- experience from China's first and the largest ovarian tissue cryobank. Front Endocrinol (Lausanne) 2023; 14:1137940. [PMID: 37077363 PMCID: PMC10106563 DOI: 10.3389/fendo.2023.1137940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Background There is limited information about the efficacy of ovarian tissue cryopreservation (OTC) in children. In the present study, we report eight patients with rare diseases who underwent OTC in China's first and largest ovarian tissue cryobank. Procedure Data from girls with rare diseases who underwent OTC between September 2020 and November 2022 were retrospectively analyzed. We also compared the number of cryopreserved cortex pieces, follicle number, and AMH in those with rare diseases and age-matched children with non-rare diseases who also underwent OTC in our cryobank. Results The median age of the children was 5.88 ± 3.52 (range 2-13) years old. Unilateral oophorectomy was undertaken via laparoscopy in all of the children. The diseases in the 8 patients were: 4 mucopolysaccharidoses (MPS I two cases, IVA two cases), 1 Diamond-Blackfan anemia (DBA), 1 Fanconi anemia (FA), 1 hyperimmunoglobulin E syndrome (HIES), 1 Niemann-Pick disease. The number of cryopreserved cortex pieces was 17.13 ± 6.36, and the follicle count per 2 mm biopsy was 447.38 ± 524.35. No significant difference in age, the count of cryopreserved cortex pieces, follicle number per 2 mm biopsy, and AMH level was seen between the 20 children with non-rare diseases and those with rare diseases. Conclusions The reports help practitioners counsel girls with rare diseases about fertility preservation. The demand for OTC in pediatrics will likely grow as a standard of care.
Collapse
Affiliation(s)
- Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department for Women's Health, University Women’s Hospital and Research Center for Women’s Health, University of Tuebingen, Tuebingen, Germany
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Juan Du
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fengyu Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yurui Wu
- Department of Thoracic Surgery and Surgical Oncology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Long Li
- Department of Pediatric Surgery, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lingling Jiang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanqiu Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zecheng Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jun Ma
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mingzhen Zhang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Alfred O. Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department for Women's Health, University Women’s Hospital and Research Center for Women’s Health, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
54
|
Olesen HØ, Pors SE, Adrados CS, Zeuthen MC, Mamsen LS, Pedersen AT, Kristensen SG. Effects of needle puncturing on re-vascularization and follicle survival in xenotransplanted human ovarian tissue. Reprod Biol Endocrinol 2023; 21:28. [PMID: 36941662 PMCID: PMC10026519 DOI: 10.1186/s12958-023-01081-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Ovarian tissue transplantation can restore fertility in young cancer survivors, however the detrimental loss of follicles following transplantation of cryopreserved ovarian tissue is hampering the efficiency of the procedure. This study investigates whether needle puncturing prior to transplantation can enhance revascularization and improve follicle survival in xenotransplanted human ovarian cortex. METHODS Cryopreserved human ovarian cortex pieces (N = 36) from 20 women aged 24-36 years were included. During the thawing process, each piece of tissue was cut in halves; one half serving as the untreated control and the other half was punctured approximately 150-200 times with a 29-gauge needle. The cortex pieces were transplanted subcutaneously to immunodeficient mice for 3, 6 and 10 days (N = 8 patients) and for 4 weeks (N = 12 patients). After 3, 6 and 10 days, revascularization of the ovarian xenografts were assessed using immunohistochemical detection of CD31 and gene expression of angiogenic factors (Vegfα, Angptl4, Ang1, and Ang2), and apoptotic factors (BCL2 and BAX) were performed by qPCR. Follicle density and morphology were evaluated in ovarian xenografts after 4 weeks. RESULTS A significant increase in the CD31 positive area in human ovarian xenografts was evident from day 3 to 10, but no significant differences were observed between the needle and control group. The gene expression of Vegfα was consistently higher in the needle group compared to control at all three time points, but not statistically significant. The expression of Ang1 and Ang2 increased significantly from day 3 to day 10 in the control group (p < 0.001, p = 0.0023), however, in the needle group this increase was not observed from day 6 to 10 (Ang2 p = 0.027). The BAX/BCL2 ratio was similar in the needle and control groups. After 4-weeks xenografting, follicle density (follicles/mm3, mean ± SEM) was higher in the needle group (5.18 ± 2.24) compared to control (2.36 ± 0.67) (p = 0.208), and a significant lower percentage of necrotic follicles was found in the needle group (19%) compared to control (36%) (p = 0.045). CONCLUSIONS Needle puncturing of human ovarian cortex prior to transplantation had no effect on revascularization of ovarian grafts after 3, 6 and 10 days xenotransplantation. However, needle puncturing did affect angiogenic genes and improved follicle morphology.
