51
|
The evolutionary history and human settlement of Australia and the Pacific. Curr Opin Genet Dev 2018; 53:53-59. [PMID: 30029008 DOI: 10.1016/j.gde.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022]
Abstract
Understanding the timing and processes involved in the human settlement of Australia and the Pacific has significance for addressing some key debates relating to human origins and population expansions worldwide. Despite this, for many years, Pacific populations were seriously under-represented in genetic studies of human origins. The last 15 years, however, have seen some major genetic studies involving Australian and Pacific populations which have shed light on their origins and interactions, and the last five years have seen some major developments that are challenging long-held concepts of Pacific settlement.
Collapse
|
52
|
Dannemann M, Racimo F. Something old, something borrowed: admixture and adaptation in human evolution. Curr Opin Genet Dev 2018; 53:1-8. [PMID: 29894925 DOI: 10.1016/j.gde.2018.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
The sequencing of ancient DNA from archaic humans-Neanderthals and Denisovans-has revealed that modern and archaic humans interbred at least twice during the Pleistocene. The field of human paleogenomics has now turned its attention towards understanding the nature of this genetic legacy in the gene pool of present-day humans. What exactly did modern humans obtain from interbreeding with Neanderthals and Denisovans? Was the introgressed genetic material beneficial, neutral or maladaptive? Can differences in phenotypes among present-day human populations be explained by archaic human introgression? These questions are of prime importance for our understanding of recent human evolution, but will require careful computational modeling and extensive functional assays before they can be answered in full. Here, we review the recent literature characterizing introgressed DNA and the likely biological consequences for their modern human carriers. We focus particularly on archaic human haplotypes that were beneficial to modern humans as they expanded across the globe, and on ways to understand how populations harboring these haplotypes evolved over time.
Collapse
Affiliation(s)
- Michael Dannemann
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Fernando Racimo
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark.
| |
Collapse
|
53
|
Lipson M, Cheronet O, Mallick S, Rohland N, Oxenham M, Pietrusewsky M, Pryce TO, Willis A, Matsumura H, Buckley H, Domett K, Nguyen GH, Trinh HH, Kyaw AA, Win TT, Pradier B, Broomandkhoshbacht N, Candilio F, Changmai P, Fernandes D, Ferry M, Gamarra B, Harney E, Kampuansai J, Kutanan W, Michel M, Novak M, Oppenheimer J, Sirak K, Stewardson K, Zhang Z, Flegontov P, Pinhasi R, Reich D. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 2018; 361:92-95. [PMID: 29773666 DOI: 10.1126/science.aat3188] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Southeast Asia is home to rich human genetic and linguistic diversity, but the details of past population movements in the region are not well known. Here, we report genome-wide ancient DNA data from 18 Southeast Asian individuals spanning from the Neolithic period through the Iron Age (4100 to 1700 years ago). Early farmers from Man Bac in Vietnam exhibit a mixture of East Asian (southern Chinese agriculturalist) and deeply diverged eastern Eurasian (hunter-gatherer) ancestry characteristic of Austroasiatic speakers, with similar ancestry as far south as Indonesia providing evidence for an expansive initial spread of Austroasiatic languages. By the Bronze Age, in a parallel pattern to Europe, sites in Vietnam and Myanmar show close connections to present-day majority groups, reflecting substantial additional influxes of migrants.
