51
|
Moya B, Bhagwat S, Cabot G, Bou G, Patel M, Oliver A. Effective inhibition of PBPs by cefepime and zidebactam in the presence of VIM-1 drives potent bactericidal activity against MBL-expressing Pseudomonas aeruginosa. J Antimicrob Chemother 2021; 75:1474-1478. [PMID: 32083659 DOI: 10.1093/jac/dkaa036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The combination of cefepime and the novel β-lactam enhancer zidebactam (WCK 5222) is under development for the treatment of difficult-to-treat Gram-negative infections. Against MBL-producing pathogens, cefepime and zidebactam induce cell elongation and spheroplast formation, indicating PBP3 and PBP2 dysfunction, respectively, having a potent bactericidal effect as a combination. The objective of the present study was to determine the mechanistic basis of the bactericidal effect of cefepime/zidebactam on MBL-expressing pathogens. METHODS Pseudomonal PBP-binding affinities of cefepime, zidebactam and imipenem were assessed at different timepoints and also in the presence of purified VIM-1 using a Bocillin FL competition assay. The antibacterial activity of cefepime/zidebactam against three VIM-expressing Pseudomonas aeruginosa isolates was assessed by time-kill and neutropenic mouse lung/thigh infection studies. RESULTS Amidst cefepime-hydrolysing concentrations of VIM-1, substantial cefepime binding to target PBPs was observed. High-affinity binding of zidebactam to PBP2 remained unaltered in the presence of VIM-1; however, MBL addition significantly affected imipenem PBP2 binding. Furthermore, the rate of cefepime binding to the primary target PBP3 was found to be higher compared with the imipenem PBP2 binding rate. Finally, complementary PBP inhibition by cefepime/zidebactam resulted in enhanced bactericidal activity in time-kill and neutropenic mouse lung/thigh infection studies against VIM-6-, VIM-10- and VIM-11-expressing P. aeruginosa, thus revealing the mechanistic basis of β-lactam enhancer action. CONCLUSIONS For the first time ever (to the best of our knowledge), this study demonstrates that in the presence of VIM-1 MBL, β-lactamase-labile cefepime and β-lactamase-stable zidebactam produce effective inhibition of respective target PBPs. For cefepime, this seems to be a result of a faster rate of PBP binding, which helps it overcome β-lactamase-mediated hydrolysis.
Collapse
Affiliation(s)
- Bartolome Moya
- Servicio de Microbiologia and Unidad de Investigacion, Hospital Universitario Son Espases, Instituto de Investigacion Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | | | - Gabriel Cabot
- Servicio de Microbiologia and Unidad de Investigacion, Hospital Universitario Son Espases, Instituto de Investigacion Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - German Bou
- Servicio de Microbiologia, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | | | - Antonio Oliver
- Servicio de Microbiologia and Unidad de Investigacion, Hospital Universitario Son Espases, Instituto de Investigacion Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
52
|
Lasko MJ, Abdelraouf K, Nicolau DP. Comparative in vivo activity of human-simulated plasma and epithelial lining fluid exposures of WCK 5222 (cefepime/zidebactam) against KPC- and OXA-48-like-producing Klebsiella pneumoniae in the neutropenic murine pneumonia model. J Antimicrob Chemother 2021; 76:2310-2316. [PMID: 34096601 DOI: 10.1093/jac/dkab183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES This was a comparative assessment of WCK 5222 (cefepime/zidebactam 2/1 g as a 1 h infusion every 8 h) efficacy using human-simulated plasma and ELF exposures against serine-carbapenemase-producing Klebsiella pneumoniae in the neutropenic murine pneumonia model. METHODS Ten clinical isolates were utilized: eight were serine-carbapenemase-producing (KPC, n = 4; OXA-48-like, n = 4) Enterobacterales with WCK 5222 MICs (1:1) ranging from 1 to 4 mg/L; and two were previously studied MDR isolates serving as quality controls. Lungs of mice were inoculated with 50 μL of 107 cfu/mL. Treatment mice received human-simulated regimens of cefepime, zidebactam or WCK 5222 derived from plasma or epithelial lining fluid (ELF) profiles obtained from healthy subjects. Lung bacterial densities resulting from the humanized exposures in plasma and ELF were compared. RESULTS Initial lung bacterial densities ranged from 6.06 to 6.87 log10 cfu/lungs, with a mean bacterial burden increase to 9.06 ± 0.42 after 24 h. Human-simulated plasma and ELF exposures of cefepime and zidebactam monotherapy had no activity. Human-simulated WCK 5222 plasma exposures resulted in a >1 log10 cfu/lungs reduction in bacterial burden for all isolates. Humanized WCK 5222 ELF exposures achieved a >1 log10 cfu/lungs reduction for all isolates. While statistically significant differences in bacterial burden reduction were observed between the plasma and ELF exposures for WCK 5222 in 5/8 isolates, all treatments achieved the translational kill target of a >1 log10 cfu reduction. CONCLUSIONS Clinically achievable WCK 5222 plasma and ELF exposures produced in vivo killing of carbapenem-resistant Enterobacterales in the neutropenic murine pneumonia model that is predictive of efficacy in humans.
Collapse
Affiliation(s)
- Maxwell J Lasko
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
53
|
Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob Agents Chemother 2021; 65:AAC.00184-21. [PMID: 33753332 DOI: 10.1128/aac.00184-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OXA-48-type β-lactamases are now routinely encountered in bacterial infections caused by carbapenem-resistant Enterobacterales These enzymes are of high and growing clinical significance due to the importance of carbapenems in treatment of health care-associated infections by Gram-negative bacteria, the wide and increasing dissemination of OXA-48 enzymes on plasmids, and the challenges posed by their detection. OXA-48 confers resistance to penicillin (which is efficiently hydrolyzed) and carbapenem antibiotics (which is more slowly broken down). In addition to the parent enzyme, a growing array of variants of OXA-48 is now emerging. The spectrum of activity of these variants varies, with some hydrolyzing expanded-spectrum oxyimino-cephalosporins. The growth in importance and diversity of the OXA-48 group has motivated increasing numbers of studies that aim to elucidate the relationship between structure and specificity and establish the mechanistic basis for β-lactam turnover in this enzyme family. In this review, we collate recently published structural, kinetic, and mechanistic information on the interactions between clinically relevant β-lactam antibiotics and inhibitors and OXA-48 β-lactamases. Collectively, these studies are starting to form a detailed picture of the underlying bases for the differences in β-lactam specificity between OXA-48 variants and the consequent differences in resistance phenotype. We focus specifically on aspects of carbapenemase and cephalosporinase activities of OXA-48 β-lactamases and discuss β-lactamase inhibitor development in this context. Throughout the review, we also outline key open research questions for future investigation.