Collapse
Affiliation(s)
- Hanna Ørnes Olesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Cristina Subiran Adrados
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mette Christa Zeuthen
- Department of Technology, Faculty of Health, University College Copenhagen, 2100, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Fertility Clinic, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
55
|
Gu R, Ge N, Huang B, Fu J, Zhang Y, Wang N, Xu Y, Li L, Peng X, Zou Y, Sun Y, Sun X. Impacts of vitrification on the transcriptome of human ovarian tissue in patients with gynecological cancer. Front Genet 2023; 14:1114650. [PMID: 37007967 PMCID: PMC10063885 DOI: 10.3389/fgene.2023.1114650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: This study investigated the effects of a vitrification/warming procedure on the mRNA transcriptome of human ovarian tissues.Design: Human ovarian tissues were collected and processed through vitrification (T-group) and then subjected to RNA sequencing (RNA-seq) analysis, HE, TdT-mediated dUTP nick-end labeling (TUNEL), and real-time quantitative PCR, and the results were compared to those of the fresh group (CK).Results: A total of 12 patients, aged 15–36 years old, with a mean anti-Müllerian hormone level of 4.57 ± 3.31 ng/mL were enrolled in this study. According to the HE and TUNEL results, vitrification effectively preserved human ovarian tissue. A total of 452 significantly dysregulated genes (|log2FoldChange| > 1 and p < 0.05) were identified between the CK and T groups. Among these, 329 were upregulated and 123 were downregulated. A total of 372 genes were highly enriched for 43 pathways (p < 0.05), which were mainly related to systemic lupus erythematous, cytokine–cytokine receptor interaction, the TNF signaling pathway, and the MAPK signaling pathway. IL10, AQP7, CCL2, FSTL3, and IRF7 were significantly upregulated (p < 0.01), while IL1RN, FCGBP, VEGFA, ACTA2, and ASPN were significantly downregulated in the T-group (p < 0.05) compared to the CK group, which agreed with the results of the RNA-seq analysis.Conclusion: These results showed (for the first time to the authors’ knowledge) that vitrification can induce changes in mRNA expression in human ovarian tissues. Further molecular studies on human ovarian tissues are required to determine whether altered gene expression could result in any downstream consequences.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Naidong Ge
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Bin Huang
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Fu
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Female Fertility Preservation, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ningyi Wang
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Xu
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lu Li
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiandong Peng
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yaoyu Zou
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yijuan Sun
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Yijuan Sun, ; Xiaoxi Sun,
| | - Xiaoxi Sun
- Department of Shanghai Ji’ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Yijuan Sun, ; Xiaoxi Sun,
| |
Collapse
|
56
|
Fertility-sparing options for cancer patients. Abdom Radiol (NY) 2023; 48:1618-1628. [PMID: 36884058 DOI: 10.1007/s00261-023-03839-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
Fertility preservation is becoming an integral part of cancer care among women of reproductive age. Despite advances in the treatment of pelvic malignancies, all the currently available treatment approaches, including radiotherapy, chemotherapy, and surgery, place women at high risk for future fertility impairment. With improved long-term survival rates associated with cancer, expanding the reproductive options available is of high priority. Several fertility preservation options are available today for women with gynecologic and non-gynecologic malignancies. Depending on the underlying oncological entity, these can include the following procedures whether alone or in combination: oocyte cryopreservation, embryo cryopreservation, ovarian tissue cryopreservation, ovarian transposition, and trachelectomy. The purpose of this review is to provide the most up-to-date information on the aforementioned fertility-preserving approaches and highlight the current challenges, drawbacks, and areas of research where more data are still very necessary to optimize outcomes in young female oncological patients desiring pregnancy in the future.
Collapse
|
57
|
Fraison E, Huberlant S, Labrune E, Cavalieri M, Montagut M, Brugnon F, Courbiere B. Live birth rate after female fertility preservation for cancer or haematopoietic stem cell transplantation: a systematic review and meta-analysis of the three main techniques; embryo, oocyte and ovarian tissue cryopreservation. Hum Reprod 2023; 38:489-502. [PMID: 36421038 PMCID: PMC9977128 DOI: 10.1093/humrep/deac249] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
STUDY QUESTION What are the chances of achieving a live birth after embryo, oocyte and ovarian tissue cryopreservation (OTC) in female cancer survivors? SUMMARY ANSWER The live birth rates (LBRs) following embryo and oocyte cryopreservation are 41% and 32%, respectively, while for IVF and spontaneous LBR after tissue cryopreservation and transplantation, these rates are 21% and 33%, respectively. WHAT IS KNOWN ALREADY Currently, fertility preservation (FP) has become a major public health issue as diagnostic and therapeutic progress has made it possible to achieve an 80% survival rate in children, adolescents and young adults with cancer. In the latest ESHRE guidelines, only oocyte and embryo cryopreservation are considered as established options for FP. OTC is still considered to be an innovative method, while it is an acceptable FP technique in the American Society for Reproductive Medicine guidelines. However, given the lack of studies on long-term outcomes after FP, it is still unclear which technique offers the best chance to achieve a live birth. STUDY DESIGN, SIZE, DURATION We performed a systematic review and meta-analysis of published controlled studies. Searches were conducted from January 2004 to May 2021 in Medline, Embase and the Cochrane Library using the following search terms: cancer, stem cell transplantation, FP, embryo cryopreservation, oocyte vitrification, OTC and reproductive outcome. