51
|
Shen C, Huang YY, He CT, Zhou Q, Chen JX, Tan X, Mubeen S, Yuan JG, Yang ZY. Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica Forsk. cultivars with different cadmium accumulation capacities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:329-339. [PMID: 27992771 DOI: 10.1016/j.plaphy.2016.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/10/2016] [Accepted: 12/11/2016] [Indexed: 05/27/2023]
Abstract
In plants, microRNAs (miRNAs) play regulatory roles in response to various environmental stresses. In order to illustrate the regulation mechanisms of miRNAs involving the different Cd accumulation abilities between a low-shoot-Cd cultivar (QLQ) and a high-shoot-Cd cultivar (T308) of water spinach (Ipomoea aquatic Forsk.), six sRNA libraries at 3 different time points were constructed. Only 5 miRNAs were exclusively regulated in QLQ, among them, miRNA395 was up-regulated, which was supposed to enhance the Cd retention and detoxification in root. Also, the alterations of miRNA5139, miRNA1511 and miRNA8155 contributed to the attenuation of Cd translocation into the shoot of QLQ. More differentially expressed miRNAs were observed in T308, indicating more complex response was adopted by T308 under Cd stress. miRNA397 exclusively regulated in T308 has enhanced the Cd influx of T308 under Cd treatments. Besides, the Cd translocation of T308 was strengthened due to the up-regulation of MATE efflux family, which was targeted by miRNA3627. Our results unraveled the effects of the cultivar-dependent expression of these specific miRNAs on the different Cd accumulation and translocation abilities of QLQ and T308. These findings provide a new perspective for the molecular assisted breeding of low-Cd cultivars for leaf-vegetables.
Collapse
Affiliation(s)
- Chuang Shen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Ying-Ying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Qian Zhou
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jing-Xin Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Xiao Tan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Jian-Gang Yuan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| |
Collapse
|
52
|
Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus ( Nelumbo nucifera Gaertn). FRONTIERS IN PLANT SCIENCE 2017; 8:6. [PMID: 28149304 PMCID: PMC5241310 DOI: 10.3389/fpls.2017.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/03/2017] [Indexed: 05/25/2023]
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at the transcriptome-wide level using high-throughput sequencing data of small RNA, Mrna, and the degradome. A total of 128 known and 20 novel miRNAs were differentially expressed upon submergence. We identified 629 target transcripts for these submergence-responsive miRNAs. Based on the miRNA expression profiles and GO and KEGG annotation of miRNA target genes, we suggest possible molecular responses and physiological changes of lotus in response to submergence. Several metabolic, physiological and morphological adaptations-related miRNAs, i.e., NNU_far-miR159, NNU_gma-miR393h, and NNU_aly-miR319c-3p, were found to play important regulatory roles in lotus response to submergence. This work will contribute to a better understanding of miRNA-regulated adaption responses of lotus to submergence stress.
Collapse
Affiliation(s)
- Qijiang Jin
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yingchun Xu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Neil Mattson
- Horticulture Section, School of Integrative Plant Science, Cornell UniversityNew York, NY, USA
| | - Xin Li
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Bei Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiao Zhang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Hongwei Jiang
- Institute of Agricultural Science of Taihu Lake DistrictSuzhou, China
| | - Xiaojing Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Yanjie Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| |
Collapse
|
53
|
Liu J, Yuan Y, Wang Y, Jiang C, Chen T, Zhu F, Zhao Y, Zhou J, Huang L. Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica. RSC Adv 2017. [DOI: 10.1039/c7ra05800d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This is the first report on miRNAs in different varieties of honeysuckle, the results of which can further facilitate the discovery of functional regulatory miRNAs involved in the secondary metabolism in L. japonica.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Yaolong Wang
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Tiying Chen
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Fengjie Zhu
- Anhui University of Chinese Medicine
- Hefei 230012
- PR China
| | - Yuyang Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| |
Collapse
|
54
|
Identification and Target Prediction of MicroRNAs in Ulmus pumila L. Seedling Roots under Salt Stress by High-Throughput Sequencing. FORESTS 2016. [DOI: 10.3390/f7120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
55
|
Xu S, Jiang Y, Wang N, Xia B, Jiang Y, Li X, Zhang Z, Li Y, Wang R. Identification and differential regulation of microRNAs in response to methyl jasmonate treatment in Lycoris aurea by deep sequencing. BMC Genomics 2016; 17:789. [PMID: 27724902 PMCID: PMC5057397 DOI: 10.1186/s12864-016-2645-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/22/2016] [Indexed: 11/16/2022] Open
Abstract
Background Lycoris aurea is a medicine-valuable and ornamental herb widely distributed in China. Former studied have showed that methyl jasmonate (MJ) treatment could increase the content of glanthamine-a worldwide medicine for symptomatic treatment of Alzheimer’s disease in genus Lycoris plants. To explore the possible role of miRNAs in the regulation of jasmonic acid signaling pathway and uncover their potential correlations, we investigated the expression profiles of small RNAs (sRNAs) and their targets in Lycoris aurea, with MJ treatment by using next-generation deep sequencing. Results A total of 365 miRNAs were identified, comprising 342 known miRNAs (representing 60 miRNA families) and 23 novel miRNAs. Among them, 143 known and 11 novel miRNAs were expressed differently under MJ treatment. Quantitative real-time PCR of eight selected miRNAs validated the expression pattern of these loci in response to MJ treatment. In addition, degradome sequencing analysis showed that 32 target genes were validated to be targeted by the 49 miRNAs, respectively. Gene function and pathway analyses showed that these targets such as auxin response factors (ARFs), squamosa promoter-binding like (SPL) proteins, basic helix-loop-helix (bHLH) proteins, and ubiquitin-conjugating enzyme E2 are involved in different plant processes, indicating miRNAs mediated regulation might play important roles in L. aurea response to MJ treatment. Furthermore, several L. aurea miRNAs associated with their target genes that might be involved in Amaryllidaceae alkloids biosynthehsis were also analyzed. Conclusions A number of miRNAs with diverse expression patterns, and complex relationships between expression of miRNAs and targets were identified. This study represents the first transcriptome-based analysis of miRNAs in Lycoris and will contribute to understanding the potential roles of miRNAs involved in regulation of MJ response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2645-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yumei Jiang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ning Wang