Collapse
|
54
|
Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of cefepime/zidebactam (WCK 5222) against 'problem' antibiotic-resistant Gram-negative bacteria sent to a national reference laboratory. J Antimicrob Chemother 2021; 76:1511-1522. [PMID: 33760082 DOI: 10.1093/jac/dkab067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-action diazabicyclooctanes, e.g. zidebactam, combine β-lactamase inhibition, antibacterial activity, and 'enhancement' of PBP3-targeted β-lactams. OBJECTIVES To examine the activity of cefepime/zidebactam against consecutive 'problem' Gram-negative bacteria referred to the UK national reference laboratory. METHODS MICs were determined by BSAC agar dilution for 1632 Enterobacterales, 745 Pseudomonas aeruginosa and 450 other non-fermenters, categorized by carbapenemase detection and interpretive reading. RESULTS Universal susceptibility to cefepime/zidebactam 8 + 8 mg/L was seen for otherwise multidrug-resistant Enterobacterales with AmpC, extended-spectrum, K1, KPC and OXA-48-like β-lactamases, or with impermeability and 'unassigned' mechanisms. Unlike ceftazidime/avibactam and all other comparators, cefepime/zidebactam 8 + 8 mg/L also inhibited most (190/210, 90.5%) Enterobacterales with MBLs. Resistance in the remaining minority of MBL producers, and in 13/24 with both NDM MBLs and OXA-48-like enzymes, was associated with Klebsiella pneumoniae ST14. For Pseudomonas aeruginosa, MICs of cefepime/zidebactam rose with efflux grade, but exceeded 8 + 8 mg/L for only 11/85 isolates even in the highly-raised efflux group. Among 103 P. aeruginosa with ESBLs or MBLs, 97 (94.5%) were inhibited by cefepime/zidebactam 8 + 8 mg/L whereas fewer than 15% were susceptible to any comparator. MICs for Acinetobacter baumannii with acquired OXA carbapenemases clustered around 8 + 8 to 32 + 32 mg/L, with higher values for MBL producers. A strong enhancer effect augmented activity against many isolates that were highly resistant to cefepime and zidebactam alone and which had mechanisms not inhibited by zidebactam. CONCLUSIONS Assuming successful clinical trials, cefepime/zidebactam has scope to widely overcome critical resistances in both Enterobacterales and non-fermenters.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Paolo Garello
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - David M Livermore
- Antimicrobial Resistance and Healthcare-Associated Infections Reference Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK.,Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
55
|
Kidd JM, Abdelraouf K, Nicolau DP. Efficacy of human-simulated bronchopulmonary exposures of cefepime, zidebactam and the combination (WCK 5222) against MDR Pseudomonas aeruginosa in a neutropenic murine pneumonia model. J Antimicrob Chemother 2021; 75:149-155. [PMID: 31641765 DOI: 10.1093/jac/dkz414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES WCK 5222 combines cefepime with zidebactam, a β-lactam enhancer that binds PBP2 and inhibits class A and C β-lactamases. The efficacy of human-simulated bronchopulmonary exposures of WCK 5222 against MDR Pseudomonas aeruginosa was investigated in a neutropenic murine pneumonia model. METHODS Nineteen MDR isolates of P. aeruginosa (cefepime MICs ≥64 mg/L) were studied. MICs of zidebactam and WCK 5222 ranged from 4 to 512 mg/L and from 4 to 32 mg/L, respectively. Dosing regimens of cefepime and zidebactam alone and in combination that achieved epithelial lining fluid (ELF) exposures in mice approximating human ELF exposures after doses of 2 g of cefepime/1 g of zidebactam every 8 h (1 h infusion) were utilized; controls were vehicle-dosed. Lungs were intranasally inoculated with 107-108 cfu/mL bacterial suspensions. Mice were dosed subcutaneously 2 h after inoculation for 24 h, then lungs were harvested. RESULTS In vitro MIC was predictive of in vivo response to WCK 5222 treatment. Mean±SD changes in bacterial density at 24 h compared with 0 h controls (6.72±0.50 log10 cfu/lungs) for 13 isolates with WCK 5222 MICs ≤16 mg/L were 1.17±1.00, -0.99±1.45 and -2.21±0.79 log10 cfu/lungs for cefepime, zidebactam and WCK 5222, respectively. Against these isolates, zidebactam yielded >1 log10 cfu/lungs reductions in 8/13, while activity was enhanced with WCK 5222, producing >2 log10 cfu/lungs reductions in 10/13 and >1 log10 cfu/lungs reductions in 12/13. Among isolates with WCK 5222 MICs of 32 mg/L, five out of six showed a bacteriostatic response. CONCLUSIONS Human-simulated bronchopulmonary exposure of WCK 5222 is effective against MDR P. aeruginosa at MIC ≤16 mg/L in a murine pneumonia model. These data support the clinical development of WCK 5222 for pseudomonal lung infections.
Collapse
Affiliation(s)
- James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Harford, CT, USA
| |
Collapse
|
56
|
Romero E, Oueslati S, Benchekroun M, D'Hollander ACA, Ventre S, Vijayakumar K, Minard C, Exilie C, Tlili L, Retailleau P, Zavala A, Elisée E, Selwa E, Nguyen LA, Pruvost A, Naas T, Iorga BI, Dodd RH, Cariou K. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Eur J Med Chem 2021; 219:113418. [PMID: 33862516 DOI: 10.1016/j.ejmech.2021.113418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
The occurrence of resistances in Gram negative bacteria is steadily increasing to reach extremely worrying levels and one of the main causes of resistance is the massive spread of very efficient β-lactamases which render most β-lactam antibiotics useless. Herein, we report the development of a series of imino-analogues of β-lactams (namely azetidinimines) as efficient non-covalent inhibitors of β-lactamases. Despite the structural and mechanistic differences between serine-β-lactamases KPC-2 and OXA-48 and metallo-β-lactamase NDM-1, all three enzymes can be inhibited at a submicromolar level by compound 7dfm, which can also repotentiate imipenem against a resistant strain of Escherichia coli expressing NDM-1. We show that 7dfm can efficiently inhibit not only the three main clinically-relevant carbapenemases of Ambler classes A (KPC-2), B (NDM-1) and D (OXA-48) with Ki's below 0.3 μM, but also the cephalosporinase CMY-2 (class C, 86% inhibition at 10 μM). Our results pave the way for the development of a new structurally original family of non-covalent broad-spectrum inhibitors of β-lactamases.
Collapse
Affiliation(s)
- Eugénie Romero
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Saoussen Oueslati
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Mohamed Benchekroun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Agathe C A D'Hollander
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Sandrine Ventre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Kamsana Vijayakumar
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Corinne Minard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Cynthia Exilie
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Linda Tlili
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Agustin Zavala
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France; U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Eddy Elisée
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Edithe Selwa
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Laetitia A Nguyen
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, Gif-sur-Yvette, France
| | - Alain Pruvost
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour La Santé, Gif-sur-Yvette, France
| | - Thierry Naas
- U1184, Inserm, Université Paris-Saclay, LabEx LERMIT, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Hôpital Bicêtre, Le Kremlin-Bicêtre, France; EERA Unit "Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-AP-HP-Université Paris-Saclay, Paris, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
| | - Bogdan I Iorga
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France.
| | - Robert H Dodd
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France
| | - Kevin Cariou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Gif-sur-Yvette, France.
| |
Collapse
|
57
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
58
|
Structural Characterization of Diazabicyclooctane β-Lactam "Enhancers" in Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa. mBio 2021; 12:mBio.03058-20. [PMID: 33593978 PMCID: PMC8545096 DOI: 10.1128/mbio.03058-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a significant public health threat. A major mechanism of resistance expressed by MDR pathogens is β-lactamase-mediated degradation of β-lactam antibiotics. The diazabicyclooctane (DBO) compounds zidebactam and WCK 5153, recognized as β-lactam “enhancers” due to inhibition of Pseudomonas aeruginosa penicillin-binding protein 2 (PBP2), are also class A and C β-lactamase inhibitors. To structurally probe their mode of PBP2 inhibition as well as investigate why P. aeruginosa PBP2 is less susceptible to inhibition by β-lactam antibiotics compared to the Escherichia coli PBP2, we determined the crystal structure of P. aeruginosa PBP2 in complex with WCK 5153. WCK 5153 forms an inhibitory covalent bond with the catalytic S327 of PBP2. The structure suggests a significant role for the diacylhydrazide moiety of WCK 5153 in interacting with the aspartate in the S-X-N/D PBP motif. Modeling of zidebactam in the active site of PBP2 reveals a similar binding mode. Both DBOs increase the melting temperature of PBP2, affirming their stabilizing interactions. To aid in the design of DBOs that can inhibit multiple PBPs, the ability of three DBOs to interact with P. aeruginosa PBP3 was explored crystallographically. Even though the DBOs show covalent binding to PBP3, they destabilized PBP3. Overall, the studies provide insights into zidebactam and WCK 5153 inhibition of PBP2 compared to their inhibition of PBP3 and the evolutionarily related KPC-2 β-lactamase. These molecular insights into the dual-target DBOs advance our knowledge regarding further DBO optimization efforts to develop novel potent β-lactamase-resistant, non-β-lactam PBP inhibitors.