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 126 full-text articles were preselected from 1436 references based on the title and abstract and assessed via the Newcastle-Ottawa Quality Assessment Scale. The studies were selected, and their data were extracted by two independent reviewers according to the Cochrane methods. A fixed-effect meta-analysis was performed for outcomes with high heterogeneity. MAIN RESULTS AND THE ROLE OF CHANCE Data from 34 studies were used for this meta-analysis. Regarding cryopreserved embryos, the LBR after IVF was 41% (95% CI: 34-48, I2: 0%, fixed effect). Concerning vitrified oocytes, the LBR was 32% (95% CI: 26-39, I2: 0%, fixed effect). Finally, the LBR after IVF and the spontaneous LBR after ovarian tissue transplantation were 21% (95% CI: 15-26, I2: 0%, fixed-effect) and 33% (95% CI: 25-42, I2: 46.1%, random-effect), respectively. For all outcomes, in the sensitivity analyses, the maximum variation in the estimated percentage was 1%. LIMITATIONS, REASONS FOR CAUTION The heterogeneity of the literature prevents us from comparing these three techniques. This meta-analysis provides limited data which may help clinicians when counselling patients. WIDER IMPLICATIONS OF THE FINDINGS This study highlights the need for long-term follow-up registries to assess return rates, as well as spontaneous pregnancy rates and birth rates after FP. STUDY FUNDING/COMPETING INTEREST(S) This work was sponsored by an unrestricted grant from GEDEON RICHTER France. The authors have no competing interests to declare. REGISTRATION NUMBER CRD42021264042.
Collapse
Affiliation(s)
- E Fraison
- Service de Médecine de la Reproduction, Hospices Civils de Lyon, Hôpital Mère Enfant, Bron, France.,Université Claude Bernard, Faculté de Médecine Laennec, Lyon, France.,INSERM Unité 1208, Bron, France
| | - S Huberlant
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, CHU Carémeau, Nîmes, France.,Université de Montpellier-Nîmes, Nîmes Cedex 2, France
| | - E Labrune
- Service de Médecine de la Reproduction, Hospices Civils de Lyon, Hôpital Mère Enfant, Bron, France.,Université Claude Bernard, Faculté de Médecine Laennec, Lyon, France.,INSERM Unité 1208, Bron, France
| | - M Cavalieri
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, CHU François Mitterrand, Dijon, France
| | - M Montagut
- Service de Médecine de la Reproduction, Clinique Croix du Sud, Quint-Fonsegrives, France
| | - F Brugnon
- Assistance Médicale à la Procréation, CECOS, CHU Clermont Ferrand, CHU Estaing, Clermont-Ferrand, France.,Université Clermont Auvergne, IMoST, INSERM 1240, Faculté de Médecine, Clermont-Ferrand, France
| | - B Courbiere
- Service d'Assistance Médicale à la Procréation, Plateforme Cancer & Fertilité OncoPACA-Corse, AP-HM, Hôpital La Conception, Marseille, France.,Aix-Marseille Université, IMBE, CNRS, IRD, Avignon Université, Marseille, France
| |
Collapse
|
58
|
Xu Z, Ibrahim S, Burdett S, Rydzewska L, Al Wattar BH, Davies MC. Long term pregnancy outcomes of women with cancer following fertility preservation: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2023; 281:41-48. [PMID: 36535069 DOI: 10.1016/j.ejogrb.2022.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE As cancer survivorship increases, there is higher uptake of fertility preservation treatments among affected women. However, there is limited evidence on the subsequent use of preserved material and pregnancy outcomes in women who underwent fertility preservation (FP) before cancer treatments. We aimed to systematically review the long-term reproductive and pregnancy outcomes in this cohort of women. PATIENTS Women who underwent any type of the following FP treatments: embryo cryopreservation (EC), oocyte cryopreservation (OC) and ovarian tissue cryopreservation (OTC)) before any planned cancer treatment. EVIDENCE REVIEW We searched electronic databases (MEDLINE, Embase, Cochrane CENTRAL, and HTA) from inception until May 2021 for all observational studies that met our inclusion criteria. We extracted data on reproductive and pregnancy outcomes in duplicate and assessed the risk of bias in included studies using the ROBINS-I tool. We pooled data using a random-effects model and reported using odds ratios (OR) with 95% confidence intervals (CI). MAIN OUTCOME MEASURES Our primary outcome was live birth rate and other important reproductive and pregnancy outcomes. RESULTS Of 5405 citations, we screened 103 and included 26 observational studies (n = 7061 women). Hematologic malignancy was the commonest cause for seeking FP treatments, followed by breast and gynecology cancers. Twelve studies reported on OTC (12/26, 46 %), eight included EC (8/26, 30 %), and twelve reported on OC (12/26, 46 %). The cumulative live birth rate following any FP treatment was 0.046 (95 %CI 0.029-0.066). Only 8 % of women returned to use their frozen reproductive material (558/7037, 8.0 %), resulting in 210 live births in total, including assisted conceptions following EC/OC/OTC and natural conceptions following OTC. The odds for live birth was OR 0.38 (95 %CI 0.29-0.48 I2 83.7 %). The odds for live birth was the highest among women who had EC (OR 0.45, 95 %CI 0.14-0.76, I2 95.1 %), followed by the OTC group (OR 0.37, 95 %CI 0.22-0.53, I2 88.7 %) and OC group (OR 0.31, 95 %CI 0.15-0.47, I2 78.2 %). CONCLUSIONS Fertility preservation treatments offered good long-term reproductive outcomes for women with cancer with a high chance to achieve a live birth. Further research is needed to evaluate the long-term pregnancy and offspring outcomes in this cohort.