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Xia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yilong Jiang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xiaodan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhengzhi Zhang
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Yikui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
56
|
He X, Zheng W, Cao F, Wu F. Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Sci Rep 2016; 6:32805. [PMID: 27667199 PMCID: PMC5036098 DOI: 10.1038/srep32805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/15/2016] [Indexed: 01/07/2023] Open
Abstract
Tobacco (Nicotiana tabacum L.) is more acclimated to cadmium (Cd) uptake and preferentially enriches Cd in leaves than other crops. MicroRNAs (miRNAs) play crucial roles in regulating expression of various stress response genes in plants. However, genome-wide expression of miRNAs and their target genes in response to Cd stress in tobacco are still unknown. Here, miRNA high-throughput sequencing technology was performed using two contrasting tobacco genotypes Guiyan 1 and Yunyan 2 of Cd-sensitive and tolerance. Comprehensive analysis of miRNA expression profiles in control and Cd treated plants identified 72 known (27 families) and 14 novel differentially expressed miRNAs in the two genotypes. Among them, 28 known (14 families) and 5 novel miRNAs were considered as Cd tolerance associated miRNAs, which mainly involved in cell growth, ion homeostasis, stress defense, antioxidant and hormone signaling. Finally, a hypothetical model of Cd tolerance mechanism in Yunyan 2 was presented. Our findings suggest that some miRNAs and their target genes and pathways may play critical roles in Cd tolerance.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Weite Zheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
57
|
Chen J, Zheng Y, Qin L, Wang Y, Chen L, He Y, Fei Z, Lu G. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC PLANT BIOLOGY 2016; 16:80. [PMID: 27068118 PMCID: PMC4828810 DOI: 10.1186/s12870-016-0770-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/06/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of non-coding small RNAs (sRNAs), regulate various biological processes. Although miRNAs have been identified and characterized in several plant species, miRNAs in Asparagus officinalis have not been reported. As a dioecious plant with homomorphic sex chromosomes, asparagus is regarded as an important model system for studying mechanisms of plant sex determination. RESULTS Two independent sRNA libraries from male and female asparagus plants were sequenced with Illumina sequencing, thereby generating 4.13 and 5.88 million final clean reads, respectively. Both libraries predominantly contained 24-nt sRNAs, followed by 21-nt sRNAs. Further analysis identified 154 conserved miRNAs, which belong to 26 families, and 39 novel miRNA candidates seemed to be specific to asparagus. Comparative profiling revealed that 63 miRNAs exhibited significant differential expression between male and female plants, which was confirmed by real-time quantitative PCR analysis. Among them, 37 miRNAs were significantly up-regulated in the female library, whereas the others were preferentially expressed in the male library. Furthermore, 40 target mRNAs representing 44 conserved and seven novel miRNAs were identified in asparagus through high-throughput degradome sequencing. Functional annotation showed that these target mRNAs were involved in a wide range of developmental and metabolic processes. CONCLUSIONS We identified a large set of conserved and specific miRNAs and compared their expression levels between male and female asparagus plants. Several asparagus miRNAs, which belong to the miR159, miR167, and miR172 families involved in reproductive organ development, were differentially expressed between male and female plants, as well as during flower development. Consistently, several predicted targets of asparagus miRNAs were associated with floral organ development. These findings suggest the potential roles of miRNAs in sex determination and reproductive developmental processes in asparagus.
Collapse
Affiliation(s)
- Jingli Chen
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yi Zheng
- />Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853 USA
| | - Li Qin
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yan Wang
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Lifei Chen
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yanjun He
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Zhangjun Fei
- />Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853 USA
- />USDA Robert W. Holley Center for Agriculture and Health, Tower Road Ithaca, New York, 14853 USA
| | - Gang Lu
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| |
Collapse
|
58
|
Qiu Z, Hai B, Guo J, Li Y, Zhang L. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:60-67. [PMID: 26854408 DOI: 10.1016/j.plaphy.2016.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 05/27/2023]
Abstract
A increasing number of microRNAs have been shown to play important regulatory roles in plant responses to various metal stresses. However, little information about miRNAs especially miRNAs responsive to cadmium (Cd) stress is available in wheat. To investigate the role of miRNAs in responses to Cd stress, wheat seedlings were subjected to 250 μM Cd solution for 6, 12, 24 and 48 h, and analyses of morphological and physiological changes as well as the expression of five miRNAs and their corresponding targets were carried out. Our results demonstrated that miRNAs and their targets were differentially expressed in leaves and roots of wheat seedlings exposed to Cd stress. Furthermore, miR398 may involve in oxidative stress tolerance by regulating its target CSD to participate in Cd stress. Among ten miRNA-target pairs studied, nine pairs showed complex regulation relationship in leaves and roots of wheat seedlings exposed to Cd stress. These findings suggested that miRNAs are involved in the mediation of Cd stress signaling responses in wheat. The characterization of the miRNAs and the associated targets in responses to Cd exposure provides a framework for understanding the molecular mechanism of heavy metal tolerance in plants.
Collapse
Affiliation(s)
- ZongBo Qiu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China.
| | - BenZhai Hai
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; College of Information Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - JunLi Guo
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - YongFang Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - Liang Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
59
|
Yadav A, Khan Y, Prasad M. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. PLANTA 2016; 243:749-66. [PMID: 26676987 DOI: 10.1007/s00425-015-2437-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 05/27/2023]
Abstract
A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.