Collapse
|
59
|
Lence E, González‐Bello C. Bicyclic Boronate β‐Lactamase Inhibitors: The Present Hope against Deadly Bacterial Pathogens. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Concepción González‐Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
60
|
Arumairaj A, Agarwal S, Popli T, Lopez E. A rare emergence of resistance to ceftolozane/tazobactam in Klebsiella pneumoniae causing urinary tract infection. BMJ Case Rep 2021; 14:14/2/e240351. [PMID: 33547106 PMCID: PMC7871250 DOI: 10.1136/bcr-2020-240351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The management of infections caused by carbapenem-resistant organisms has been a challenge. We report a rare emergence of resistance to the novel beta-lactam/ beta-lactamase combination ceftolozane/tazobactam by Klebsiella pneumoniae, causing urinary tract infection. The K. pneumoniae, in this case, was reported to be sensitive to the other novel beta-lactam/ beta-lactamase combination of ceftazidime/avibactam. The timely administration of ceftazidime/avibactam resulted in prompt clinical resolution of the urinary tract infection caused by an extensively drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Antony Arumairaj
- Internal Medicine, Metropolitan Hospital Center, New York, New York, USA
| | - Sanket Agarwal
- Internal Medicine, Metropolitan Hospital Center, New York, New York, USA
| | - Tarun Popli
- Infectious Disease, Metropolitan Hospital Center, New York, New York, USA
| | - Eliana Lopez
- Infectious Disease, Metropolitan Hospital Center, New York, New York, USA
| |
Collapse
|
61
|
Bonnin RA, Jousset AB, Emeraud C, Oueslati S, Dortet L, Naas T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front Med (Lausanne) 2021; 7:616490. [PMID: 33553210 PMCID: PMC7855592 DOI: 10.3389/fmed.2020.616490] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria, especially Enterobacterales, have emerged as major players in antimicrobial resistance worldwide. Resistance may affect all major classes of anti-gram-negative agents, becoming multidrug resistant or even pan-drug resistant. Currently, β-lactamase-mediated resistance does not spare even the most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The dissemination of carbapenemases-encoding genes among Enterobacterales is a matter of concern, given the importance of carbapenems to treat nosocomial infections. Based on their amino acid sequences, carbapenemases are grouped into three major classes. Classes A and D use an active-site serine to catalyze hydrolysis, while class B (MBLs) require one or two zinc ions for their activity. The most important and clinically relevant carbapenemases are KPC, IMP/VIM/NDM, and OXA-48. However, several carbapenemases belonging to the different classes are less frequently detected. They correspond to class A (SME-, Nmc-A/IMI-, SFC-, GES-, BIC-like…), to class B (GIM, TMB, LMB…), class C (CMY-10 and ACT-28), and to class D (OXA-372). This review will address the genetic diversity, biochemical properties, and detection methods of minor acquired carbapenemases in Enterobacterales.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Agnès B Jousset
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
62
|
de Sousa Coelho F, Mainardi JL. The multiple benefits of second-generation β-lactamase inhibitors in treatment of multidrug-resistant bacteria. Infect Dis Now 2021; 51:510-517. [PMID: 33870896 DOI: 10.1016/j.idnow.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
The World Health Organisation (WHO) has designated antibiotic resistance as one of the most challenging public health threats of the 21st century. Production of β-lactamase enzymes by Gram-negative bacteria is the main mechanism of resistance to β-lactam (BL), the most widely used antibiotic in clinics. In an attempt to neutralise the hydrolytic activity of these enzymes, β-lactamase inhibitors (BLIs) have been developed. First-generation BLIs include clavulanic acid, sulbactam and tazobactam. However, none of them cover all β-lactamase classes, and an increasingly wide panel of inhibitor-resistant bacterial strains has developed. Second-generation BLIs function via different mechanisms and were developed by novel scaffolds from which diazabicyclooctane (DBOs) and boronic acids have emerged. In this paper, we provide descriptions of promisor second-generation β-lactamase inhibitors, such as avibactam, vaborbactam and boronic acids, as well as several BL-BLI combinations that have been designed. While some combinations are now being used in clinical practice, most are presently limited to clinical trials or pre-clinical studies. In this paper, we emphasise the continuous need to develop novel and different BLIs to keep up with the multidrug-resistant bacteria that arise. At this time, however, second-generation BLIs constitute a promising and effective approach.
Collapse
Affiliation(s)
- F de Sousa Coelho
- Faculdade de Engenharia da Universidade do Porto, Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal.
| | - J-L Mainardi
- Centre de recherche des Cordeliers, INSERM UMRS 1138, Sorbonne université, université de Paris, Paris, France; Service de microbiologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, centre-université de Paris, Paris, France.
| |
Collapse
|
63
|
In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam, and Other Comparators against Clinical Isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii: Results from China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrob Agents Chemother 2020; 65:AAC.01726-20. [PMID: 33139291 DOI: 10.1128/aac.01726-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
This study evaluated the in vitro activity of cefepime-zidebactam in comparison with that of ceftazidime-avibactam and other comparators against clinically significant Gram-negative bacillus isolates. A total of 3,400 nonduplicate Gram-negative clinical isolates were collected from 45 medical centers across China in the CHINET Program in 2018, including Enterobacterales (n = 2,228), Pseudomonas aeruginosa (n = 657), and Acinetobacter baumannii (n = 515). The activities of cefepime-zidebactam and 20 comparators were determined by broth microdilution as recommended by the Clinical and Laboratory Standards Institute. Cefepime-zidebactam demonstrated potent activity against almost all Enterobacterales (MIC50/90, 0.125/1 mg/liter) and good activity against P. aeruginosa (MIC50/90, 2/8 mg/liter). Among the 373 carbapenem-resistant Enterobacteriaceae isolates, 57.3% (213/373) and 15.3% (57/373) were positive for bla KPC-2 and bla NDM, respectively. Cefepime-zidebactam showed a MIC of ≤2 mg/liter for 92.0% (196/213) of bla KPC-2 producers and 79.7% (47/59) of bla NDM producers. Ceftazidime-avibactam showed good in vitro activity against Enterobacterales (MIC50/90, 0.25/2 mg/liter; 94.0% susceptible) and P. aeruginosa (MIC50/90, 4/16 mg/liter; 86.9% susceptible). Ceftazidime-avibactam was active against 9.1% of carbapenem-resistant Escherichia coli isolates (63.6% were bla NDM producers) and 84.6% of Klebsiella pneumoniae isolates (74.3% were bla KPC producers). Most (90.1%) bla KPC-2 producers were susceptible to ceftazidime-avibactam. Cefepime-zidebactam demonstrated limited activity (MIC50/90, 16/32 mg/liter) against the 515 A. baumannii isolates (79.2% were carbapenem resistant), and ceftazidime-avibactam was less active (MIC50/90, 64/>64 mg/liter). Cefepime-zidebactam was highly active against clinical isolates of Enterobacterales and P. aeruginosa, including bla KPC-2-positive Enterobacterales and bla NDM-positive Enterobacterales and carbapenem-resistant P. aeruginosa And ceftazidime-avibactam was highly active against bla KPC-2-positive Enterobacterales and carbapenem-resistant P. aeruginosa.
Collapse
|
64
|
New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int J Mol Sci 2020; 21:ijms21239308. [PMID: 33291334 PMCID: PMC7731173 DOI: 10.3390/ijms21239308] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Carbapenem resistance is a major global health problem that seriously compromises the treatment of infections caused by nosocomial pathogens. Resistance to carbapenems mainly occurs via the production of carbapenemases, such as VIM, IMP, NDM, KPC and OXA, among others. Preclinical and clinical trials are currently underway to test a new generation of promising inhibitors, together with the recently approved avibactam, relebactam and vaborbactam. This review summarizes the main, most promising carbapenemase inhibitors synthesized to date, as well as their spectrum of activity and current stage of development. We particularly focus on β-lactam/β-lactamase inhibitor combinations that could potentially be used to treat infections caused by carbapenemase-producer pathogens of critical priority. The emergence of these new combinations represents a step forward in the fight against antimicrobial resistance, especially in regard to metallo-β-lactamases and carbapenem-hydrolysing class D β-lactamases, not currently inhibited by any clinically approved inhibitor.
Collapse
|
65
|
In Vitro Activity of WCK 5222 (Cefepime-Zidebactam) against Worldwide Collected Gram-Negative Bacilli Not Susceptible to Carbapenems. Antimicrob Agents Chemother 2020; 64:AAC.01432-20. [PMID: 32928739 DOI: 10.1128/aac.01432-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
WCK 5222 (cefepime-zidebactam, 2 g + 1g, every 8 h [q8h]) is in clinical development for the treatment of infections caused by carbapenem-resistant and multidrug-resistant (MDR) Gram-negative bacilli. We determined the in vitro susceptibility of 1,385 clinical isolates of non-carbapenem-susceptible Enterobacterales, MDR Pseudomonas aeruginosa (also non-carbapenem susceptible), Stenotrophomonas maltophilia, and Burkholderia spp. collected worldwide (49 countries) from 2014 to 2016 to cefepime-zidebactam (1:1 ratio), ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, and colistin using the CLSI broth microdilution method. Cefepime-zidebactam inhibited 98.5% of non-carbapenem-susceptible Enterobacterales (n = 1,018) at ≤8 μg/ml (provisional cefepime-zidebactam-susceptible MIC breakpoint). Against the subset of metallo-β-lactamase (MBL)-positive Enterobacterales (n = 214), cefepime-zidebactam inhibited 94.9% of isolates at ≤8 μg/ml. Further, it inhibited 99.6% of MDR P. aeruginosa (n = 262) isolates at ≤32 μg/ml (proposed cefepime-zidebactam-susceptible pharmacokinetic/pharmacodynamic MIC breakpoint), including all MBL-positive isolates (n = 94). Moreover, cefepime-zidebactam was active against the majority of isolates of Enterobacterales (≥95%) and P. aeruginosa (99%) that were not susceptible to ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relebactam, and colistin. Most isolates (99%) of S. maltophilia (n = 101; MIC50, 8 μg/ml; MIC90, 32 μg/ml) and Burkholderia spp. (n = 4; MIC range, 16 to 32 μg/ml) were also inhibited by cefepime-zidebactam at ≤32 μg/ml. The activity of cefepime-zidebactam against carbapenem-resistant Gram-negative bacteria is ascribed to its β-lactam enhancer mechanism of action (i.e., zidebactam binding to penicillin binding protein 2 [PBP2] and its universal stability to both serine β-lactamases and MBLs). The results from this study support the continued development of cefepime-zidebactam as a potential therapy for infections caused by Enterobacterales, P. aeruginosa, and other nonfermentative Gram-negative bacilli where resistance to marketed antimicrobial agents is a limiting factor.