Collapse
Affiliation(s)
- Zilin Xu
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom; UCL Institute for Women's Health, University College London, London, United Kingdom
| | - Sameh Ibrahim
- UCL Institute for Women's Health, University College London, London, United Kingdom
| | - Sarah Burdett
- MRC Clinical Trials Unit, University College London, London, United Kingdom
| | - Larysa Rydzewska
- MRC Clinical Trials Unit, University College London, London, United Kingdom
| | - Bassel H Al Wattar
- Beginings Assisted Conception Unit, Epsom and St Helier University Hospitals, London, United Kingdom.
| | - Melanie C Davies
- Reproductive Medicine Unit, University College London Hospitals, London, United Kingdom; UCL Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
59
|
Whigham CA, Vollenhoven B, Vincent AJ. Reproductive health in Turner syndrome: A narrative review. Prenat Diagn 2023; 43:261-271. [PMID: 36336873 DOI: 10.1002/pd.6261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Turner syndrome (TS), a common chromosomal abnormality affecting females, is associated with partial or complete loss of the second sex chromosome. Although the classic karyotype is 45, X, the detection of mosaic TS is increasing. TS is a multi-system disorder with significant endocrine, cardiovascular and reproductive impacts. Accelerated ovarian follicular loss leads to primary amenorrhoea or premature ovarian insufficiency and infertility. Early diagnosis and counselling regarding hormone replacement therapy and future reproductive capacity, including fertility preservation, are essential to improve reproductive outcomes. Pubertal induction or estrogen replacement is usually required to optimise long-term health outcomes; however, initiation may be delayed due to delayed diagnosis. Spontaneous pregnancy occurs in a small number of women; however, many require donor oocytes and assisted reproductive technology to achieve a pregnancy. Pregnancy is a high risk especially when associated with congenital heart disease. Prepregnancy counselling by the multidisciplinary team (MDT) to identify contraindications and optimise pre-existing health issues is essential. Pregnancy management should be led by a maternal-fetal medicine unit with input from the MDT. This review examines reproductive health outcomes in women with TS and how best to manage them to reduce health risks and improve maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Carole-Anne Whigham
- Women's and Newborn Program, Monash Health, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Beverley Vollenhoven
- Women's and Newborn Program, Monash Health, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,Monash IVF, Clayton, Victoria, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
60
|
Yildiz S, Bildik G, Benlioglu C, Turan V, Dilege E, Ozel M, Kim S, Oktem O. Breast cancer treatment and ovarian function. Reprod Biomed Online 2023; 46:313-331. [PMID: 36400663 DOI: 10.1016/j.rbmo.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
The aim of this study was to provide an update on ovarian function and the mechanisms of gonadal damage after exposure to chemotherapy in breast cancer survivors. The alkylating agents are toxic to both primordial and growing follicles. However, anti-metabolite drugs are more likely to destroy preantral and antral follicles. Younger patients are more likely to have a higher ovarian reserve, and therefore, more likely to retain some residual ovarian function after exposure to gonadotoxic regimens. However, there can be significant variability in ovarian reserve among patients of the same age. Furthermore, patients with critically diminished ovarian reserve may continue to menstruate regularly. Therefore age and menstrual status are not reliable indicators of good ovarian reserve and might give a false sense of security and result in an adverse outcome if the patient is consulted without considering more reliable quantitative markers of ovarian reserve (antral follicle count and anti-Müllerian hormone) and fertility preservation is not pursued. In contrast to well-documented ovarian toxicity of older chemotherapy regimens, data for newer taxane-containing protocols have only accumulated in the last decade and data are still very limited regarding the impact of targeted therapies on ovarian function.