Collapse
Affiliation(s)
- Amita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Yusuf Khan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
60
|
Han H, Peng J, Hong Y, Fu Z, Lu K, Li H, Zhu C, Zhao Q, Lin J. Comparative analysis of microRNA in schistosomula isolated from non-permissive host and susceptible host. Mol Biochem Parasitol 2016; 204:81-88. [PMID: 26844643 DOI: 10.1016/j.molbiopara.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023]
Abstract
The reed vole Microtus fortis is the only known mammal in which the schistosome is naturally prevented from maturing and schistosome infection does not cause significant pathogenesis. However, the mechanism behind this phenomenon remains unknown. In the present study, Solexa deep sequencing technology was used to carry out high-throughput sequencing and comparative analysis of microRNA (miRNA) between small RNA libraries isolated from 10 days oldschistosomula of M. fortis and BALB/c mice.In total, 10d schistosomula from M. fortis and BALB/c mice yielded 13.37 and 10.84 million reads, respectively, and nearly 39% and 40% of reads could be mapped to selected miRNAs in miRbase. Based on a bioinformatic analysis, we found that most of the miRNAs identified in Schistosoma japonicum were detected in our study. Further analysis revealed that 24 miRNAs were differentially expressed between the schistosomula from the two rodents, of which 21 were down-regulated and three were up-regulated in schistosomula from M. fortis. Also, six novel miRNAs were predicted and identified in this study. Target genes were mapped and filtered by correlating them with differentially expressed genes obtained from S. japonicum oligonucleotide microarray analyses performed in previous studies. miRNAs such as miR-10-3p, miR-10-5p, and miR-2b-5p may affect the growth, differentiation, and metabolism of worms via regulation of the expression of target genes such as enolase, aquaporin, TGF-beta-inducible nuclear protein, and paramyosin. Gene Ontology analysis of the predicted target genes of these six differentially expressed miRNAs revealed that some important biological pathways, such as metabolic processes,glycolysis, and catalytic activity, were involved. The results of this study highlight the function of miRNAs in the development and survival of the schistosome, and provide valuable information to increase our understanding of the regulatory function of miRNAs in schistosome development and host-parasite interactions in a differentially susceptible host environment.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China; Minhang Animal Disease Control Center, Shanghai 201109, China.
| | - Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Ke Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Chuangang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China.
| | - Qiuhua Zhao
- Minhang Animal Disease Control Center, Shanghai 201109, China.
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
61
|
Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:817. [PMID: 27379117 PMCID: PMC4906921 DOI: 10.3389/fpls.2016.00817] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/19/2023]
Abstract
The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune UniversityPune, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPune, India
- *Correspondence: Vinay Kumar
| | - Rachayya M. Devarumath
- Molecular Biology and Genetic Engineering Section, Vasantdada Sugar InstitutePune, India
| | - Tushar S. Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPune, India
| | - Shabir H. Wani
- Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and TechnologyKashmir, India
| |
Collapse
|
62
|
Zhang W, Xie Y, Xu L, Wang Y, Zhu X, Wang R, Zhang Y, Muleke EM, Liu L. Identification of microRNAs and Their Target Genes Explores miRNA-Mediated Regulatory Network of Cytoplasmic Male Sterility Occurrence during Anther Development in Radish (Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1054. [PMID: 27499756 PMCID: PMC4956657 DOI: 10.3389/fpls.2016.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/05/2016] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding small RNAs that play critical roles in plant growth and developmental processes. Cytoplasmic male sterility (CMS) is typically a maternally inherited trait and widely used in plant heterosis utilization. However, the miRNA-mediated regulatory network of CMS occurrence during anther development remains largely unknown in radish. In this study, a comparative small RNAome sequencing was conducted in floral buds of CMS line 'WA' and its maintainer line 'WB' by high-throughput sequencing. A total of 162 known miRNAs belonging to 25 conserved and 24 non-conserved miRNA families were isolated and 27 potential novel miRNA families were identified for the first time in floral buds of radish. Of these miRNAs, 28 known and 14 potential novel miRNAs were differentially expressed during anther development. Several target genes for CMS occurrence-related miRNAs encode important transcription factors and functional proteins, which might be involved in multiple biological processes including auxin signaling pathways, signal transduction, miRNA target silencing, floral organ development, and organellar gene expression. Moreover, the expression patterns of several CMS occurrence-related miRNAs and their targets during three stages of anther development were validated by qRT-PCR. In addition, a potential miRNA-mediated regulatory network of CMS occurrence during anther development was firstly proposed in radish. These findings could contribute new insights into complex miRNA-mediated genetic regulatory network of CMS occurrence and advance our understanding of the roles of miRNAs during CMS occurrence and microspore formation in radish and other crops.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Everlyne M. Muleke
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Liwang Liu
| |
Collapse
|
63
|
He F, Liu Q, Zheng L, Cui Y, Shen Z, Zheng L. RNA-Seq Analysis of Rice Roots Reveals the Involvement of Post-Transcriptional Regulation in Response to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1136. [PMID: 26734039 PMCID: PMC4685130 DOI: 10.3389/fpls.2015.01136] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/30/2015] [Indexed: 05/20/2023]
Abstract
Widely-spread cadmium (Cd) pollution in the soil threatens both crop production and human health. How plants deal with the excess Cd are largely unknown. To evaluate the molecular mechanism by which plants respond to Cd stress, rice seedlings were treated with two concentrations of Cd and subjected to deep RNA sequencing. Comprehensive RNA-Seq analysis of rice roots under two gradients of Cd treatment revealed 1169 Cd toxicity-responsive genes. These genes were involved in the reactive oxygen species scavenging system, stress response, cell wall formation, ion transport, and signal transduction. Nine out of 93 predicted long non-coding RNAs (lncRNAs) were detected as Cd-responsive lncRNAs due to their high correlation with the Cd stress response. In addition, we analyzed alternative splicing (AS) events under different Cd concentrations. Four hundred and seventy-six differential alternatively spliced genes with 542 aberrant splicing events were identified. GO analysis indicated that these genes were highly enriched in oxidation reduction and cellular response to chemical stimulus. Real-time qRT-PCR validation analysis strengthened the reliability of our RNA-Seq results. The results suggest that post-transcriptional AS regulation may also be involved in plant responses to high Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
64
|
Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Wang R, Sun X, Liu L. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots. Sci Rep 2015; 5:18296. [PMID: 26673153 PMCID: PMC4682141 DOI: 10.1038/srep18296] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
The radish (Raphanus sativus L.) is an important root vegetable crop. In this study, the metabolite profiling analysis of radish roots exposed to lead (Pb) and cadmium (Cd) stresses has been performed using gas chromatography-mass spectrometry (GC-MS). The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between control and Pb- or Cd-treated samples. The metabolic profiling indicated Pb or Cd stress could cause large metabolite alteration mainly on sugars, amino acids and organic acids. Furthermore, an integrated analysis of the effects of Pb or Cd stress was performed on the levels of metabolites and gene transcripts from our previous transcriptome work in radish roots. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of integration data demonstrated that exposure of radish to Pb stress resulted in profound biochemical changes including carbohydrate metabolism, energy metabolism and glutathione metabolism, while the treatment of Cd stress caused significant variations in energy production, amino acid metabolism and oxidative phosphorylation-related pathways. These results would facilitate further dissection of the mechanisms of heavy metal (HM) accumulation/tolerance in plants and the effective management of HM contamination in vegetable crops by genetic manipulation.