Collapse
|
66
|
Is it time to move away from polymyxins?: evidence and alternatives. Eur J Clin Microbiol Infect Dis 2020; 40:461-475. [PMID: 33009595 DOI: 10.1007/s10096-020-04053-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Increasing burden of carbapenem resistance and resultant difficult-to-treat infections are of particular concern due to the lack of effective and safe treatment options. More recently, several new agents with activity against certain multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative pathogens have been approved for clinical use. These include ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, and cefiderocol. For the management of MBL infections, clinically used triple combination comprising ceftazidime-avibactam and aztreonam is hindered due to non-availability of antimicrobial susceptibility testing methods and lack of information on potential drug-drug interaction leading to PK changes impacting its safety and efficacy. Moreover, in several countries including Indian subcontinent and developing countries, these new agents are yet to be made available. Under these circumstances, polymyxins are the only last resort for the treatment of carbapenem-resistant infections. With the recent evidence of suboptimal PK/PD particularly in lung environment, limited efficacy and increased nephrotoxicity associated with polymyxin use, the Clinical and Laboratory Standards Institute (CLSI) has revised both colistin and polymyxin B breakpoints. Thus, polymyxins 'intermediate' breakpoint for Enterobacterales, P. aeruginosa, and Acinetobacter spp. are now set at ≤ 2 mg/L, implying limited clinical efficacy even for isolates with the MIC value 2 mg/L. This change has questioned the dependency on polymyxins in treating XDR infections. In this context, recently approved cefiderocol and phase 3 stage combination drug cefepime-zidebactam assume greater significance due to their potential to act as polymyxin-supplanting therapies.
Collapse
|
67
|
Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob Agents Chemother 2020; 64:e00397-20. [PMID: 32690645 PMCID: PMC7508574 DOI: 10.1128/aac.00397-20] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modern medicine is threatened by the global rise of antibiotic resistance, especially among Gram-negative bacteria. Metallo-β-lactamase (MBL) enzymes are a particular concern and are increasingly disseminated worldwide, though particularly in Asia. Many MBL producers have multiple further drug resistances, leaving few obvious treatment options. Nonetheless, and more encouragingly, MBLs may be less effective agents of carbapenem resistance in vivo, under zinc limitation, than in vitro Owing to their unique structure and function and their diversity, MBLs pose a particular challenge for drug development. They evade all recently licensed β-lactam-β-lactamase inhibitor combinations, although several stable agents and inhibitor combinations are at various stages in the development pipeline. These potential therapies, along with the epidemiology of producers and current treatment options, are the focus of this review.
Collapse
Affiliation(s)
- Sara E Boyd
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - David M Livermore
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
68
|
Jalde SS, Choi HK. Recent advances in the development of β-lactamase inhibitors. J Microbiol 2020; 58:633-647. [PMID: 32720096 DOI: 10.1007/s12275-020-0285-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
β-Lactam antibiotics are the most commonly prescribed antibiotics worldwide; however, antimicrobial resistance (AMR) is a global challenge. The β-lactam resistance in Gram-negative bacteria is due to the production of β-lactamases, including extended-spectrum β-lactamases, metallo-β-lactamases, and carbapenem-hydrolyzing class D β-lactamases. To restore the efficacy of BLAs, the most successful strategy is to use them in combination with β-lactamase inhibitors (BLI). Here we review the medically relevant β-lactamase families and penicillins, diazabicyclooctanes, boronic acids, and novel chemical scaffold-based BLIs, in particular approved and under clinical development.
Collapse
Affiliation(s)
- Shivakumar S Jalde
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, Republic of Korea
| | - Hyun Kyung Choi
- Department of Medicinal Chemistry, Jungwon University, Goesan, 28420, Republic of Korea.
| |
Collapse
|
69
|
Khan Z, Iregui A, Landman D, Quale J. Activity of cefepime/zidebactam (WCK 5222) against Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii endemic to New York City medical centres. J Antimicrob Chemother 2020; 74:2938-2942. [PMID: 31298277 DOI: 10.1093/jac/dkz294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The combination of cefepime and zidebactam (WCK5222), a novel β-lactam enhancer, has demonstrated activity against a wide variety of Gram-negative pathogens and is currently under clinical evaluation. OBJECTIVES To examine the activity of cefepime/zidebactam against: (i) a contemporary collection of Gram-negative isolates from New York City; (ii) a collection of carbapenem-resistant clinical isolates; and (iii) a collection of isolates with characterized resistance mechanisms. METHODS Susceptibility tests were performed using broth microdilution for cefepime, zidebactam and cefepime/zidebactam (1:1). RESULTS More than 99% of a contemporary collection of Escherichia coli, Klebsiella pneumoniae and Enterobacter spp. had cefepime/zidebactam MICs ≤2 mg/L, the susceptibility breakpoint for cefepime. For K. pneumoniae, the acquisition of blaKPC resulted in increased MICs, although MICs remained ≤2 mg/L for 90% of KPC-possessing isolates. Overall for Pseudomonas aeruginosa, 98% of isolates had MICs ≤8 mg/L and MICs were affected by increased expression of ampC. For carbapenem-resistant P. aeruginosa, 78% of isolates had cefepime/zidebactam MICs ≤8 mg/L. The activity of cefepime/zidebactam against Acinetobacter baumannii was lower, with 85% of all isolates and 34% of carbapenem-resistant isolates with MICs ≤8 mg/L (cefepime interpretative criteria). CONCLUSIONS Cefepime/zidebactam demonstrated excellent activity against Enterobacteriaceae and P. aeruginosa, although activity was reduced in carbapenem-non-susceptible isolates. The activity against A. baumannii was reduced and studies examining the therapeutic efficacy in strains with high cefepime/zidebactam MICs are warranted.
Collapse
Affiliation(s)
- Zeb Khan
- Division of Infectious Diseases, SUNY Downstate Medical Centre, Brooklyn, NY, USA
| | - Alejandro Iregui
- Division of Infectious Diseases, SUNY Downstate Medical Centre, Brooklyn, NY, USA
| | - David Landman
- Division of Infectious Diseases, SUNY Downstate Medical Centre, Brooklyn, NY, USA
| | - John Quale
- Division of Infectious Diseases, SUNY Downstate Medical Centre, Brooklyn, NY, USA
| |
Collapse
|
70
|
Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev 2020; 43:490-516. [PMID: 31150547 PMCID: PMC6736374 DOI: 10.1093/femsre/fuz014] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Infections of antibiotic-resistant pathogens pose an ever-increasing threat to mankind. The investigation of novel approaches for tackling the antimicrobial resistance crisis must be part of any global response to this problem if an untimely reversion to the pre-penicillin era of medicine is to be avoided. One such promising avenue of research involves so-called antibiotic resistance breakers (ARBs), capable of re-sensitising resistant bacteria to antibiotics. Although some ARBs have previously been employed in the clinical setting, such as the β-lactam inhibitors, we posit that the broader field of ARB research can yet yield a greater diversity of more effective therapeutic agents than have been previously achieved. This review introduces the area of ARB research, summarises the current state of ARB development with emphasis on the various major classes of ARBs currently being investigated and their modes of action, and offers a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Mark Laws
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Ali Shaaban
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH
| |
Collapse
|
71
|