Collapse
Affiliation(s)
- Sule Yildiz
- The Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Koç University Hospital, Koç University School of Medicine, Istanbul, Turkey
| | - Gamze Bildik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX 77054, USA
| | - Can Benlioglu
- Department of Obstetrics and Gynecology, Koç University Hospital, Istanbul, Turkey
| | - Volkan Turan
- Istanbul Tema Hospital, Assisted Reproduction Unit, Istanbul
| | - Ece Dilege
- Department of General Surgery, Koç University Hospital, Koç University School of Medicine, Istanbul, Turkey
| | - Melis Ozel
- Department of Gynecology and Obstetrics Klinikum Ingolstadt, Bavaria, Germany
| | - Samuel Kim
- Eden Centers for Advanced Fertility, Fullerton CA 92835, USA
| | - Ozgur Oktem
- The Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Koç University Hospital, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
61
|
Li J, Li Q, Zhang L, Zhang S, Dai Y. Poly-ADP-ribose polymerase (PARP) inhibitors and ovarian function. Biomed Pharmacother 2023; 157:114028. [PMID: 36410122 DOI: 10.1016/j.biopha.2022.114028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Poly-ADP-ribose polymerase (PARP) plays an important role in DNA damage detection and repair. PARP inhibitors (PARPi) are a novel class of targeted agents used widely in the treatment of female cancer patients with BRCA mutations, including younger patients. However, the impact of PARPi on ovarian function remains a considerable problem in clinical practice. In this review article, we summarize the current understanding of PARPi's effects on the function of ovary and discuss their potential underlying mechanisms, highlighting the significance of further investigation on the criterion for ovarian failure and its preventive approaches during PARPi treatment.
Collapse
Affiliation(s)
- Jiajia Li
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lingyi Zhang
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China; Gynecology and Obstetrics Department, Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songling Zhang
- Gynecologic Oncology Department, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
62
|
Takeuchi H, Maezawa T, Hagiwara K, Horage Y, Hanada T, Haipeng H, Sakamoto M, Nishioka M, Takayama E, Terada K, Kondo E, Takai Y, Suzuki N, Ikeda T. Investigation of an efficient method of oocyte retrieval by dual stimulation for patients with cancer. Reprod Med Biol 2023; 22:e12534. [PMID: 37601482 PMCID: PMC10433114 DOI: 10.1002/rmb2.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose To examine the optimal timing of second ovarian stimulation using the dual stimulation method for good ovarian responders with cancer undergoing oocyte retrieval for fertility preservation. Methods A retrospective analysis was conducted using data from 69 patients with cancer who underwent oocyte retrieval for fertility preservation at four Japanese institutions during 2010-2021. Twenty-two patients underwent two oocyte retrievals for fertility preservation. We studied the relationship between the initial number of oocytes retrieved via dual stimulation and risk of ovarian enlargement as well as the appropriate waiting interval between the end of the first ovarian stimulation and beginning of the second ovarian stimulation. Results The risk of ovarian enlargement was high when the initial number of oocytes retrieved via dual stimulation was ≥5. An 8-day waiting interval may be more effective for performing a second ovarian stimulation oocyte retrieval in these cases, although the difference was not significant. Conclusions This study provides one policy for effectively managing ovarian enlargement and timing of second ovarian stimulation during oocyte retrieval via the dual stimulation method for patients with cancer undergoing fertility preservation. If more facilities implement this procedure, more oocytes may be obtained in a short period for fertility preservation purposes.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| | - Tadashi Maezawa
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| | | | - Yuki Horage
- Department of Obstetrics and GynecologySt. Marianna University School of MedicineKawasakiJapan
| | - Tetsuro Hanada
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| | - Huang Haipeng
- Department of Obstetrics and Gynecology, Saitama Medical CenterSaitama Medical UniversityKawagoeJapan
| | - Mito Sakamoto
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| | - Mikiko Nishioka
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| | - Erina Takayama
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| | - Kento Terada
- Advanced Reproductive Medical CenterMie‐University HospitalTsuJapan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| | - Yasushi Takai
- Department of Obstetrics and Gynecology, Saitama Medical CenterSaitama Medical UniversityKawagoeJapan
| | - Nao Suzuki
- Department of Obstetrics and GynecologySt. Marianna University School of MedicineKawasakiJapan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
| |
Collapse
|
63
|
Faidherbe V, Foureur N. [Transplantation of ovarian tissue after complete remission of acute leukemia: The case of Julie]. Med Sci (Paris) 2023; 39:79-81. [PMID: 36692325 DOI: 10.1051/medsci/2022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Virginie Faidherbe
- Centre d'éthique clinique de l'AP-HP, hôpital Cochin, 27 rue du faubourg Saint Jacques, 75679 Paris Cedex 14, France
| | - Nicolas Foureur
- Centre d'éthique clinique de l'AP-HP, hôpital Cochin, 27 rue du faubourg Saint Jacques, 75679 Paris Cedex 14, France
| |
Collapse
|
64
|
Wang Y, Jiang J, Zhang J, Fan P, Xu J. Research Progress on the Etiology and Treatment of Premature Ovarian Insufficiency. Biomed Hub 2023; 8:97-107. [PMID: 38094192 PMCID: PMC10718577 DOI: 10.1159/000535508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Menopause in women marks the knot of reproductive life, and menopause is defined as the last menstrual period in a woman, but this is caused by the failure of the ovarian reserve. The average age of natural menopause in the general population of women has remained around 50-52 years. Premature ovarian insufficiency (POI) is a debilitating clinical syndrome that manifests as a decline in ovarian function in women under 40. This condition is a prominent cause of female infertility. Summary POI is a debilitating condition that not only wreaks havoc on patients' physical and mental well-being but also imposes substantial mental, psychological, and economic burdens, particularly on women. In addition to diminished fertility, individuals afflicted with POI face an elevated risk of developing debilitating conditions such as osteoporosis and cardiovascular disease. The etiologies of POI are highly heterogeneous, and it can be caused by spontaneous genetic defects or induced by autoimmune diseases, infections, and iatrogenic or environmental factors. Alarmingly, idiopathic POI, a subtype characterized by an unknown etiology, accounts for more than half of all POI cases. Currently, clinical interventions for POI primarily consist of hormone replacement therapy. Fertility preservation methods are cryopreservation of embryos, oocytes, and ovarian tissue. Immunological interventions, gene editing techniques, and stem cell-based therapies are being explored to unravel the diverse etiologies and underlying mechanisms of POI, thereby enabling the identification of optimal therapeutic interventions. These innovative approaches offer unprecedented opportunities to advance the field of reproductive medicine. Key Messages The main aim of this paper was to offer a succinct summary of the latest research breakthroughs concerning the elucidation of the mechanisms governing the origin and management of POI.
