51
|
Abstract
The wealth of available genetic information is allowing the reconstruction of human demographic and adaptive history. Demography and purifying selection affect the purge of rare, deleterious mutations from the human population, whereas positive and balancing selection can increase the frequency of advantageous variants, improving survival and reproduction in specific environmental conditions. In this review, I discuss how theoretical and empirical population genetics studies, using both modern and ancient DNA data, are a powerful tool for obtaining new insight into the genetic basis of severe disorders and complex disease phenotypes, rare and common, focusing particularly on infectious disease risk.
Collapse
Affiliation(s)
- Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes & Genetics, Institut Pasteur, Paris, 75015, France.
- Centre National de la Recherche Scientifique, URA3012, Paris, 75015, France.
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
52
|
Lenz TL, Spirin V, Jordan DM, Sunyaev SR. Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection. Mol Biol Evol 2016; 33:2555-64. [PMID: 27436009 PMCID: PMC5026253 DOI: 10.1093/molbev/msw127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deleterious mutations are expected to evolve under negative selection and are usually purged from the population. However, deleterious alleles segregate in the human population and some disease-associated variants are maintained at considerable frequencies. Here, we test the hypothesis that balancing selection may counteract purifying selection in neighboring regions and thus maintain deleterious variants at higher frequency than expected from their detrimental fitness effect. We first show in realistic simulations that balancing selection reduces the density of polymorphic sites surrounding a locus under balancing selection, but at the same time markedly increases the population frequency of the remaining variants, including even substantially deleterious alleles. To test the predictions of our simulations empirically, we then use whole-exome sequencing data from 6,500 human individuals and focus on the most established example for balancing selection in the human genome, the major histocompatibility complex (MHC). Our analysis shows an elevated frequency of putatively deleterious coding variants in nonhuman leukocyte antigen (non-HLA) genes localized in the MHC region. The mean frequency of these variants declined with physical distance from the classical HLA genes, indicating dependency on genetic linkage. These results reveal an indirect cost of the genetic diversity maintained by balancing selection, which has hitherto been perceived as mostly advantageous, and have implications both for the evolution of recombination and also for the epidemiology of various MHC-associated diseases.
Collapse
Affiliation(s)
- Tobias L Lenz
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Victor Spirin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Daniel M Jordan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Shamil R Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School Program in Medical and Population Genetics, The Broad Institute, Cambridge, MA
| |
Collapse
|
53
|
Abstract
Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree-like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control.
Collapse
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Nora Besansky
- Department of Biological Sciences and Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
| | - Matthew W. Hahn
- Department of Biology and School of Informatics and ComputingIndiana UniversityBloomingtonINUSA
| |
Collapse
|
54
|
de Filippo C, Key FM, Ghirotto S, Benazzo A, Meneu JR, Weihmann A, Parra G, Green ED, Andrés AM. Recent Selection Changes in Human Genes under Long-Term Balancing Selection. Mol Biol Evol 2016; 33:1435-47. [PMID: 26831942 DOI: 10.1093/molbev/msw023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Balancing selection is an important evolutionary force that maintains genetic and phenotypic diversity in populations. Most studies in humans have focused on long-standing balancing selection, which persists over long periods of time and is generally shared across populations. But balanced polymorphisms can also promote fast adaptation, especially when the environment changes. To better understand the role of previously balanced alleles in novel adaptations, we analyzed in detail four loci as case examples of this mechanism. These loci show hallmark signatures of long-term balancing selection in African populations, but not in Eurasian populations. The disparity between populations is due to changes in allele frequencies, with intermediate frequency alleles in Africans (likely due to balancing selection) segregating instead at low- or high-derived allele frequency in Eurasia. We explicitly tested the support for different evolutionary models with an approximate Bayesian computation approach and show that the patterns in PKDREJ, SDR39U1, and ZNF473 are best explained by recent changes in selective pressure in certain populations. Specifically, we infer that alleles previously under long-term balancing selection, or alleles linked to them, were recently targeted by positive selection in Eurasian populations. Balancing selection thus likely served as a source of functional alleles that mediated subsequent adaptations to novel environments.