Collapse
Affiliation(s)
- Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Hong Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Juanjuan Wang
- The National Agro-Tech Extension and Service Center, Beijing 100125, P.R. China
| | - Wei Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R. China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
65
|
Plant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa × Paulownia fortunei. PLoS One 2015; 10:e0140590. [PMID: 26484670 PMCID: PMC4617444 DOI: 10.1371/journal.pone.0140590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/26/2015] [Indexed: 01/18/2023] Open
Abstract
Paulownia witches’ broom (PaWB) caused by a phytoplasma, has caused extensive losses in the yields of paulownia timber and resulted in significant economic losses. However, the molecular mechanisms in Paulownia that underlie the phytoplasma stress are poorly characterized. In this study, we use an Illumina platform to sequence four small RNA libraries and four degradome sequencing libraries derived from healthy, PaWB-infected, and PaWB-infected 15 mg·L−1 and 30 mg·L−1 methyl methane sulfonate (MMS)-treated plants. In total, 125 conserved and 118 novel microRNAs (miRNAs) were identified and 33 miRNAs responsive to PaWB disease were discovered. Furthermore, 166 target genes for 18 PaWB disease-related miRNAs were obtained, and found to be involved in plant-pathogen interaction and plant hormone signal transduction metabolic pathways. Eleven miRNAs and target genes responsive to PaWB disease were examined by a quantitative real-time PCR approach. Our findings will contribute to studies on miRNAs and their targets in Paulownia, and provide new insights to further understand plant-phytoplasma interactions.
Collapse
|
66
|
Identification of bolting-related microRNAs and their targets reveals complex miRNA-mediated flowering-time regulatory networks in radish (Raphanus sativus L.). Sci Rep 2015; 5:14034. [PMID: 26369897 PMCID: PMC4570191 DOI: 10.1038/srep14034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/13/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) play vital regulatory roles in plant growth and development. The phase transition from vegetative growth to flowering is crucial in the life cycle of plants. To date, miRNA-mediated flowering regulatory networks remain largely unexplored in radish. In this study, two small RNA libraries from radish leaves at vegetative and reproductive stages were constructed and sequenced by Solexa sequencing. A total of 94 known miRNAs representing 21 conserved and 13 non-conserved miRNA families, and 44 potential novel miRNAs, were identified from the two libraries. In addition, 42 known and 17 novel miRNAs were significantly differentially expressed and identified as bolting-related miRNAs. RT-qPCR analysis revealed that some miRNAs exhibited tissue- or developmental stage-specific expression patterns. Moreover, 154 target transcripts were identified for 50 bolting-related miRNAs, which were predominately involved in plant development, signal transduction and transcriptional regulation. Based on the characterization of bolting-related miRNAs and their target genes, a putative schematic model of miRNA-mediated bolting and flowering regulatory network was proposed. These results could provide insights into bolting and flowering regulatory networks in radish, and facilitate dissecting the molecular mechanisms underlying bolting and flowering time regulation in vegetable crops.
Collapse
|
67
|
Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Sci Rep 2015; 5:14024. [PMID: 26357995 PMCID: PMC4566140 DOI: 10.1038/srep14024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/13/2015] [Indexed: 11/08/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play pivotal roles in plant growth, development and stress response. Chromium (Cr) is one of common environmental contaminants possessing potential health hazards to living organisms. To date, little is known about the regulatory roles of miRNAs in response to Cr stress in radish. To systematically identify Cr-responsive miRNAs and their targets in radish, two sRNA libraries derived from Cr-free (CK) and Cr-treated (Cr200) roots were constructed. With Solexa sequencing, 81 known and 72 novel miRNAs were identified, from which 54 known and 16 novel miRNAs were significantly differentially expressed under Cr stress. Several target genes for Cr-responsive miRNAs encode different transcription factor (TF) families, including SPLs, MYBs, ERFs and bZIPs, might regulate corresponding HM-related transcriptional processes in plants. Notably, a few key responsive enzymes or proteins, including HMA, YSL1 and ABC transporter protein were involved in Cr uptake and homeostasis process. Furthermore, the expression patterns of some Cr-responsive miRNAs and their targets were validated by RT-qPCR. This study represents the first characterization of Cr-responsive miRNAs and their targets in radish. The outcomes of this study could provide novel insights into miRNA-mediated regulatory mechanisms underlying plant response to Cr stress in root vegetable crops.