Collapse
Affiliation(s)
- Yuxian Wang
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Jianqiu Jiang
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Jiali Zhang
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Peiyin Fan
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Jian Xu
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| |
Collapse
|
65
|
Colmorn LB, Pedersen AT, Larsen EC, Hansen AS, Rosendahl M, Andersen CY, Kristensen SG, Macklon KT. Reproductive and Endocrine Outcomes in a Cohort of Danish Women following Auto-Transplantation of Frozen/Thawed Ovarian Tissue from a Single Center. Cancers (Basel) 2022; 14:cancers14235873. [PMID: 36497354 PMCID: PMC9740843 DOI: 10.3390/cancers14235873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian tissue cryopreservation (OTC) is a method of fertility preservation in girls and young women prior to gonadotoxic treatment. It is a safe and promising method to restore fertility. The initial recovery of endocrine function is high, but the longevity of the grafted tissue varies. In this single-center, combined retro- and prospective cohort study, we report the reproductive outcome and hormonal recovery following ovarian tissue transplantation (OTT) and evaluate possible predictors of the chance of pregnancy. The study includes 40 women from eastern Denmark undergoing 53 OTTs between 2003 and 2021. Permission to obtain retrospective data was given by the Danish Patient Safety Authorities and prospective data-collection by informed consent. Initial recovery of endocrine function was seen in 18/19 women with POI, and ongoing function of the grafted tissue in 7/14 two years from OTT. Live birth rate (LBR) was 41%, with 20 children to 39 women trying to conceive. Women who conceived had higher AFC at the time of OTC than women who did not (p ± 0.04). Repeated transplantations were not successful in terms of delivery. Half of all pregnancies were achieved by ART, but PRs were lower after ART than by spontaneous conception. LBRs after OTT are encouraging. Chance of pregnancy after OTT is correlated to ovarian reserve at OTC. Repeated transplantations were not successful in terms of unfulfilled pregnancy wish.
Collapse
Affiliation(s)
- Lotte B Colmorn
- The Fertility Clinic, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Anette T Pedersen
- Gynecological Department, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Elisabeth C Larsen
- The Fertility Clinic, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Alexandra S Hansen
- The Fertility Clinic, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Mikkel Rosendahl
- Gynecological Department, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory for Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Stine G Kristensen
- Laboratory for Reproductive Biology, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| | - Kirsten T Macklon
- The Fertility Clinic, Rigshospitalet, University Hospital of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
66
|
Lotz L, Bender-Liebenthron J, Dittrich R, Häberle L, Beckmann MW, Germeyer A, Korell M, Sänger N, Kruessel JS, von Wolff M. Determinants of transplantation success with cryopreserved ovarian tissue: data from 196 women of the FertiPROTEKT network. Hum Reprod 2022; 37:2787-2796. [PMID: 36272106 DOI: 10.1093/humrep/deac225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/19/2022] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What are the pregnancy and live birth rates for ovarian tissue transplantation and which factors are associated with the success rate? SUMMARY ANSWER Pregnancy and live birth rates per transplanted woman are 32.7% and 26.5% and success rate is associated with female age and first versus repeated transplantation. WHAT IS KNOWN ALREADY Live birth rates after ovarian tissue transplantations have been reported to be between around 24% and 41% per patient. Success rates seem to be negatively associated with increasing female age at the time of tissue cryopreservation and with pelvic radiation. Success rates are apparently not reduced after overnight transportation of ovarian tissue before freezing. STUDY DESIGN, SIZE, DURATION Registry analysis of 244 transplantations in 196 women, performed by 26 FertiPROTEKT network centres from 2007 to 2019 with follow-up till December 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Orthotopic ovarian tissue transplantations were performed in 196 women, 191 with previous malignant and 5 with previous non-malignant diseases. Size of transplanting centres varied between 1 and 100 transplantations per centre (median: 2). Factors possibly associated with success rate such as female age, first and repeated transplantation, experience of the transplanting centre and overnight transportation of the ovarian tissue before freezing were analysed. MAIN RESULTS AND THE ROLE OF CHANCE Average age of all 196 transplanted women was 31.3 years (SD 5.2; range 17-44) at the time of cryopreservation of tissue and 35.9 years (SD 4.8; range 23-47) at the time of transplantation. Pregnancy rate was 30.6% (95% CI, 24.2-37.6%) per first transplantation and 32.7% (95% CI, 26.1-39.7%) per patient. Pregnancy rate was higher after first transplantation (30.6% (95% CI, 24.2-37.6%)) compared to second and subsequent transplantations (11.8% (95% CI, 3.3-27.5%)). Live birth rate per first transplantation was 25.0% (95% CI, 19.1-31.7%) and per patient 26.5% (95% CI, 