Collapse
Affiliation(s)
- Cesare de Filippo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felix M Key
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Juan R Meneu
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Antje Weihmann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Genís Parra
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eric D Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
55
|
Azevedo L, Serrano C, Amorim A, Cooper DN. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics 2015; 9:21. [PMID: 26337052 PMCID: PMC4559023 DOI: 10.1186/s40246-015-0043-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Known examples of ancient identical-by-descent genetic variants being shared between evolutionarily related species, known as trans-species polymorphisms (TSPs), result from counterbalancing selective forces acting on target genes to confer resistance against infectious agents. To date, putative TSPs between humans and other primate species have been identified for the highly polymorphic major histocompatibility complex (MHC), the histo-blood ABO group, two antiviral genes (ZC3HAV1 and TRIM5), an autoimmunity-related gene LAD1 and several non-coding genomic segments with a putative regulatory role. Although the number of well-characterized TSPs under long-term balancing selection is still very small, these examples are connected by a common thread, namely that they involve genes with key roles in the immune system and, in heterozygosity, appear to confer genetic resistance to pathogens. Here, we review known cases of shared polymorphism that appear to be under long-term balancing selection in humans and the great apes. Although the specific selective agent(s) responsible are still unknown, these TSPs may nevertheless be seen as constituting important adaptive events that have occurred during the evolution of the primate immune system.
Collapse
Affiliation(s)
- Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Catarina Serrano
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
56
|
Fijarczyk A, Babik W. Detecting balancing selection in genomes: limits and prospects. Mol Ecol 2015; 24:3529-45. [DOI: 10.1111/mec.13226] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Fijarczyk
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| | - Wiesław Babik
- Institute of Environmental Sciences; Jagiellonian University; Gronostajowa 7 30-387 Kraków Poland
| |
Collapse
|
57
|
Halldórsdóttir K, Árnason E. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species. PeerJ 2015; 3:e976. [PMID: 26038731 PMCID: PMC4451034 DOI: 10.7717/peerj.976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/05/2015] [Indexed: 12/27/2022] Open
Abstract
Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host's apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of balancing selection maintaining the variation. Using Bayesian and likelihood methods positive and negative selection is evident at sites in the conserved part of the genes and, to a larger extent, in the active part which also shows episodic diversifying selection, further supporting the argument for balancing selection.
Collapse
Affiliation(s)
- Katrín Halldórsdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Einar Árnason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
58
|
Padhi A, Ma L. Time-dependent selection pressure on two arthropod-borne RNA viruses in the same serogroup. INFECTION GENETICS AND EVOLUTION 2015; 32:255-64. [PMID: 25801608 DOI: 10.1016/j.meegid.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/11/2015] [Accepted: 03/15/2015] [Indexed: 12/20/2022]
Abstract
Understanding the genetic basis of viral adaptation to taxonomically diverse groups of host species inhabiting different eco-climatic zones is crucial for the discovery of factors underpinning the successful establishment of these infectious pathogens in new hosts/environments. To gain insights into the dynamics of nonsynonymous (dN) and synonymous substitutions (dS) and the ratio between the two (ω=dN/dS), we analyzed the complete nucleotide coding sequence data of the M segment, which encodes glycoproteins of two negative-sense RNA viruses, Akabane virus (AKV) and Schmallenberg virus (SBV) that belong to the same serogroup. While AKV is relatively older and has been circulating in ruminant populations since 1970s, SBV was first reported in 2011. The ω was estimated to be 1.67 and 0.09 for SBV and AKV, respectively, and the estimated mutation rate of SBV is at least 25 times higher than that of AKV. Given the different evolutionary stages of the two viruses, most of the slightly deleterious mutations were likely purged out or kept in low frequency in the AKV genome, whereas positive selection together with the accumulation of slightly deleterious mutations might contribute to such an inflated mutation rate of SBV. The evolutionary distance (d) is nonlinearly and negatively correlated with ω, but is positively correlated with dN and dS. Collectively, the different patterns in ω, dN, dS, and d between AKV and SBV identified in this study provide empirical evidence for a time-dependent selection pressure.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|