Collapse
|
68
|
Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y, Liu L. De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:313-23. [PMID: 26025544 DOI: 10.1016/j.plantsci.2015.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/04/2015] [Accepted: 04/20/2015] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is a nonessential metallic trace element that poses potential chronic toxicity to living organisms. To date, little is known about the Cd-responsive regulatory network in root vegetable crops including radish. In this study, 31,015 unigenes representing 66,552 assembled unique transcripts were isolated from radish root under Cd stress based on de novo transcriptome assembly. In all, 1496 differentially expressed genes (DEGs) consisted of 3579 transcripts were identified from Cd-free (CK) and Cd-treated (Cd200) libraries. Gene Ontology and pathway enrichment analysis indicated that the up- and down-regulated DEGs were predominately involved in glucosinolate biosynthesis as well as cysteine and methionine-related pathways, respectively. RT-qPCR showed that the expression profiles of DEGs were in consistent with results from RNA-Seq analysis. Several candidate genes encoding phytochelatin synthase (PCS), metallothioneins (MTs), glutathione (GSH), zinc iron permease (ZIPs) and ABC transporter were responsible for Cd uptake, accumulation, translocation and detoxification in radish. The schematic model of DEGs and microRNAs-involved in Cd-responsive regulatory network was proposed. This study represents a first comprehensive transcriptome-based characterization of Cd-responsive DEGs in radish. These results could provide fundamental insight into complex Cd-responsive regulatory networks and facilitate further genetic manipulation of Cd accumulation in root vegetable crops.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Keyun Zhang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rugang Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yiqin Gong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
69
|
Sun Y, Qiu Y, Zhang X, Chen X, Shen D, Wang H, Li X. Genome-wide identification of microRNAs associated with taproot development in radish (Raphanus sativus L.). Gene 2015; 569:118-26. [PMID: 26013046 DOI: 10.1016/j.gene.2015.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/07/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that play vital regulatory roles in plant growth and development. To identify the miRNAs associated with taproot development at the whole genome level, we sequenced five RNA libraries constructed from radish taproots at different developmental stages and generated a total of 148M clean reads. Using an integrative bioinformatics analysis, 494 known miRNAs belonging to 434 families and 220 putative novel miRNAs were identified. Combining the differential expression analysis and target prediction, we found that 77 miRNAs were potentially associated with taproot development. Target transcripts generated significant GO terms relating to cell proliferation, root development and hormone-mediated signaling. The KEGG analyses revealed that plant hormone signal transduction, zeatin biosynthesis, biosynthesis of secondary metabolites, cell cycle, MAPK signaling and p53 signaling were closely associated with taproot development. These findings will provide valuable information for further functional verification of miRNAs and their targets in radish taproot development.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
| | - Xiaohua Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
| | - Di Shen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Research Station of Vegetable Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
70
|
Transcriptome-Wide Identification of miRNAs and Their Targets from Typha angustifolia by RNA-Seq and Their Response to Cadmium Stress. PLoS One 2015; 10:e0125462. [PMID: 25923807 PMCID: PMC4414455 DOI: 10.1371/journal.pone.0125462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/24/2015] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in plant responses to environmental stress. In this work, we used high-throughput sequencing to analyze transcriptome and small RNAs (sRNAs) in Typha angustifolia under cadmium (Cd) stress. 57,608,230 raw reads were obtained from deep sequencing of a pooled cDNA library. Sequence assembly and analysis yielded 102,473 unigenes. We subsequently sequenced two sRNA libraries from T. angustifolia with or without Cd exposure respectively. Based on transcriptome data of T. angustifolia, we catalogued and analyzed the sRNAs, resulting in the identification of 114 conserved miRNAs and 41 novel candidate miRNAs in both small RNA libraries. In silico analysis revealed 764 targets for 89 conserved miRNAs and 21 novel miRNAs. Statistical analysis on sequencing reads abundance and experimental validation revealed that 4 conserved and 6 novel miRNAs showed specific expression. Combined with function of target genes, these results suggested that miRNAs might play a role in plant Cd stress response. This study provided the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in T. angustifolia, which provide a framework for further analysis of miRNAs and their role in regulating plant responses to Cd stress.
Collapse
|
71
|
Comparative characterization of microRNAs in Schistosoma japonicum schistosomula from Wistar rats and BALB/c mice. Parasitol Res 2015; 114:2639-47. [PMID: 25895062 DOI: 10.1007/s00436-015-4468-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022]
Abstract
More than 40 kinds of mammals in China are known to be naturally infected with Schistosoma japonicum (S. japonicum) (Peng et al. Parasitol Res 106:967-76, 2010). Compared with permissive BALB/c mice, rats are less susceptible to S. japonicum infection and are considered to provide an unsuitable microenvironment for parasite growth and development. MicroRNAs (miRNAs), via the regulation of gene expression at the transcriptional and post-transcriptional levels, may be responsible for developmental differences between schistosomula in these two rodent hosts. Solexa deep-sequencing technology was used to identify differentially expressed miRNAs from schistosomula isolated from Wistar rats and BALB/c mice 10 days post-infection. The deep-sequencing analysis revealed that nearly 40 % of raw reads (10.37 and 10.84 million reads in schistosomula isolated from Wistar rats and BALB/c mice, respectively) can be mapped to selected mirs in miRBase or in species-specific genomes. Further analysis revealed that several miRNAs were differentially expressed in schistosomula isolated from these two rodents; 18 were downregulated (by <2-fold) and 23 were up-regulated (>2-fold) (expression levels in rats compare with those in mice). Additionally, three novel miRNAs were primarily predicted and identified. Among the 41 differentially expressed miRNAs, 4 miRNAs had been identified with specific functions in schistosome development or host-parasite interaction, such as sexual maturation (sja-miR-1, sja-miR-7-5p), embryo development (sja-miR-36-3p) in schistosome, and pathogenesis of schistosomiasis (sja-bantam). Then, the target genes were mapped, filtered, and correlated with a set of genes that were differentially expressed genes in schistosomula isolated from mice and rats, which we identified in a S. japonicum oligonucleotide microarray analysis in a previous study. Gene Ontology (GO) analysis of the predicted target genes of 13 differentially expressed miRNAs revealed that they were involved in some important biological pathways, such as metabolic processes, the regulation of protein catabolic processes, catalytic activity, oxidoreductase activity, and hydrolase activity. The study presented here includes the first identification of differentially expressed miRNAs between schistosomula in mice or rats. Therefore, we hypothesized that the differentially expressed miRNAs may affect the development, growth, and maturation of the schistosome in its life cycle. Our analysis suggested that some differentially expressed miRNAs may impact the survival and development of the parasite within a host. This study increases our understanding of schistosome development and host-parasite interactions.