Collapse
Affiliation(s)
- Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Olivia Cheronet
- Department of Anthropology, University of Vienna, 1090 Vienna, Austria.,Earth Institute, University College Dublin, Dublin 4, Ireland.,School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Oxenham
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia
| | - Michael Pietrusewsky
- Department of Anthropology, University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822, USA
| | - Thomas Oliver Pryce
- Centre National de la Recherche Scientifique, 75016 Paris, France.,UMR 7055 Préhistoire et Technologie, Université Paris Nanterre, 92023 Nanterre, France.,CEA/CNRS UMR 3685 NIMBE, 91191 Gif-sur-Yvette, France
| | - Anna Willis
- College of Arts, Society and Education, James Cook University, Townsville, Queensland 4811, Australia
| | - Hirofumi Matsumura
- School of Health Science, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hallie Buckley
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Kate Domett
- Division of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Giang Hai Nguyen
- Department of Prehistoric Archaeology, Vietnam Institute of Archaeology, Hanoi, Vietnam
| | - Hoang Hiep Trinh
- Department of Prehistoric Archaeology, Vietnam Institute of Archaeology, Hanoi, Vietnam
| | - Aung Aung Kyaw
- Department of Archaeology, Ministry of Religious Affairs and Culture, Mandalay, Myanmar
| | - Tin Tin Win
- Department of Archaeology, Ministry of Religious Affairs and Culture, Mandalay, Myanmar
| | - Baptiste Pradier
- UMR 7055 Préhistoire et Technologie, Université Paris Nanterre, 92023 Nanterre, France
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Candilio
- Soprintendenza Archeologia Belle Arti e Paesaggio per la Città Metropolitana di Cagliari e per le Province di Oristano e Sud Sardegna, 09124 Cagliari, Italy.,Physical Anthropology Section, University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, PA 19104, USA
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 70103 Ostrava, Czech Republic
| | - Daniel Fernandes
- Department of Anthropology, University of Vienna, 1090 Vienna, Austria.,Earth Institute, University College Dublin, Dublin 4, Ireland.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Beatriz Gamarra
- Earth Institute, University College Dublin, Dublin 4, Ireland.,School of Archaeology, University College Dublin, Dublin 4, Ireland
| | - Eadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mario Novak
- Earth Institute, University College Dublin, Dublin 4, Ireland.,Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kendra Sirak
- Earth Institute, University College Dublin, Dublin 4, Ireland.,Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zhao Zhang
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 70103 Ostrava, Czech Republic.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Ron Pinhasi
- Department of Anthropology, University of Vienna, 1090 Vienna, Austria. .,Earth Institute, University College Dublin, Dublin 4, Ireland
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. .,Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
54
|
Jinam TA, Phipps ME, Aghakhanian F, Majumder PP, Datar F, Stoneking M, Sawai H, Nishida N, Tokunaga K, Kawamura S, Omoto K, Saitou N. Discerning the Origins of the Negritos, First Sundaland People: Deep Divergence and Archaic Admixture. Genome Biol Evol 2018; 9:2013-2022. [PMID: 28854687 PMCID: PMC5597900 DOI: 10.1093/gbe/evx118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/26/2022] Open
Abstract
Human presence in Southeast Asia dates back to at least 40,000 years ago, when the current islands formed a continental shelf called Sundaland. In the Philippine Islands, Peninsular Malaysia, and Andaman Islands, there exist indigenous groups collectively called Negritos whose ancestry can be traced to the "First Sundaland People." To understand the relationship between these Negrito groups and their demographic histories, we generated genome-wide single nucleotide polymorphism data in the Philippine Negritos and compared them with existing data from other populations. Phylogenetic tree analyses show that Negritos are basal to other East and Southeast Asians, and that they diverged from West Eurasians at least 38,000 years ago. We also found relatively high traces of Denisovan admixture in the Philippine Negritos, but not in the Malaysian and Andamanese groups, suggesting independent introgression and/or parallel losses involving Denisovan introgressed regions. Shared genetic loci between all three Negrito groups could be related to skin pigmentation, height, facial morphology and malarial resistance. These results show the unique status of Negrito groups as descended from the First Sundaland People.