20.5-33.3%). Success rate decreased with increasing age at the time of ovarian tissue freezing. Live birth rate was 28.2% (95% CI, 20.9-36.3%) in women <35 years and 16.7% (95% CI, 7.9-29.3%) in women >35 years. Pregnancy rates after first transplantation were higher in centres who had performed ≥10 transplantations (35.1%) compared to centres with <10 transplantation (25.4%) (P = 0.12). Corresponding live birth rates were 27.0% and 18.6%. Success rates were not different in women with and without overnight transportation of tissue before cryopreservation. LIMITATIONS, REASONS FOR CAUTION The data were drawn from a registry analysis. Data such as ovarian reserve and premature ovarian insufficiency were not available for all women. Data might be influenced by different follow-up policies of the centres. WIDER IMPLICATIONS OF THE FINDINGS The study reveals the high potential of ovarian tissue freezing and transplantation, but only if freezing is performed in younger women. The study suggests focus should be placed on the first and not on repeated transplantations. It also opens the discussion of whether transplantation should rather be performed by experienced centres. STUDY FUNDING/COMPETING INTEREST(S) No funding. No competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Lotz
- Department of Obstetrics and Gynaecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - J Bender-Liebenthron
- UniCareD, University Cryobank for Assisted Reproductive Medicine and Fertility Protection at UniKiD, University Women's Hospital Duesseldorf, Duesseldorf, Germany
| | - R Dittrich
- Department of Obstetrics and Gynaecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - L Häberle
- Department of Obstetrics and Gynaecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
- Biostatistics Unit, Department of Gynaecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - M W Beckmann
- Department of Obstetrics and Gynaecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - A Germeyer
- Department of Gynaecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - M Korell
- Department of Obstetrics and Gynaecology, Johanna-Etienne-Hospital Neuss, Neuss, Germany
| | - N Sänger
- Department of Gynaecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Bonn, Germany
| | - J S Kruessel
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility, UniKiD, University Women's Hospital Duesseldorf, Duesseldorf, Germany
| | - M von Wolff
- Division of Gynaecological Endocrinology and Reproductive Medicine, University Women's Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
67
|
Cheng J, Ruan X, Li Y, Du J, Jin F, Gu M, Zhou Q, Xu X, Yang Y, Wang H, Mueck AO. Effects of hypoxia-preconditioned HucMSCs on neovascularization and follicle survival in frozen/thawed human ovarian cortex transplanted to immunodeficient mice. Stem Cell Res Ther 2022; 13:474. [PMID: 36104746 PMCID: PMC9476266 DOI: 10.1186/s13287-022-03167-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background The massive loss of follicles in the early stage of ovarian tissue transplantation is considered a significant restriction to the efficacy of ovarian tissue cryopreservation (OTC) and transplantation (OT). The use of mesenchymal stem cells (MSCs) before transplantation of ovarian fragments shortened the hypoxic period and boosted neovascularization. Hypoxia-preconditioned MSCs can enhance the potential of angiogenesis. Can hypoxia-preconditioned human umbilical cord mesenchymal stem cell (HucMSCs) and ovarian tissue co-xenotransplantation improve more neovascularization and subsequently more follicle survival in human ovarian tissue? Methods Frozen-thawed cortical pieces from 4 patients were transplanted into the bilateral renal capsule of immune-deficient nude mice without HucMSCs or normoxia/hypoxia-preconditioned HucMSCs. Sixty-four mice were randomly distributed into 4 groups. In each group, the mice were euthanized for blood and/or graft retrieval on post-transplantation days 3 (n = 8) and 7 (n = 8), respectively. Non-grafted frozen-thawed ovarian fragment was taken for non-grafted control. Grafts were histologically processed and analysed for follicle density and atretic follicles by HE, neovascularization by CD34 and CD31 immunohistochemical staining, primordial follicle growth by Ki67 staining, and apoptosis of stromal cell and follicles by immunofluorescence using TUNEL. The ROS and TAC levels of grafted and non-grafted tissue were assessed. We evaluated the protein expression of HIF1α, VEGFA, pAkt, Akt, and GDF9 in grafted and non-grafted ovarian tissue. E2, Prog, AMH, and FSH levels in the plasma of mice were measured after 3 and 7 days of OT. Results Hypoxia-preconditioned HucMSCs positively protect the grafted ovarian tissue by significantly decreasing the apoptosis and increasing higher expression of CD31, CD34, and VEGFA for earlier angiogenesis. They are crucial to preserving the resting primordial follicle pool by modulation of follicle death. Conclusion This is the first study to demonstrate that co-transplantation of hypoxia-preconditioned HucMSC with ovarian tissue improved earlier vascularization of ovarian grafts in the early post-grafting period, which correlates with increased follicle survival and reduced apoptosis. The HIF1α/VEGFA signal pathways may play an important role in elucidating the mechanisms of action of hypoxia-preconditioned HucMSCs with regard to OT and clinical implementation.