Collapse
|
72
|
Yang R, Zeng Y, Yi X, Zhao L, Zhang Y. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:395-408. [PMID: 25832169 DOI: 10.1111/pbi.12337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs), an extensive class of small regulatory RNAs, play versatile roles in plant growth and development as well as stress responses. However, the regulatory mechanism is unclear on miRNA-mediated response to abiotic stress in plants. Halostachys caspica is a halophytic plant species and a great model for investigating plant response to salinity stress. However, no research has been performed on miRNAs in H. caspica. In this study, we employed deep sequencing to identify both conserved and novel miRNAs from salinity-exposed H. caspica and its untreated control. Among the 13-19 million sequences generated from both treatments, a total of 170 conserved miRNAs, belonging to 151 miRNA families, were identified; among these miRNAs, 31 were significantly up-regulated and 48 were significantly down-regulated by salinity stress. We also identified 102 novel miRNAs from H. caspica; among them, 12 miRNAs were significantly up-regulated and 13 were significantly down-regulated by salinity. qRT-PCR expression analysis validated the deep sequencing results and also demonstrated that miRNAs and their targeted genes were responsive to high salt stress and existed a negative expression correlation between miRNAs and their targets. miRNA-target prediction, GO and KEGG analysis showed that miRNAs were involved in salt stress-related biological pathway, including calcium signalling pathway, MAPK signalling pathway, plant hormone signal transduction and flavonoid biosynthesis, etc. This suggests that miRNAs play an important role in plant salt stress tolerance in H. caspica. This result could be used to improve salt tolerance in crops and woods.
Collapse
Affiliation(s)
- Ruirui Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | | | | | | | | |
Collapse
|
73
|
Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K, Liu L. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 2015; 16:197. [PMID: 25888374 PMCID: PMC4381364 DOI: 10.1186/s12864-015-1416-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
Background Salt stress is one of the most representative abiotic stresses that severely affect plant growth and development. MicroRNAs (miRNAs) are well known for their significant involvement in plant responses to abiotic stresses. Although miRNAs implicated in salt stress response have been widely reported in numerous plant species, their regulatory roles in the adaptive response to salt stress in radish (Raphanus sativus L.), an important root vegetable crop worldwide, remain largely unknown. Results Solexa sequencing of two sRNA libraries from NaCl-free (CK) and NaCl-treated (Na200) radish roots were performed for systematical identification of salt-responsive miRNAs and their expression profiling in radish. Totally, 136 known miRNAs (representing 43 miRNA families) and 68 potential novel miRNAs (belonging to 51 miRNA families) were identified. Of these miRNAs, 49 known and 22 novel miRNAs were differentially expressed under salt stress. Target prediction and annotation indicated that these miRNAs exerted a role by regulating specific stress-responsive genes, such as squamosa promoter binding-like proteins (SPLs), auxin response factors (ARFs), nuclear transcription factor Y (NF-Y) and superoxide dismutase [Cu-Zn] (CSD1). Further functional analysis suggested that these target genes were mainly implicated in signal perception and transduction, regulation of ion homeostasis, basic metabolic processes, secondary stress responses, as well as modulation of attenuated plant growth and development under salt stress. Additionally, the expression patterns of ten miRNAs and five corresponding target genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Conclusions With the sRNA sequencing, salt-responsive miRNAs and their target genes in radish were comprehensively identified. The results provide novel insight into complex miRNA-mediated regulatory network of salt stress response in radish, and facilitate further dissection of molecular mechanism underlying plant adaptive response to salt stress in root vegetable crops. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1416-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China. .,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, P.R. China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China. .,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, P.R. China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Rugang Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China. .,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, P.R. China.
| | - Yiqin Gong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Cecilia Limera
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Keyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R.China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
74
|
Yang C, Liu T, Bai F, Wang N, Pan Z, Yan X, Peng S. miRNAome analysis associated with anatomic and transcriptomic investigations reveal the polar exhibition of corky split vein in boron deficient Citrus sinensis. Mol Genet Genomics 2015; 290:1639-57. [PMID: 25754997 DOI: 10.1007/s00438-015-1024-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/01/2015] [Indexed: 11/29/2022]
Abstract
Corky split vein can develop under long-term boron deficient conditions in Citrus sinensis L. Osbeck cv. Newhall. This symptom only occurs in the upper rather than the lower epidermis of old leaves. Our previous study demonstrated that vascular hypertrophy was involved in the symptoms, and the 3rd developmental stage of corky split vein (BD3) was the critical stage for phenotype formation. Here, we performed an intensive study on the BD3 vein and its control sample (CK3 vein). A lignin test demonstrated that the lignin content in BD3 vein was approximately 1.7 times more than the CK3 vein. Anatomical investigation of the corky split vein indicated that the upper epidermis was destroyed by overgrowing vascular cells, and the increased lignin may contribute to vascular cell differentiation and wounding-induced lignification. In a subsequent small RNA sequencing of the BD3 and CK3 veins, 99 known miRNAs and 22 novel miRNAs were identified. Comparative profiling of these miRNAs demonstrated that the 57 known miRNAs and all novel miRNAs exhibited significant expression differences between the two small RNAs libraries of the BD3 and CK3 veins. Associated with our corresponding digital gene expression data, we propose that the decreased expression of two miRNAs, csi-miR156b and csi-miR164, which leads to the up-regulation of their target genes, SPLs (csi-miR156b-targeted) and CUC2 (csi-miR164-targeted), may promote vascular cell division and orderless stage transition in old leaves.