Collapse
Affiliation(s)
- Timothy A Jinam
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Selangor, Malaysia
| | - Farhang Aghakhanian
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway City, Selangor, Malaysia
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Francisco Datar
- Department of Anthropology, University of the Philippines, Diliman, Quezon City, The Philippines
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Japan.,Department of Hepatic Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keiichi Omoto
- Department of Anthropology, Faculty of Science, The University of Tokyo, Japan
| | - Naruya Saitou
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
55
|
Pugach I, Duggan AT, Merriwether DA, Friedlaender FR, Friedlaender JS, Stoneking M. The Gateway from Near into Remote Oceania: New Insights from Genome-Wide Data. Mol Biol Evol 2018; 35:871-886. [PMID: 29301001 PMCID: PMC5889034 DOI: 10.1093/molbev/msx333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A widely accepted two-wave scenario of human settlement of Oceania involves the first out-of-Africa migration circa 50,000 years ago (ya), and the more recent Austronesian expansion, which reached the Bismarck Archipelago by 3,450 ya. Whereas earlier genetic studies provided evidence for extensive sex-biased admixture between the incoming and the indigenous populations, some archaeological, linguistic, and genetic evidence indicates a more complicated picture of settlement. To study regional variation in Oceania in more detail, we have compiled a genome-wide data set of 823 individuals from 72 populations (including 50 populations from Oceania) and over 620,000 autosomal single nucleotide polymorphisms (SNPs). We show that the initial dispersal of people from the Bismarck Archipelago into Remote Oceania occurred in a "leapfrog" fashion, completely by-passing the main chain of the Solomon Islands, and that the colonization of the Solomon Islands proceeded in a bidirectional manner. Our results also support a divergence between western and eastern Solomons, in agreement with the sharp linguistic divide known as the Tryon-Hackman line. We also report substantial post-Austronesian gene flow across the Solomons. In particular, Santa Cruz (in Remote Oceania) exhibits extraordinarily high levels of Papuan ancestry that cannot be explained by a simple bottleneck/founder event scenario. Finally, we use simulations to show that discrepancies between different methods for dating admixture likely reflect different sensitivities of the methods to multiple admixture events from the same (or similar) sources. Overall, this study points to the importance of fine-scale sampling to understand the complexities of human population history.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ana T Duggan
- Department of Anthropology, McMaster University, Hamilton, Canada
| | | | | | | | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
56
|
Browning SR, Browning BL, Zhou Y, Tucci S, Akey JM. Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. Cell 2018; 173:53-61.e9. [PMID: 29551270 PMCID: PMC5866234 DOI: 10.1016/j.cell.2018.02.031] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/21/2017] [Accepted: 02/12/2018] [Indexed: 01/27/2023]
Abstract
Anatomically modern humans interbred with Neanderthals and with a related archaic population known as Denisovans. Genomes of several Neanderthals and one Denisovan have been sequenced, and these reference genomes have been used to detect introgressed genetic material in present-day human genomes. Segments of introgression also can be detected without use of reference genomes, and doing so can be advantageous for finding introgressed segments that are less closely related to the sequenced archaic genomes. We apply a new reference-free method for detecting archaic introgression to 5,639 whole-genome sequences from Eurasia and Oceania. We find Denisovan ancestry in populations from East and South Asia and Papuans. Denisovan ancestry comprises two components with differing similarity to the sequenced Altai Denisovan individual. This indicates that at least two distinct instances of Denisovan admixture into modern humans occurred, involving Denisovan populations that had different levels of relatedness to the sequenced Altai Denisovan. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Brian L Browning
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ying Zhou
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Serena Tucci
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joshua M Akey
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
57
|
Yang MA, Fu Q. Insights into Modern Human Prehistory Using Ancient Genomes. Trends Genet 2018; 34:184-196. [DOI: 10.1016/j.tig.2017.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023]
|
58
|
Yew CW, Lu D, Deng L, Wong LP, Ong RTH, Lu Y, Wang X, Yunus Y, Aghakhanian F, Mokhtar SS, Hoque MZ, Voo CLY, Abdul Rahman T, Bhak J, Phipps ME, Xu S, Teo YY, Kumar SV, Hoh BP. Genomic structure of the native inhabitants of Peninsular Malaysia and North Borneo suggests complex human population history in Southeast Asia. Hum Genet 2018; 137:161-173. [DOI: 10.1007/s00439-018-1869-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
|
59
|
Reconstructing the demographic history of the Himalayan and adjoining populations. Hum Genet 2018; 137:129-139. [PMID: 29356938 DOI: 10.1007/s00439-018-1867-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/06/2018] [Indexed: 12/19/2022]
Abstract
The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia.