Mushtaq S, Vickers A, Woodford N, Haldimann A, Livermore DM. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J Antimicrob Chemother 2020; 74:953-960. [PMID: 30590470 DOI: 10.1093/jac/dky522] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diazabicyclooctanes (DBOs) are promising β-lactamase inhibitors. Some, including nacubactam (OP0595/RG6080), also bind PBP2 and have an enhancer effect, allowing activity against Enterobacteriaceae with MBLs, which DBOs do not inhibit. We tested the activity of nacubactam/β-lactam combinations against MBL-producing Enterobacteriaceae. METHODS Test panels comprised (i) 210 consecutive Enterobacteriaceae with NDM or VIM MBLs, as referred by UK diagnostic laboratories, and (ii) 99 supplementary MBL-producing Enterobacteriaceae, representing less prevalent phenotypes, species and enzymes. MICs were determined by CLSI agar dilution. RESULTS MICs of nacubactam alone were bimodal, clustering at 1-8 mg/L or >32 mg/L; >85% of values for Escherichia coli and Enterobacter spp. fell into the low MIC cluster, whereas Proteeae were universally resistant and the Klebsiella spp. were divided between the two groups. Depending on the prospective breakpoint (4 + 4 or 8 + 4 mg/L), and on whether all isolates were considered or solely the Consecutive Collection, meropenem/nacubactam and cefepime/nacubactam inhibited 80.3%-93.3% of MBL producers, with substantial gains over nacubactam alone. Against the most resistant isolates (comprising 57 organisms with MICs of nacubactam >32 mg/L, cefepime ≥128 mg/L and meropenem ≥128 mg/L), cefepime/nacubactam at 8 + 4 mg/L inhibited 63.2% and meropenem/nacubactam at 8 + 4 mg/L inhibited 43.9%. Aztreonam/nacubactam, incorporating an MBL-stable β-lactam partner, was almost universally active against the MBL producers and, unlike aztreonam/avibactam, had an enhancer effect. CONCLUSIONS Nacubactam combinations, including those using MBL-labile β-lactams, e.g. meropenem and cefepime, can overcome most MBL-mediated resistance. This behaviour reflects nacubactam's direct antibacterial and enhancer activity.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, 61 Colindale Avenue, London, UK
| | - Anna Vickers
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, 61 Colindale Avenue, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, 61 Colindale Avenue, London, UK
| | - Andreas Haldimann
- Roche Pharma Research and Early Development, Immunology, Inflammation and Infectious Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, 61 Colindale Avenue, London, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
72
|
Otsuka Y. Potent Antibiotics Active against Multidrug-Resistant Gram-Negative Bacteria. Chem Pharm Bull (Tokyo) 2020; 68:182-190. [DOI: 10.1248/cpb.c19-00842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Biochemical Activity of Vaborbactam. Antimicrob Agents Chemother 2020; 64:AAC.01935-19. [PMID: 31712199 PMCID: PMC6985712 DOI: 10.1128/aac.01935-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022] Open
Abstract
The most common mechanism of resistance to β-lactams antibiotics in Gram-negative bacteria is production of β-lactamase enzymes capable of cleaving the β-lactam ring. Inhibition of β-lactamase activity with small-molecule drugs is a proven strategy to restore the potency of many β-lactam antibiotics. Vaborbactam (formerly RPX7009) is a cyclic boronic acid β-lactamase inhibitor (BLI) with a broad spectrum of activity against various serine β-lactamases, including KPC carbapenemases. The combination of vaborbactam and meropenem is approved in the United States and Europe for the treatment of various nosocomial infections. We attempted to gain more insight into the mechanism of action of vaborbactam by conducting detailed kinetic characterization of its interaction with various recombinant His-tagged β-lactamases. Vaborbactam demonstrated potent inhibition of class A and class C enzymes with Ki values ranging from 0.022 to 0.18 μM, while inhibition of class D enzymes was rather poor, and no activity against class B β-lactamases was detected. Importantly, vaborbactam inhibited KPC-2, KPC-3, BKC-1, and SME-2 carbapenemases at 1:1 stoichiometry, while these numbers were higher for other class A and C enzymes. Vaborbactam was also shown to be a potent progressive inactivator of several enzymes, including KPCs with inactivation constants k 2/K in the range of 3.4 × 103 to 2.4 × 104 M-1 s-1 Finally, experiments on the recovery of enzyme activity demonstrated the high stability of the vaborbactam-KPC complex, with 0.000040 s-1 k off values and a corresponding residence time of 7 h, whereas the release of vaborbactam bound to other serine β-lactamases was substantially faster. The biochemical characteristics of vaborbactam described in this study may facilitate further chemical optimization efforts to develop boronic BLIs with improved affinity and broader spectrum of inhibition.
Collapse
|
74
|
Abstract
Resistance to β-lactam antibiotics in Gram-negative bacteria is commonly associated with production of β-lactamases, including extended-spectrum β-lactamases (ESBLs) and carbapenemases belonging to different molecular classes: those with a catalytically active serine and those with at least one active-site Zn2+ to facilitate hydrolysis. To counteract the hydrolytic activity of these enzymes, combinations of a β-lactam with a β-lactamase inhibitor (BLI) have been clinically successful. However, some β-lactam-BLI combinations have lost their effectiveness against prevalent Gram-negative pathogens that produce ESBLs, carbapenemases or multiple β-lactamases in the same organism. In this Review, descriptions are provided for medically relevant β-lactamase families and various BLI combinations that have been developed or are under development. Recently approved inhibitor combinations include the inhibitors avibactam and vaborbactam of the diazabicyclooctanone and boronic acid inhibitor classes, respectively, as new scaffolds for future inhibitor design.
Collapse
|
75
|
Peilleron L, Cariou K. Synthetic approaches towards avibactam and other diazabicyclooctane β-lactamase inhibitors. Org Biomol Chem 2020; 18:830-844. [DOI: 10.1039/c9ob02605c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic strategies to obtain avibactam and other diazabicyclooctane β-lactamase inhibitors such as ETX2514 are presented.
Collapse
Affiliation(s)
- Laure Peilleron
- Université Paris-Saclay
- CNRS
- Institut de Chimie des Substances Naturelles
- Gif-sur-Yvette
- France
| | - Kevin Cariou
- Université Paris-Saclay
- CNRS
- Institut de Chimie des Substances Naturelles
- Gif-sur-Yvette
- France
| |
Collapse
|
76
|
Rane VP, Ahirrao VK, Patil KR, Jadhav RA, Yeole RD. Impurity Profiling of a Novel β-Lactam Enhancer: Zidebactam. Chromatographia 2019. [DOI: 10.1007/s10337-019-03845-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
77
|
Liu B, Trout REL, Chu GH, McGarry D, Jackson RW, Hamrick JC, Daigle DM, Cusick SM, Pozzi C, De Luca F, Benvenuti M, Mangani S, Docquier JD, Weiss WJ, Pevear DC, Xerri L, Burns CJ. Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- and Metallo-β-lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections. J Med Chem 2019; 63:2789-2801. [PMID: 31765155 PMCID: PMC7104248 DOI: 10.1021/acs.jmedchem.9b01518] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
A major resistance mechanism in Gram-negative bacteria
is the production
of β-lactamase enzymes. Originally recognized for their ability
to hydrolyze penicillins, emergent β-lactamases can now confer
resistance to other β-lactam drugs, including both cephalosporins
and carbapenems. The emergence and global spread of β-lactamase-producing
multi-drug-resistant “superbugs” has caused increased
alarm within the medical community due to the high mortality rate
associated with these difficult-to-treat bacterial infections. To
address this unmet medical need, we initiated an iterative program
combining medicinal chemistry, structural biology, biochemical testing,
and microbiological profiling to identify broad-spectrum inhibitors
of both serine- and metallo-β-lactamase enzymes. Lead optimization,
beginning with narrower-spectrum, weakly active compounds, provided 20 (VNRX-5133, taniborbactam), a boronic-acid-containing pan-spectrum
β-lactamase inhibitor. In vitro and in vivo studies demonstrated
that 20 restored the activity of β-lactam antibiotics
against carbapenem-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae. Taniborbactam is the
first pan-spectrum β-lactamase inhibitor to enter clinical development.