Collapse
Affiliation(s)
- Chengquan Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
| | - Tao Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
| | - Fuxi Bai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
| | - Nannan Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
| | - Zhiyong Pan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
| | - Xiang Yan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China.,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China
| | - ShuAng Peng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, China. .,Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Wuhan, 430070, China.
| |
Collapse
|
75
|
Yu R, Wang Y, Xu L, Zhu X, Zhang W, Wang R, Gong Y, Limera C, Liu L. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.). BMC PLANT BIOLOGY 2015; 15:30. [PMID: 25644462 PMCID: PMC4341240 DOI: 10.1186/s12870-015-0427-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/15/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Radish (Raphanus sativus L.) is an economically important root vegetable crop, and the taproot-thickening process is the most critical period for the final productivity and quality formation. MicroRNAs (miRNAs) are a family of non-coding small RNAs that play an important regulatory function in plant growth and development. However, the characterization of miRNAs and their roles in regulating radish taproot growth and thickening remain largely unexplored. A Solexa high-throughput sequencing technology was used to identify key miRNAs involved in taproot thickening in radish. RESULTS Three small RNA libraries from 'NAU-YH' taproot collected at pre-cortex splitting stage, cortex splitting stage and expanding stage were constructed. In all, 175 known and 107 potential novel miRNAs were discovered, from which 85 known and 13 novel miRNAs were found to be significantly differentially expressed during taproot thickening. Furthermore, totally 191 target genes were identified for the differentially expressed miRNAs. These target genes were annotated as transcription factors and other functional proteins, which were involved in various biological functions including plant growth and development, metabolism, cell organization and biogenesis, signal sensing and transduction, and plant defense response. RT-qPCR analysis validated miRNA expression patterns for five miRNAs and their corresponding target genes. CONCLUSIONS The small RNA populations of radish taproot at different thickening stages were firstly identified by Solexa sequencing. Totally 98 differentially expressed miRNAs identified from three taproot libraries might play important regulatory roles in taproot thickening. Their targets encoding transcription factors and other functional proteins including NF-YA2, ILR1, bHLH74, XTH16, CEL41 and EXPA9 were involved in radish taproot thickening. These results could provide new insights into the regulatory roles of miRNAs during the taproot thickening and facilitate genetic improvement of taproot in radish.
Collapse
Affiliation(s)
- Rugang Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, P.R. China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Yiqin Gong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Cecilia Limera
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement; Engineering Research Center of Horticultural Crop Germplasm Enhancement and Utilization, Ministry of Education of P.R.China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
76
|
Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA. Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2525-43. [PMID: 25256907 DOI: 10.1007/s00122-014-2391-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/28/2014] [Indexed: 05/27/2023]
Abstract
Small RNAs that are highly conserved across many plant species are involved in stress responses. Plants are exposed to many types of unfavorable conditions during their life cycle that result in some degree of stress. Recent studies on microRNAs (miRNAs) have highlighted their great potential as regulators of stress tolerance in plants. One of the possible ways in which plants counter environmental stresses is by altering their gene expression by the action of miRNAs. miRNAs regulate the expression of target genes by hybridizing to their nascent reverse complementary sequences marking them for cleavage in the nucleus or translational repression in the cytoplasm. Some miRNAs have been reported to be key regulators in biotic as well as abiotic stress responses across many species. The present review highlights some of the regulatory roles of orthologous plant miRNAs in response to various types of stress conditions.
Collapse
Affiliation(s)
- Ravi Rajwanshi
- Genomics Core Facility, Department of Plant Soil and Agricultural Systems, Southern Illinois University at Carbondale, Carbondale, IL, 62901-4415, USA,
| | | | | | | | | |
Collapse
|
77
|
De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol Genet Genomics 2014; 290:671-83. [PMID: 25416420 DOI: 10.1007/s00438-014-0953-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Oenanthe javanica is an aquatic perennial herb with known medicinal properties and an edible vegetable with high vitamin and mineral content. The understanding of the biology of O. javanica is limited by the absence of information on its genome, transcriptome, and small RNA. In this study, transcriptome sequencing and small RNA sequencing were performed to annotate function genes, develop SSR markers and analyze potential target genes of miRNAs in O. javanica. All reads with total nucleotides number of 1,440,321,408 bp were assembled into 58,072 transcripts and 40,208 unigenes. A total of 1,233 SSRs were identified from O. javanica. Generated unigenes were aligned against seven databases and annotated with functions. A total of 29 potential targets were predicted. Expression of 10 miRNAs and their corresponding target genes under abiotic stresses (heat, cold, salinity, and drought) was validated. All ten miRNAs were confirmed to response to abiotic stresses. A pair of miRNA and its target gene was found. This study can serve as a valuable resource for future studies on O. javanica, which may focus on novel gene discovery, SSR development, gene mapping, and miRNA-affected processes and pathways. This can promote the development of the useful medicinal properties of O. javanica in medical science.
Collapse
|
78
|
Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C, Poulain J, Gavory F, Wincker P, Roux C, Gentzbittel L, Gouzy J, Crespi M. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol 2014; 15:457. [PMID: 25248950 PMCID: PMC4212123 DOI: 10.1186/s13059-014-0457-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Legume roots show a remarkable plasticity to adapt their architecture to biotic and abiotic constraints, including symbiotic interactions. However, global analysis of miRNA regulation in roots is limited, and a global view of the evolution of miRNA-mediated diversification in different ecotypes is lacking. RESULTS In the model legume Medicago truncatula, we analyze the small RNA transcriptome of roots submitted to symbiotic and pathogenic interactions. Genome mapping and a computational pipeline identify 416 miRNA candidates, including known and novel variants of 78 miRNA families present in miRBase. Stringent criteria of pre-miRNA prediction yield 52 new mtr-miRNAs, including 27 miRtrons. Analyzing miRNA precursor polymorphisms in 26 M. truncatula ecotypes identifies higher sequence polymorphism in conserved rather than Medicago-specific miRNA precursors. An average of 19 targets, mainly involved in environmental responses and signalling, is predicted per novel miRNA. We identify miRNAs responsive to bacterial and fungal pathogens or symbionts as well as their related Nod and Myc-LCO symbiotic signals. Network analyses reveal modules of new and conserved co-expressed miRNAs that regulate distinct sets of targets, highlighting potential miRNA-regulated biological pathways relevant to pathogenic and symbiotic interactions. CONCLUSIONS We identify 52 novel genuine miRNAs and large plasticity of the root miRNAome in response to the environment, and also in response to purified Myc/Nod signaling molecules. The new miRNAs identified and their sequence variation across M. truncatula ecotypes may be crucial to understand the adaptation of root growth to the soil environment, notably in the agriculturally important legume crops.