Collapse
|
60
|
Rabett RJ. The success of failed Homo sapiens dispersals out of Africa and into Asia. Nat Ecol Evol 2018; 2:212-219. [PMID: 29348642 DOI: 10.1038/s41559-017-0436-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
The evidence for an early dispersal of Homo sapiens from Africa into the Levant during Marine Isotope Stage 5 (MIS-5) 126-74 ka (thousand years ago) was characterized for many years as an 'abortive' expansion: a precursor to a sustained dispersal from which all extant human populations can be traced. Recent archaeological and genetic data from both western and eastern parts of Eurasia and from Australia are starting to challenge that interpretation. This Perspective reviews the current evidence for a scenario where the MIS-5 dispersal encompassed a much greater geographic distribution and temporal duration. The implications of this for tracking and understanding early human dispersal in Southeast Asia specifically are considered, and the validity of measuring dispersal success only through genetic continuity into the present is examined.
Collapse
Affiliation(s)
- Ryan J Rabett
- Archaeology & Palaeoecology, School of Natural & Built Environment, Queen's University Belfast, Elmwood Avenue, Belfast, BT7 1NN, UK.
| |
Collapse
|
61
|
Prüfer K, de Filippo C, Grote S, Mafessoni F, Korlević P, Hajdinjak M, Vernot B, Skov L, Hsieh P, Peyrégne S, Reher D, Hopfe C, Nagel S, Maricic T, Fu Q, Theunert C, Rogers R, Skoglund P, Chintalapati M, Dannemann M, Nelson BJ, Key FM, Rudan P, Kućan Ž, Gušić I, Golovanova LV, Doronichev VB, Patterson N, Reich D, Eichler EE, Slatkin M, Schierup MH, Andrés AM, Kelso J, Meyer M, Pääbo S. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 2017; 358:655-658. [PMID: 28982794 PMCID: PMC6185897 DOI: 10.1126/science.aao1887] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022]
Abstract
To date, the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50,000 years ago from Vindija Cave, Croatia, to ~30-fold genomic coverage. She carried 1.6 differences per 10,000 base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10 to 20% more Neandertal DNA to be identified in present-day humans, including variants involved in low-density lipoprotein cholesterol concentrations, schizophrenia, and other diseases.
Collapse
Affiliation(s)
- Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | - Cesare de Filippo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Steffi Grote
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Fabrizio Mafessoni
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Petra Korlević
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Benjamin Vernot
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Pinghsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stéphane Peyrégne
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - David Reher
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Charlotte Hopfe
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Sarah Nagel
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Christoph Theunert
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Rebekah Rogers
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Pontus Skoglund
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Felix M Key
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Pavao Rudan
- Anthropology Center of the Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Željko Kućan
- Anthropology Center of the Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Ivan Gušić
- Anthropology Center of the Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | | | | | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David Reich
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Aida M Andrés
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
62
|
Yang MA, Gao X, Theunert C, Tong H, Aximu-Petri A, Nickel B, Slatkin M, Meyer M, Pääbo S, Kelso J, Fu Q. 40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Curr Biol 2017; 27:3202-3208.e9. [PMID: 29033327 PMCID: PMC6592271 DOI: 10.1016/j.cub.2017.09.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022]
Abstract
By at least 45,000 years before present, anatomically modern humans had spread across Eurasia [1-3], but it is not well known how diverse these early populations were and whether they contributed substantially to later people or represent early modern human expansions into Eurasia that left no surviving descendants today. Analyses of genome-wide data from several ancient individuals from Western Eurasia and Siberia have shown that some of these individuals have relationships to present-day Europeans [4, 5] while others did not contribute to present-day Eurasian populations [3, 6]. As contributions from Upper Paleolithic populations in Eastern Eurasia to present-day humans and their relationship to other early Eurasians is not clear, we generated genome-wide data from a 40,000-year-old individual from Tianyuan Cave, China, [1, 7] to study his relationship to ancient and present-day humans. We find that he is more related to present-day and ancient Asians than he is to Europeans, but he shares more alleles with a 35,000-year-old European individual than he shares with other ancient Europeans, indicating that the separation between early Europeans and early Asians was not a single population split. We also find that the Tianyuan individual shares more alleles with some Native American groups in South America than with Native Americans elsewhere, providing further support for population substructure in Asia [8] and suggesting that this persisted from 40,000 years ago until the colonization of the Americas. Our study of the Tianyuan individual highlights the complex migration and subdivision of early human populations in Eurasia.