Collapse
Affiliation(s)
- Bin Liu
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Robert E Lee Trout
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Guo-Hua Chu
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Daniel McGarry
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Randy W Jackson
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Jodie C Hamrick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Denis M Daigle
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Susan M Cusick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Filomena De Luca
- Department of Medical Biotechnology, University of Siena, I-53100 Siena, Italy
| | - Manuela Benvenuti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, I-53100 Siena, Italy
| | - William J Weiss
- UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, United States
| | - Daniel C Pevear
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Luigi Xerri
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Christopher J Burns
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
78
|
Papp-Wallace KM. The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections. Expert Opin Pharmacother 2019; 20:2169-2184. [PMID: 31500471 PMCID: PMC6834881 DOI: 10.1080/14656566.2019.1660772] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Antimicrobial resistance in Gram-negative pathogens is a significant threat to global health. β-Lactams (BL) are one of the safest and most-prescribed classes of antibiotics on the market today. The acquisition of β-lactamases, especially those which hydrolyze carbapenems, is eroding the efficacy of BLs for the treatment of serious infections. During the past decade, significant advances were made in the development of novel BL-β-lactamase inhibitor (BLI) combinations to target β-lactamase-mediated resistant Gram-negatives.Areas covered: The latest progress in 20 different approved, developing, and preclinical BL-BLI combinations to target serine β-lactamases produced by Gram-negatives are reviewed based on primary literature, conference abstracts (when available), and US clinical trial searches within the last 5 years. The majority of the compounds that are discussed are being evaluated as part of a BL-BLI combination.Expert opinion: The current trajectory in BLI development is promising; however, a significant challenge resides in the selection of an appropriate BL partner as well as the development of resistance linked to the BL partner. In addition, dosing regimens for these BL-BLI combinations need to be critically evaluated. A revolution in bacterial diagnostics is essential to aid clinicians in the appropriate selection of novel BL-BLI combinations for the treatment of serious infections.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Louis Stokes Cleveland Department of Veterans Affairs, Research Service, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
79
|
Jean SS, Gould IM, Lee WS, Hsueh PR. New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship. Drugs 2019; 79:705-714. [PMID: 30972660 DOI: 10.1007/s40265-019-01112-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A gradual rise in drug-resistant trends among Gram-negative organisms, especially carbapenem-resistant (CR) Enterobacteriaceae (CRE), CR-Pseudomonas aeruginosa, and extensively-drug-resistant (XDR) Acinetobacter baumannii, poses an enormous threat to healthcare systems worldwide. In the last decade, many pharmaceutical companies have devoted enormous resources to the development of new potent antibiotics against XDR Gram-negative pathogens, particularly CRE. Some of these novel antibiotics against CRE strains are β-lactam/β-lactamase-inhibitor combination agents, while others belong to the non-β-lactam class. Most of these antibiotics display good in vitro activity against the producers of Ambler class A, C, and D β-lactamase, although avibactam and vaborbactam are not active in vitro against metallo-β-lactamase (MβL) enzymes. Nevertheless, in vitro efficacy against the producers of some or all class B enzymes (New Delhi MβL, Verona integron-encoded MβL, etc) has been shown with cefepime-zidebactam, aztreonam-avibactam, VNRX-5133, cefiderocol, plazomicin, and eravacycline. As of Feburary 2019, drugs approved for treatment of some CRE-related infections by the US Food and Drug Administration included ceftazidime-avibactam, meropenem-vaborbactam, plazomicin, and eravacycline. Although active against extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae, delafloxacin does not show in vitro activity against CRE. Murepavadin is shown to be specifically active against CR- and colistin-resistant P. aeruginosa strains. Despite successful development of novel antibiotics, strict implementation of an antibiotic stewardship policy in combination with the use of well-established phenotypic tests and novel multiplex PCR methods for detection of the most commonly encountered β-lactamases/carbapenemases in hospitals is important for prescribing effective antibiotics against CRE and decreasing the resistance burden due to CRE.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medicine University, Taipei, Taiwan
| | - Ian M Gould
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Scotland, UK
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| | | |
Collapse
|
80
|
Ahirrao VK, Rane VP, Patil KR, Jadhav RA, Bhamare VS, Yadav DS, Yeole RD. Identification of Monomethyl Sulfate and Sulfate Impurities in Zidebactam Using LC–MS and Application of Mixed-Mode Liquid Chromatography with Charged Aerosol Detection and Ion Chromatography for Quantification. Chromatographia 2019. [DOI: 10.1007/s10337-019-03836-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
81
|
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J Med Chem 2019; 63:1859-1881. [PMID: 31663735 DOI: 10.1021/acs.jmedchem.9b01279] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infections caused by resistant bacteria are nowadays too common, and some pathogens have even become resistant to multiple types of antibiotics, in which case few or even no treatments are available. In recent years, the most successful strategy in anti-infective drug discovery for the treatment of such problematic infections is the combination therapy "antibiotic + inhibitor of resistance". These inhibitors allow the repurposing of antibiotics that have already proven to be safe and effective for clinical use. Three main types of compounds have been developed to block the principal bacterial resistance mechanisms: (i) β-lactamase inhibitors; (ii) outer membrane permeabilizers; (iii) efflux pump inhibitors. This Perspective is focused on β-lactamase inhibitors that disable the most prevalent cause of antibiotic resistance in Gram-negative bacteria, i.e., the deactivation of the most widely used antibiotics, β-lactams (penicillins, cephalosporines, carbapenems, and monobactams), by the production of β-lactamases. An overview of the most recently identified β-lactamase inhibitors and of combination therapy is provided. The article also covers the mechanism of action of the different types of β-lactamase enzymes as a basis for inhibitor design and target inactivation.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marina Pernas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Esther Colchón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
82
|
Livermore DM, Mushtaq S, Doumith M, Jamrozy D, Nichols WW, Woodford N. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL- and AmpC-producing Enterobacteriaceae. J Antimicrob Chemother 2019; 73:3336-3345. [PMID: 30247546 DOI: 10.1093/jac/dky363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction Difficult Gram-negative infections are increasingly treated with new β-lactamase inhibitor combinations, e.g. ceftazidime/avibactam. Disturbingly, mutations in KPC carbapenemases can confer ceftazidime/avibactam resistance, which is sometimes selected during therapy. We explored whether this risk extended to AmpC and ESBL enzymes. Methods Mutants were selected by plating AmpC-derepressed strains, ESBL producers and ceftazidime-susceptible controls on agar containing ceftazidime + avibactam (1 or 4 mg/L). MICs were determined by CLSI agar dilution; WGS was by Illumina methodology. Results Using 2× MIC of ceftazidime + 1 mg/L avibactam, mutants were selected from all strain types at frequencies of 10-7-10-9. Rates diminished to <10-9 with 4 mg/L avibactam or higher MIC multiples, except with AmpC-derepressed Enterobacteriaceae. Characterized mutants (n = 10; MICs 4-64 mg/L) of AmpC-derepressed strains had modifications in ampC, variously giving Arg168Pro/His, Gly176Arg/Asp, Asn366Tyr or small deletions around positions 309-314. Mutants of ESBL producers (n = 19; MICs 0.5-16 mg/L) mostly had changes affecting permeability, efflux or β-lactamase quantity; only one had an altered β-lactamase, with an Asp182Tyr substitution in CTX-M-15, raising the ceftazidime/avibactam MIC, but abrogating other cephalosporin resistance. Mutants of ceftazidime-susceptible strains were not sequenced, but phenotypes suggested altered drug accumulation or, for Enterobacter cloacae only, AmpC derepression. In further experiments, avibactam reduced, but did not abolish, selection of AmpC-derepressed Enterobacteriaceae by ceftazidime. Conclusions Most mutants of AmpC-derepressed Enterobacteriaceae had structural mutations in ampC; those of ESBL producers mostly had genetic modifications outside β-lactamase genes, commonly affecting uptake, efflux, or β-lactamase quantity. The clinical significance of these observations remains to be determined.
Collapse
Affiliation(s)
- David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| | - Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | - Dorota Jamrozy
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| | | | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, UK
| |
Collapse
|
83
|
WCK 5222 (Cefepime/Zidebactam) Pharmacodynamic Target Analysis against Metallo-β-lactamase producing Enterobacteriaceae in the Neutropenic Mouse Pneumonia Model. Antimicrob Agents Chemother 2019:AAC.01648-19. [PMID: 31591114 DOI: 10.1128/aac.01648-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
WCK 5222 is a combination of cefepime and the novel β-lactam enhancer (BLE) zidebactam. Zidebactam has a dual mechanism of action involving high-affinity penicillin binding protein (PBP) 2 binding as well as inhibition of Ambler class A, and C, enzymes. In the current study, we evaluated the effect of zidebactam on the cefepime pharmacodynamic target time above MIC (T>MIC) exposure required for efficacy against a diverse group of carbapenem-resistant Enterobacteriaceae (CRE) secondary to MBL-production. Plasma and ELF pharmacokinetic (PK) studies were performed for both cefepime (6.25, 25, and 100 mg/kg) and zidebactam (3.125, 12.5, and 50 mg/kg) after subcutaneous administration to mice. Only total drug was considered as protein binding is <10%. Both drugs exhibited similar PK exposures including terminal elimination half-life (cefepime ∼0.4 h, zidebactam 0.3-0.5 h). The penetration into ELF was concentration dependent for both drugs, reaching 50% and 70% for cefepime and zidebactam, respectively. Dose ranging studies were performed in lung-infected mice with one of eight MBL-producing clinical strains. WCK 5222 was administered in Q4- and Q8-hourly regimens to vary exposures from 0-100% T>MIC. The results were modelled to evaluate the relationship between cefepime T>MIC, when zidebactam was co-administered, and therapeutic effect. The results revealed a strong association between T>MIC and effect (R2 0.82). Net stasis in organism burden occurred at cefepime T>MIC exposures of only 18%. A 1-log kill endpoint was demonstrated for the group of organisms at approximately 31% T>MIC. These target exposures for stasis and 1-log kill are much lower than previously observed cephalosporin monotherapy PK/PD targets.
Collapse
|
84
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
85
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 551] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
86
|
Reck F, Bermingham A, Blais J, Casarez A, Colvin R, Dean CR, Furegati M, Gamboa L, Growcott E, Li C, Lopez S, Metzger L, Nocito S, Ossola F, Phizackerley K, Rasper D, Shaul J, Shen X, Simmons RL, Tang D, Tashiro K, Yue Q. IID572: A New Potentially Best-In-Class β-Lactamase Inhibitor. ACS Infect Dis 2019; 5:1045-1051. [PMID: 30861342 DOI: 10.1021/acsinfecdis.9b00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resistance in Gram-negative bacteria to β-lactam drugs is mediated primarily by the expression of β-lactamases, and co-dosing of β-lactams with a β-lactamase inhibitor (BLI) is a clinically proven strategy to address resistance. New β-lactamases that are not impacted by existing BLIs are spreading and creating the need for development of novel broader spectrum BLIs. IID572 is a novel broad spectrum BLI of the diazabicyclooctane (DBO) class that is able to restore the antibacterial activity of piperacillin against piperacillin/tazobactam-resistant clinical isolates. IID572 is differentiated from other DBOs by its broad inhibition of β-lactamases and the lack of intrinsic antibacterial activity.