Collapse
|
68
|
Hong YH, Lee JR. Ovarian tissue cryopreservation and transplantation for fertility preservation. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2022. [DOI: 10.5124/jkma.2022.65.6.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: As the number of cancer survivors has increased with advancements in cancer treatment, fertility preservation has become a treatment goal. Ovarian tissue cryopreservation (OTC) and transplantation (OTT) has made great progress over the past few decades. It has become the treatment of choice for fertility preservation in adolescents or patients in urgent need of chemotherapy. However, it is considered to be experimental compared with oocyte or embryo cryopreservation in some countries. Nevertheless, OTC and OTT is regarded as the more ideal method for fertility preservation in that it can also restore hormonal functions.Current Concepts: Currently, over 200 live births have been reported worldwide after OTC and OTT, proving the excellence of the technology. However, before its application in clinical settings, some challenges, including cryoinjury, ischemic injury, and cancer cell reimplantation, should be overcome. For cryoinjury, studies are underway on protocol improvement with the addition of agents such as antifreeze protein during cryopreservation. For ischemic injury, various agents have been studied to promote angiogenesis or revascularization. Furthermore, studies are underway on artificial ovary or xenotransplantation for fertility preservation in an effort to avoid cancer cell metastasis.Discussion and Conclusion: OTC and OTT is a clinically applicable option for fertility preservation. To set OTC and OTT as an established method for fertility preservation, further research is necessary to overcome the current challenges.
Collapse
|
69
|
Ruan X, Cheng J, Du J, Jin F, Gu M, Li Y, Ju R, Wu Y, Wang H, Yang W, Cheng H, Li L, Bai W, Kong W, Yang X, Lv S, Wang Y, Yang Y, Xu X, Jiang L, Li Y, Mueck AO. Analysis of Fertility Preservation by Ovarian Tissue Cryopreservation in Pediatric Children in China. Front Endocrinol (Lausanne) 2022; 13:930786. [PMID: 35846295 PMCID: PMC9277002 DOI: 10.3389/fendo.2022.930786] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ovarian tissue cryopreservation (OTC) is the only method of fertility preservation (FP) in prepubertal girls, but the experience remains limited. This study investigates the effectiveness and feasibility of FP of OTC in children facing gonadotoxicity treatment in Chinese first ovarian tissue cryobank. PROCEDURE OTC and evaluation of 49 children ≤14 years old in the cryobank of Beijing Obstetrics and Gynecology Hospital, Capital Medical University, from July 2017 to May 19, 2022, were analyzed retrospectively. We compared children's general characteristics, follicle numbers, and hormone levels with and without chemotherapy before OTC. RESULTS The age of 49 children at the time of OTC was 7.55 (1-14) years old. There were 23 cases of hematological non-malignant diseases, eight cases of hematological malignant diseases, four cases of gynecological malignant tumors, one case of neurological malignant tumors, one case of bladder cancer, five cases of sarcoma, three cases of mucopolysaccharidosis, one case of metachromatic leukodystrophy, two cases of dermatomyositis, one case of Turner's syndrome. The median follicular count per 2-mm biopsy was 705. Age and AMH were not correlated (r = 0.084, P = 0.585). Age and follicle count per 2-mm biopsy was not correlated (r = -0.128, P = 0.403). Log10 (follicle count per 2-mm biopsy) and Log10 (AMH) were not correlated (r = -0.118, P = 0.456). Chemotherapy before OTC decreased AMH levels but had no significant effect on the number of follicles per 2-mm biopsy. CONCLUSIONS OTC is the only method to preserve the fertility of prepubertal girls, and it is safe and effective. Chemotherapy before OTC is not a contraindication to OTC.
Collapse
Affiliation(s)
- Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Xiangyan Ruan,
| | - Jiaojiao Cheng
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Juan Du
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fengyu Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanglu Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Rui Ju
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yurui Wu
- Department of Thoracic Surgery and Surgical Oncology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Haiyan Cheng
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Long Li
- Department of Pediatric Surgery, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weimin Kong
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xin Yang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Shulan Lv
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yu Yang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xin Xu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Lingling Jiang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanqiu Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Alfred O. Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- Department of Women’s Health, University of Tuebingen, University Women’s Hospital and Research Centre for Women’s Health, Tuebingen, Germany
| |
Collapse
|