Collapse
Affiliation(s)
- Melinda A Yang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Christoph Theunert
- Department of Integrative Biology, University of California Berkeley, Berkeley, Berkeley, CA 94720, USA; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Haowen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ayinuer Aximu-Petri
- Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Montgomery Slatkin
- Department of Integrative Biology, University of California Berkeley, Berkeley, Berkeley, CA 94720, USA
| | - Matthias Meyer
- Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Svante Pääbo
- Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Janet Kelso
- Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Laboratory on Molecular Paleontology of the Max Planck Institute for Evolutionary Anthropology and the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.
| |
Collapse
|
63
|
Rathmann H, Reyes-Centeno H, Ghirotto S, Creanza N, Hanihara T, Harvati K. Reconstructing human population history from dental phenotypes. Sci Rep 2017; 7:12495. [PMID: 28970489 PMCID: PMC5624867 DOI: 10.1038/s41598-017-12621-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023] Open
Abstract
Dental phenotypic data are often used to reconstruct biological relatedness among past human groups. Teeth are an important data source because they are generally well preserved in the archaeological and fossil record, even when associated skeletal and DNA preservation is poor. Furthermore, tooth form is considered to be highly heritable and selectively neutral; thus, teeth are assumed to be an excellent proxy for neutral genetic data when none are available. However, to our knowledge, no study to date has systematically tested the assumption of genetic neutrality of dental morphological features on a global scale. Therefore, for the first time, this study quantifies the correlation of biological affinities between worldwide modern human populations, derived independently from dental phenotypes and neutral genetic markers. We show that population relationship measures based on dental morphology are significantly correlated with those based on neutral genetic data (on average r = 0.574, p < 0.001). This relatively strong correlation validates tooth form as a proxy for neutral genomic markers. Nonetheless, we suggest caution in reconstructions of population affinities based on dental data alone because only part of the dental morphological variation among populations can be explained in terms of neutral genetic differences.
Collapse
Affiliation(s)
- Hannes Rathmann
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72070, Germany
| | - Hugo Reyes-Centeno
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72070, Germany
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72070, Germany
| | - Silvia Ghirotto
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72070, Germany
- Department of Life Sciences and Biotechnologies, University of Ferrara, Ferrara, Emilia-Romagna, 44121, Italy
| | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, 37212, United States of America
| | - Tsunehiko Hanihara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Katerina Harvati
- Paleoanthropology, Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72070, Germany.
- DFG Center for Advanced Studies 'Words, Bones, Genes, Tools', Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg, 72070, Germany.