Collapse
Affiliation(s)
- Folkert Reck
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Johanne Blais
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Anthony Casarez
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Richard Colvin
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles R. Dean
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Markus Furegati
- Synthesis and Technologies Group, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel 4057, Switzerland
| | - Luis Gamboa
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ellena Growcott
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Cindy Li
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sara Lopez
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Louis Metzger
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sandro Nocito
- Synthesis and Technologies Group, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel 4057, Switzerland
| | - Flavio Ossola
- Synthesis and Technologies Group, Novartis Institutes for BioMedical Research, Klybeckstrasse 141, Basel 4057, Switzerland
| | - Kaci Phizackerley
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Robert L. Simmons
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dazhi Tang
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kyuto Tashiro
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Qin Yue
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
87
|
Gould IM, Gunasekera C, Khan A. Antibacterials in the pipeline and perspectives for the near future. Curr Opin Pharmacol 2019; 48:69-75. [PMID: 31200170 DOI: 10.1016/j.coph.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance is a global threat to the management of infections in our patients. Sound stewardship of antibacterial agents at our disposal must be accompanied by a concerted effort to develop new agents to bolster our armamentarium. This review will cover the latest antibiotics that have come through the pipeline and the role they can play in the management of infections that are increasingly difficult to treat due to resistance mechanisms.
Collapse
Affiliation(s)
- Ian M Gould
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Aberdeen, Aberdeen, United Kingdom
| | - Chathuri Gunasekera
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Colombo, Colombo, Sri Lanka.
| | - Ali Khan
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom
| |
Collapse
|
88
|
Mohd Sazlly Lim S, Sime FB, Roberts JA. Multidrug-resistant Acinetobacter baumannii infections: Current evidence on treatment options and the role of pharmacokinetics/pharmacodynamics in dose optimisation. Int J Antimicrob Agents 2019; 53:726-745. [DOI: 10.1016/j.ijantimicag.2019.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
|
89
|
In Vitro and In Vivo Activities of β-Lactams in Combination with the Novel β-Lactam Enhancers Zidebactam and WCK 5153 against Multidrug-Resistant Metallo-β-Lactamase-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.00128-19. [PMID: 30782985 DOI: 10.1128/aac.00128-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Zidebactam and WCK 5153 are novel bicyclo-acyl hydrazide (BCH) agents that have previously been shown to act as β-lactam enhancer (BLE) antibiotics in Pseudomonas aeruginosa and Acinetobacter baumannii The objectives of this work were to identify the molecular targets of these BCHs in Klebsiella pneumoniae and to investigate their potential BLE activity for cefepime and aztreonam against metallo-β-lactamase (MBL)-producing strains in vitro and in vivo Penicillin binding protein (PBP) binding profiles were determined by Bocillin FL assay, and 50% inhibitory concentrations (IC50s) were determined using ImageQuant TL software. MICs and kill kinetics for zidebactam, WCK 5153, and cefepime or aztreonam, alone and in combination, were determined against clinical K. pneumoniae isolates producing MBLs VIM-1 or NDM-1 (plus ESBLs and class C β-lactamases) to assess the in vitro enhancer effect of BCH compounds in conjunction with β-lactams. Additionally, murine systemic and thigh infection studies were conducted to evaluate BLE effects in vivo Zidebactam and WCK 5153 showed specific, high PBP2 affinity in K. pneumoniae The MICs of BLEs were >64 μg/ml for all MBL-producing strains. Time-kill studies showed that a combination of these BLEs with either cefepime or aztreonam provided 1 to >3 log10 kill against MBL-producing K. pneumoniae strains. Furthermore, the bactericidal synergy observed for these BLE-β-lactam combinations translated well into in vivo efficacy even in the absence of MBL inhibition by BLEs, a characteristic feature of the β-lactam enhancer mechanism of action. Zidebactam and WCK 5153 are potent PBP2 inhibitors and display in vitro and in vivo BLE effects against multidrug-resistant (MDR) K. pneumoniae clinical isolates producing MBLs.
Collapse
|
90
|
Livermore DM, Meunier D, Hopkins KL, Doumith M, Hill R, Pike R, Staves P, Woodford N. Activity of ceftazidime/avibactam against problem Enterobacteriaceae and Pseudomonas aeruginosa in the UK, 2015-16. J Antimicrob Chemother 2019; 73:648-657. [PMID: 29228202 DOI: 10.1093/jac/dkx438] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
Background Ceftazidime/avibactam combines an established oxyimino-cephalosporin with the first diazabicyclooctane β-lactamase inhibitor to enter clinical use. We reviewed its activity against Gram-negative isolates, predominantly from the UK, referred for resistance investigation in the first year of routine testing, beginning in July 2015. Methods Isolates were as received from referring laboratories; there is a bias to submit those with suspected carbapenem resistance. Identification was by MALDI-TOF mass spectroscopy, and susceptibility testing by BSAC agar dilution. Carbapenemase genes were sought by PCR; other resistance mechanisms were inferred using genetic data and interpretive reading. Results Susceptibility rates to ceftazidime/avibactam exceeded 95% for: (i) Enterobacteriaceae with KPC, GES or other Class A carbapenemases; (ii) Enterobacteriaceae with OXA-48-like enzymes; and (iii) for ESBL or AmpC producers, even when these had impermeability-mediated ertapenem resistance. Almost all isolates with metallo-carbapenemases were resistant. Potentiation of ceftazidime by avibactam was seen for 87% of ceftazidime-resistant Enterobacteriaceae with 'unassigned' ceftazidime resistance mechanisms, including two widely referred groups of Klebsiella pneumoniae where no synergy was seen between cephalosporins and established β-lactamase inhibitors. Potentiation here may be a diazabicyclooctane/cephalosporin enhancer effect. Activity was seen against Pseudomonas aeruginosa with derepressed AmpC, but not for those with efflux-mediated resistance. Conclusions Of the available β-lactams or inhibitor combinations, ceftazidime/avibactam has the widest activity spectrum against problem Enterobacteriaceae, covering all major types except metallo-carbapenemase producers; against P. aeruginosa it has a slightly narrower spectrum than ceftolozane/tazobactam, which also covers efflux-type resistance.
Collapse
Affiliation(s)
- David M Livermore
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.,Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Robert Hill
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Rachel Pike
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Peter Staves
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| |
Collapse
|
91
|
Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. Antibiotics (Basel) 2019; 8:antibiotics8010032. [PMID: 30909535 PMCID: PMC6466586 DOI: 10.3390/antibiotics8010032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/02/2023] Open
Abstract
This study compared the activity of cefepime + zidebactam (FEP-ZID) and selected currently available antibacterial agents against a panel of multidrug-resistant (MDR) clinical isolates chosen to provide an extreme challenge for antibacterial activity. FEP–ZID had a very broad and potent in vitro spectrum of activity, and was highly active against many MDR isolates of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. Notably, it inhibited isolates producing carbapenemases of Ambler classes A, B, and D, and P. aeruginosa isolates with multiple resistance mechanisms including combinations of upregulated efflux, diminished or non-functional OprD porins, and AmpC overproduction. Its clinical role will be determined initially by the breakpoints assigned to it, comparison studies with other investigational β-lactamase inhibitor combinations, and ultimately by the developing body of therapeutic outcome data.
Collapse
|
92
|
Preston RA, Mamikonyan G, DeGraff S, Chiou J, Kemper CJ, Xu A, Mastim M, Yeole R, Chavan R, Patel A, Friedland HD, Bhatia A. Single-Center Evaluation of the Pharmacokinetics of WCK 5222 (Cefepime-Zidebactam Combination) in Subjects with Renal Impairment. Antimicrob Agents Chemother 2019; 63:e01484-18. [PMID: 30397067 PMCID: PMC6325229 DOI: 10.1128/aac.01484-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/27/2018] [Indexed: 01/03/2023] Open
Abstract
WCK 5222 is a novel β-lactam-β-lactam-enhancer combination of cefepime (FEP) and zidebactam (ZID). ZID is a novel β-lactam enhancer with a dual action of binding to Gram-negative penicillin-binding protein 2 (PBP2) and β-lactamase inhibition. WCK 5222 is being developed as a new therapeutic option for the treatment of complicated multidrug-resistant Gram-negative pathogen infections. We investigated the effect of renal impairment on the pharmacokinetics (PK) and safety of WCK 5222 in 48 subjects based on Cockcroft-Gault-estimated creatinine clearance (CLCR). We enrolled mild (n = 6; CLCR, 60 to <90 ml/min), moderate (n = 6; CLCR, 30 to <60 ml/min), and severe (n = 6; CLCR, <30 ml/min; not on dialysis) impairment, end-stage renal disease (ESRD) on hemodialysis (HD) (n = 6), and matched normal controls (n = 24; CLCR, ≥90 ml/min). Healthy control subjects and mild and moderate renal impairment subjects received a single 60-min intravenous (i.v.) infusion of 3 g WCK 5222 (2 g FEP/1 g ZID); severe renal impairment and HD subjects received a single 60-min i.v. infusion of 1.5 g WCK 5222 (1 g FEP plus 0.5 g ZID). Body and renal clearance decreased, and plasma half-life (t1/2) and the area under the concentration-time curve from time zero extrapolated to infinity (AUC0-∞ [h µg/ml]) increased in a graded relationship with severity of renal impairment for both FEP and ZID. Our findings suggest that dose adjustments for WCK 5222 will be required according to the degree of renal impairment. Overall, WCK 5222 (FEP-ZID) was found to be safe and well tolerated in subjects with normal and impaired renal function. (This study has been registered at ClinicalTrials.gov under identifier NCT02942810.).