Collapse
|
79
|
Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants: progress and perspectives. PLANT MOLECULAR BIOLOGY 2014; 86:1-18. [PMID: 25022825 DOI: 10.1007/s11103-014-0224-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/05/2014] [Indexed: 05/24/2023]
Abstract
Homology based gene silencing has emerged as a convenient approach for repressing expression of genes in order to study their functions. For this purpose, several antisense or small interfering RNA based gene silencing techniques have been frequently employed in plant research. Artificial microRNAs (amiRNAs) mediated gene silencing represents one of such techniques which can utilize as a potential tool in functional genomics. Similar to microRNAs, amiRNAs are single-stranded, approximately 21 nt long, and designed by replacing the mature miRNA sequences of duplex within pre-miRNAs. These amiRNAs are processed via small RNA biogenesis and silencing machinery and deregulate target expression. Holding to various refinements, amiRNA technology offers several advantages over other gene silencing methods. This is a powerful and robust tool, and could be applied to unravel new insight of metabolic pathways and gene functions across the various disciplines as well as in translating observations for improving favourable traits in plants. This review highlights general background of small RNAs, improvements made in RNAi based gene silencing, implications of amiRNA in gene silencing, and describes future themes for improving value of this technology in plant science.
Collapse
Affiliation(s)
- Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | | | | |
Collapse
|
80
|
Cao F, Chen F, Sun H, Zhang G, Chen ZH, Wu F. Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 2014; 15:611. [PMID: 25038590 PMCID: PMC4117959 DOI: 10.1186/1471-2164-15-611] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
Background Cadmium (Cd) is a severe detrimental environmental pollutant. To adapt to Cd-induced deleterious effects, plants have evolved sophisticated defence mechanisms. In this study, a genome-wide transcriptome analysis was performed to identify the mechanisms of Cd tolerance using two barley genotypes with distinct Cd tolerance. Results Microarray expression profiling revealed that 91 genes were up-regulated by Cd in Cd-tolerant genotype Weisuobuzhi and simultaneously down-regulated or non-changed in Cd-sensitive Dong17, and 692 genes showed no change in Weisuobuzhi but down-regulated in Dong17. Novel genes that may play significant roles in Cd tolerance were mainly via generating protectants such as catalase against reactive oxygen species, Cd compartmentalization (e.g. phytochelatin-synthase and vacuolar ATPase), and defence response and DNA replication (e.g. chitinase and histones). Other 156 up-regulated genes in both genotypes also included those encoding proteins related to stress and defence responses, and metabolism-related genes involved in detoxification pathways. Meanwhile, biochemical and physiological analysis of enzyme (ATPase and chitinase), phytohormone (ethylene), ion distribution and transport (Cd, Na+, K+, Ca2+, ABC transporter) demonstrated that significantly larger Cd-induced increases of those components in Weisuobuzhi than those in Dong17. In addition, Cd-induced DNA damage was more pronounced in Dong17 than that in Weisuobuzhi. Conclusions Our findings suggest that combining microarray, physiological and biochemical analysis has provided valuable insights towards a novel integrated molecular mechanism of Cd tolerance in barley. The higher expression genes in Cd tolerant genotype could be used for transgenic overexpression in sensitive genotypes of barley or other cereal crops for elevating tolerance to Cd stress. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-611) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Zhong-Hua Chen
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P,R, China.
| | | |
Collapse
|
81
|
Shapiro JA. Epigenetic control of mobile DNA as an interface between experience and genome change. Front Genet 2014; 5:87. [PMID: 24795749 PMCID: PMC4007016 DOI: 10.3389/fgene.2014.00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022] Open
Abstract
Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.
Collapse
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of ChicagoChicago, IL, USA
| |
Collapse
|
82
|
Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, Bian S. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). PLANT SIGNALING & BEHAVIOR 2014; 9:e29462. [PMID: 25763692 PMCID: PMC4203583 DOI: 10.4161/psb.29462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous, approximately 21nt in length, non-coding RNA, which mediate the expression of target genes primarily at post-transcriptional levels. miRNAs play critical roles in almost all plant cellular and metabolic processes. Although numerous miRNAs have been identified in the plant kingdom, the miRNAs in blueberry, which is an economically important small fruit crop, still remain totally unknown. In this study, we reported a computational identification of miRNAs and their targets in blueberry. By conducting an EST-based comparative genomics approach, 9 potential vco-miRNAs were discovered from 22,402 blueberry ESTs according to a series of filtering criteria, designated as vco-miR156-5p, vco-miR156-3p, vco-miR1436, vco-miR1522, vco-miR4495, vco-miR5120, vco-miR5658, vco-miR5783, and vco-miR5986. Based on sequence complementarity between miRNA and its target transcript, 34 target ESTs from blueberry and 70 targets from other species were identified for the vco-miRNAs. The targets were found to be involved in transcription, RNA splicing and binding, DNA duplication, signal transduction, transport and trafficking, stress response, as well as synthesis and metabolic process. These findings will greatly contribute to future research in regard to functions and regulatory mechanisms of blueberry miRNAs.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Yanming Hou
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Li Zhang
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Wenhao Zhang
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Chen Quan
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada; Southern Crop Protection and Food Research Centre; London, ON Canada
- Department of Biology; Western University; London, ON Canada
| | - Shaomin Bian
- College of Plant Science; Jilin University; Changchun, Jilin, PR China
- Correspondence to: Shaomin Bian,
| |
Collapse
|