| |
Collapse
|
64
|
|
65
|
Mychaleckyj JC, Havt A, Nayak U, Pinkerton R, Farber E, Concannon P, Lima AA, Guerrant RL. Genome-Wide Analysis in Brazilians Reveals Highly Differentiated Native American Genome Regions. Mol Biol Evol 2017; 34:559-574. [PMID: 28100790 PMCID: PMC5430616 DOI: 10.1093/molbev/msw249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite its population, geographic size, and emerging economic importance, disproportionately little genome-scale research exists into genetic factors that predispose Brazilians to disease, or the population genetics of risk. After identification of suitable proxy populations and careful analysis of tri-continental admixture in 1,538 North-Eastern Brazilians to estimate individual ancestry and ancestral allele frequencies, we computed 400,000 genome-wide locus-specific branch length (LSBL) Fst statistics of Brazilian Amerindian ancestry compared to European and African; and a similar set of differentiation statistics for their Amerindian component compared with the closest Asian 1000 Genomes population (surprisingly, Bengalis in Bangladesh). After ranking SNPs by these statistics, we identified the top 10 highly differentiated SNPs in five genome regions in the LSBL tests of Brazilian Amerindian ancestry compared to European and African; and the top 10 SNPs in eight regions comparing their Amerindian component to the closest Asian 1000 Genomes population. We found SNPs within or proximal to the genes CIITA (rs6498115), SMC6 (rs1834619), and KLHL29 (rs2288697) were most differentiated in the Amerindian-specific branch, while SNPs in the genes ADAMTS9 (rs7631391), DOCK2 (rs77594147), SLC28A1 (rs28649017), ARHGAP5 (rs7151991), and CIITA (rs45601437) were most highly differentiated in the Asian comparison. These genes are known to influence immune function, metabolic and anthropometry traits, and embryonic development. These analyses have identified candidate genes for selection within Amerindian ancestry, and by comparison of the two analyses, those for which the differentiation may have arisen during the migration from Asia to the Americas.
Collapse
Affiliation(s)
- Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Alexandre Havt
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil.,INCT-Instituto de Biomedicina Universidade Federal do Ceará, Fortaleza, Brazil
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Relana Pinkerton
- Center for Global Health, University of Virginia, Charlottesville, VA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Patrick Concannon
- Genetics Institute, University of Florida, Gainesville, FL.,Department of Pathology Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Aldo A Lima
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, Brazil.,INCT-Instituto de Biomedicina Universidade Federal do Ceará, Fortaleza, Brazil
| | | |
Collapse
|
66
|
Slon V, Viola B, Renaud G, Gansauge MT, Benazzi S, Sawyer S, Hublin JJ, Shunkov MV, Derevianko AP, Kelso J, Prüfer K, Meyer M, Pääbo S. A fourth Denisovan individual. SCIENCE ADVANCES 2017; 3:e1700186. [PMID: 28695206 PMCID: PMC5501502 DOI: 10.1126/sciadv.1700186] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of "missing substitutions" in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations.
Collapse
Affiliation(s)
- Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Bence Viola
- Department of Anthropology, University of Toronto, M5S 2S2 Toronto, Ontario, Canada
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk RU-630090, Russia
| | - Gabriel Renaud
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Stefano Benazzi
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy
| | - Susanna Sawyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Michael V. Shunkov
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk RU-630090, Russia
- Novosibirsk National Research State University, Novosibirsk RU-630090, Russia
| | - Anatoly P. Derevianko
- Institute of Archaeology and Ethnography, Russian Academy of Sciences, Siberian Branch, Novosibirsk RU-630090, Russia
- Altai State University, Barnaul RU-656049, Russia
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Kay Prüfer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| |
Collapse
|
67
|
Pimenoff VN, de Oliveira CM, Bravo IG. Transmission between Archaic and Modern Human Ancestors during the Evolution of the Oncogenic Human Papillomavirus 16. Mol Biol Evol 2017; 34:4-19. [PMID: 28025273 PMCID: PMC5854117 DOI: 10.1093/molbev/msw214] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Every human suffers through life a number of papillomaviruses (PVs) infections, most of them asymptomatic. A notable exception are persistent infections by Human papillomavirus 16 (HPV16), the most oncogenic infectious agent for humans and responsible for most infection-driven anogenital cancers. Oncogenic potential is not homogeneous among HPV16 lineages, and genetic variation within HPV16 exhibits some geographic structure. However, an in-depth analysis of the HPV16 evolutionary history was still wanting. We have analyzed extant HPV16 diversity and compared the evolutionary and phylogeographical patterns of humans and of HPV16. We show that codivergence with modern humans explains at most 30% of the present viral geographical distribution. The most explanatory scenario suggests that ancestral HPV16 already infected ancestral human populations and that viral lineages co-diverged with the hosts in parallel with the split between archaic Neanderthal-Denisovans and ancestral modern human populations, generating the ancestral HPV16A and HPV16BCD viral lineages, respectively. We propose that after out-of-Africa migration of modern human ancestors, sexual transmission between human populations introduced HPV16A into modern human ancestor populations. We hypothesize that differential coevolution of HPV16 lineages with different but closely related ancestral human populations and subsequent host-switch events in parallel with introgression of archaic alleles into the genomes of modern human ancestors may be largely responsible for the present-day differential prevalence and association with cancers for HPV16 variants.