Collapse
Affiliation(s)
- Richard A Preston
- Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute (CTSI), Miami, Florida, USA
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Jackson Memorial Hospital, Miami, Florida, USA
| | | | - Stephane DeGraff
- Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - James Chiou
- Clinical Pharmacology Research Unit, Division of Clinical Pharmacology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Allan Xu
- Keystone Bioanalytical, Inc., North Wales, Pennsylvania, USA
| | | | | | | | | | - H David Friedland
- Wockhardt's Morton Grove Pharmaceutical, Inc., Morton Grove, Illinois, USA
| | | |
Collapse
|
93
|
In Vivo Efficacy of Humanized WCK 5222 (Cefepime-Zidebactam) Exposures against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Thigh Model. Antimicrob Agents Chemother 2018; 63:AAC.01931-18. [PMID: 30373797 DOI: 10.1128/aac.01931-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/20/2018] [Indexed: 01/25/2023] Open
Abstract
Herein, we describe the in vivo efficacy of human-simulated WCK 5222 (cefepime-zidebactam) exposure against carbapenem-resistant Acinetobacter baumannii strains in a neutropenic murine thigh infection model. Five of the six isolates examined expressed OXA-23 or OXA-24. WCK 5222, despite showing MICs of 16 to 64 mg/liter, produced remarkable in vivo activity; human-simulated exposure showed a decline in the bacterial burden for all isolates (mean reduction, -2.09 ± 1.01 log10 CFU/thigh), while a lack of activity was observed with cefepime and zidebactam monotherapies.
Collapse
|
94
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
95
|
Livermore DM. The 2018 Garrod Lecture: Preparing for the Black Swans of resistance. J Antimicrob Chemother 2018; 73:2907-2915. [PMID: 30351434 DOI: 10.1093/jac/dky265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The need for governments to encourage antibiotic development is widely agreed, with 'market entry rewards' being suggested. Unless these are to be spread widely-which is unlikely given the $1 billion sums proposed-we should be wary, for this approach is likely to evolve into one of picking, or commissioning, a few 'winners' based on extrapolation of current resistance trends. The hazard to this is that whilst the evolution of resistance has predictable components, notably mutation, it also has completely unpredictable ones, contingent upon 'Black Swan' events. These include the escape of 'new' resistance genes from environmental bacteria and the recruitment of these genes by promiscuous mobile elements and epidemic strains. Such events can change the resistance landscape rapidly and unexpectedly, as with the rise of Escherichia coli ST131 with CTX-M ESBLs and the emergence of 'impossible' VRE. Given such unpredictability, we simply cannot say with any certainty, for example, which of the four current approaches to combating MBLs offers the best prospect of sustainable prizeworthy success. Only time will tell, though it is encouraging that multiple potential approaches to overcoming these problematic enzymes are being pursued. Rather than seeking to pick winners, governments should aim to reduce development barriers, as with recent relaxation of trial regulations. In particular, once β-lactamase inhibitors have been successfully trialled with one partner drug, there is scope to facilitate licensing them for partnering with other established β-lactams, thereby insuring against new emerging resistance.
Collapse
Affiliation(s)
- David M Livermore
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
96
|
Assessment of the In Vivo Efficacy of WCK 5222 (Cefepime-Zidebactam) against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Murine Lung Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.00948-18. [PMID: 30181365 DOI: 10.1128/aac.00948-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/25/2018] [Indexed: 12/29/2022] Open
Abstract
We evaluated the in vivo efficacy of human-simulated WCK 5222 (cefepime-zidebactam) against cefepime-resistant Acinetobacter baumannii strains (n = 13) in the neutropenic murine lung infection model. Twelve isolates were meropenem resistant. In control animals and those that received cefepime or zidebactam alone, the mean bacterial growth at 24 h was >2 log10 CFU/lung compared with 0-h controls (6.32 ± 0.33 log10 CFU/lung). WCK 5222 produced a decline in the bacterial burden for all isolates (mean reduction, -3.34 ± 0.85 log10 CFU/lung) and demonstrated remarkable potency.
Collapse
|
97
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) contribute significantly to the global public health threat of antimicrobial resistance. OXA-48 and its variants are unique carbapenemases with low-level hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. bla OXA-48 is typically located on a plasmid but may also be integrated chromosomally, and this gene has progressively disseminated throughout Europe and the Middle East. Despite the inability of OXA-48-like carbapenemases to hydrolyze expanded-spectrum cephalosporins, pooled isolates demonstrate high variable resistance to ceftazidime and cefepime, likely representing high rates of extended-spectrum beta-lactamase (ESBL) coproduction. In vitro data from pooled studies suggest that avibactam is the most potent beta-lactamase inhibitor when combined with ceftazidime, cefepime, aztreonam, meropenem, or imipenem. Resistance to novel avibactam combinations such as imipenem-avibactam or aztreonam-avibactam has not yet been reported in OXA-48 producers, although only a few clinical isolates have been tested. Although combination therapy is thought to improve the chances of clinical cure and survival in CPE infection, successful outcomes were seen in ∼70% of patients with infections caused by OXA-48-producing Enterobacteriaceae treated with ceftazidime-avibactam monotherapy. A carbapenem in combination with either amikacin or colistin has achieved treatment success in a few case reports. Uncertainty remains regarding the best treatment options and strategies for managing these infections. Newly available antibiotics such as ceftazidime-avibactam show promise; however, recent reports of resistance are concerning. Newer choices of antimicrobial agents will likely be required to combat this problem.
Collapse
|
98
|
Theuretzbacher U, Gottwalt S, Beyer P, Butler M, Czaplewski L, Lienhardt C, Moja L, Paul M, Paulin S, Rex JH, Silver LL, Spigelman M, Thwaites GE, Paccaud JP, Harbarth S. Analysis of the clinical antibacterial and antituberculosis pipeline. THE LANCET. INFECTIOUS DISEASES 2018; 19:e40-e50. [PMID: 30337260 DOI: 10.1016/s1473-3099(18)30513-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
This analysis of the global clinical antibacterial pipeline was done in support of the Global Action Plan on Antimicrobial Resistance. The study analysed to what extent antibacterial and antimycobacterial drugs for systemic human use as well as oral non-systemic antibacterial drugs for Clostridium difficile infections were active against pathogens included in the WHO priority pathogen list and their innovativeness measured by their absence of cross-resistance (new class, target, mode of action). As of July 1, 2018, 30 new chemical entity (NCE) antibacterial drugs, ten biologics, ten NCEs against Mycobacterium tuberculosis, and four NCEs against C difficile were identified. Of the 30 NCEs, 11 are expected to have some activity against at least one critical priority pathogen expressing carbapenem resistance. The clinical pipeline is dominated by derivatives of established classes and most development candidates display limited innovation. New antibacterial drugs without pre-existing cross-resistance are under-represented and are urgently needed, especially for geographical regions with high resistance rates among Gram-negative bacteria and M tuberculosis.
Collapse
Affiliation(s)
| | - Simon Gottwalt
- Biovision Foundation for Ecological Development, Zurich, Switzerland
| | - Peter Beyer
- Essential Medicines and Health Products, WHO, Geneva, Switzerland
| | - Mark Butler
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | | | - Christian Lienhardt
- Global TB Programme, WHO, Geneva, Switzerland; Unité Mixte Internationale TransVIHMI, Institut de Recherche pour le Développement, Montpellier, France
| | - Lorenzo Moja
- Essential Medicines and Health Products, WHO, Geneva, Switzerland
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
| | - Sarah Paulin
- Essential Medicines and Health Products, WHO, Geneva, Switzerland
| | | | | | | | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephan Harbarth
- WHO Collaborating Centre on Patient Safety, Geneva University Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
99
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
100
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|