Collapse
Affiliation(s)
- Ville N Pimenoff
- Infections and Cancer Laboratory, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain
- Unit of Biomarkers and Susceptibility, Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
| | - Cristina Mendes de Oliveira
- Infections and Cancer Laboratory, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain
- Virology Laboratory, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Ignacio G Bravo
- Infections and Cancer Laboratory, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain
- MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), Montpellier, France
| |
Collapse
|
68
|
Jarvis ED. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class. Annu Rev Anim Biosci 2016; 4:45-59. [PMID: 26884102 DOI: 10.1146/annurev-animal-021815-111216] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
69
|
Wall JD, Yoshihara Caldeira Brandt D. Archaic admixture in human history. Curr Opin Genet Dev 2016; 41:93-97. [DOI: 10.1016/j.gde.2016.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
70
|
Skoglund P, Posth C, Sirak K, Spriggs M, Valentin F, Bedford S, Clark GR, Reepmeyer C, Petchey F, Fernandes D, Fu Q, Harney E, Lipson M, Mallick S, Novak M, Rohland N, Stewardson K, Abdullah S, Cox MP, Friedlaender FR, Friedlaender JS, Kivisild T, Koki G, Kusuma P, Merriwether DA, Ricaut FX, Wee JTS, Patterson N, Krause J, Pinhasi R, Reich D. Genomic insights into the peopling of the Southwest Pacific. Nature 2016; 538:510-513. [PMID: 27698418 PMCID: PMC5515717 DOI: 10.1038/nature19844] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.
Collapse
Affiliation(s)
- Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Cosimo Posth
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72070, Germany
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Kendra Sirak
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
- Department of Anthropology, Emory University, Atlanta, Georgia 30322, USA
| | - Matthew Spriggs
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
| | - Frederique Valentin
- Maison de l'Archéologie et de l'Ethnologie, CNRS, UMR 7041, 92023 Nanterre, France
| | - Stuart Bedford
- Vanuatu National Museum, Vanuatu Cultural Centre, Port Vila, Vanuatu
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Geoffrey R Clark
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christian Reepmeyer
- College of Arts, Society and Education, James Cook University, Queensland 4870, Australia
| | - Fiona Petchey
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton 3240, New Zealand
| | - Daniel Fernandes
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Qiaomei Fu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Eadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mario Novak
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
- Institute for Anthropological Research, 10000 Zagreb, Croatia
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Murray P Cox
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | | - Jonathan S Friedlaender
- Department of Anthropology, Temple University, Gladfelter Hall, Philadelphia, Pennsylvania 19122, USA
| | - Toomas Kivisild
- Estonian Biocentre, Evolutionary Biology group, Tartu, 51010, Estonia
- Division of Archaeology, University of Cambridge, Fitzwilliam Street, Cambridge CB2 1QH, UK
| | - George Koki
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province 441, Papua New Guinea
| | | | - D Andrew Merriwether
- Department of Anthropology, Binghamton University, Binghamton, New York 13902, USA
| | - Francois-X Ricaut
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse UMR 5288 CNRS, Université de Toulouse, Toulouse 31073, France
| | - Joseph T S Wee
- National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Ron Pinhasi
- School of Archaeology and Earth Institute, Belfield, University College Dublin, Dublin 4, Dublin, Ireland
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
71
|
Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, Bergström A, Athanasiadis G, Cheng JY, Crawford JE, Heupink TH, Macholdt E, Peischl S, Rasmussen S, Schiffels S, Subramanian S, Wright JL, Albrechtsen A, Barbieri C, Dupanloup I, Eriksson A, Margaryan A, Moltke I, Pugach I, Korneliussen TS, Levkivsky IP, Moreno-Mayar JV, Ni S, Racimo F, Sikora M, Xue Y, Aghakhanian FA, Brucato N, Brunak S, Campos PF, Clark W, Ellingvåg S, Fourmile G, Gerbault P, Injie D, Koki G, Leavesley M, Logan B, Lynch A, Matisoo-Smith EA, McAllister PJ, Mentzer AJ, Metspalu M, Migliano AB, Murgha L, Phipps ME, Pomat W, Reynolds D, Ricaut FX, Siba P, Thomas MG, Wales T, Wall C, Oppenheimer SJ, Tyler-Smith C, Durbin R, Dortch J, Manica A, Schierup MH, Foley RA, Mirazón Lahr M, Bowern C, Wall JD, Mailund T, Stoneking M, Nielsen R, Sandhu MS, Excoffier L, Lambert DM, Willerslev E. A genomic history of Aboriginal Australia. Nature 2016; 538:207-214. [PMID: 27654914 PMCID: PMC7617037 DOI: 10.1038/nature18299] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25-40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10-32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama-Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51-72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.
Collapse
Affiliation(s)
- Anna-Sapfo Malaspinas
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
- Institute of Ecology and Evolution, University of Bern,
Baltzerstrasse 6, CH-3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Michael C Westaway
- Environmental Futures Research Institute, Griffith University,
Nathan, Australia
| | - Craig Muller
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Vitor C Sousa
- Institute of Ecology and Evolution, University of Bern,
Baltzerstrasse 6, CH-3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabel Alves
- Institute of Ecology and Evolution, University of Bern,
Baltzerstrasse 6, CH-3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Population and Conservation Genetics Group, Instituto Gulbenkian de
Ciência, Oeiras, Portugal
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | | | - Jade Y Cheng
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus,
Denmark
- Department of Integrative Biology, University of California,
Berkeley, CA, USA
| | - Jacob E Crawford
- Department of Integrative Biology, University of California,
Berkeley, CA, USA
| | - Tim H Heupink
- Environmental Futures Research Institute, Griffith University,
Nathan, Australia
| | - Enrico Macholdt
- Department of Evolutionary Genetics, Max Planck Institute for
Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Interfaculty Bioinformatics Unit University of Bern, Baltzerstrasse
6, CH-3012 Bern, Switzerland
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems
Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens
Lyngby, Denmark
| | - Stephan Schiffels
- Department for Archaeogenetics, Max Planck Institute for the
Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany
| | - Sankar Subramanian
- Environmental Futures Research Institute, Griffith University,
Nathan, Australia
| | - Joanne L Wright
- Environmental Futures Research Institute, Griffith University,
Nathan, Australia
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of
Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Chiara Barbieri
- Department of Evolutionary Genetics, Max Planck Institute for
Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Department of Linguistic and Cultural Evolution, Max Planck
Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena,
Germany
| | - Isabelle Dupanloup
- Institute of Ecology and Evolution, University of Bern,
Baltzerstrasse 6, CH-3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anders Eriksson
- Dept of Zoology, University of Cambridge, Downing Street, CB2 3EJ,
UK
- Integrative Systems Biology Laboratory, Division of Biological and
Environmental Sciences & Engineering, King Abdullah University of Science and
Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of
Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for
Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Thorfinn S Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Ivan P Levkivsky
- Institute for theoretical physics, ETH Zürich,
Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland
| | - J. Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Shengyu Ni
- Department of Evolutionary Genetics, Max Planck Institute for
Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Fernando Racimo
- Department of Integrative Biology, University of California,
Berkeley, CA, USA
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | - Farhang A Aghakhanian
- Jeffrey Cheah School of Medicine & Health Sciences, Monash
University Malaysia, Jalan Lagoon Selatan, Sunway City, 46150 Selangor,
Malaysia
| | - Nicolas Brucato
- Evolutionary Medicine group, Laboratoire d’Anthropologie
Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la
Recherche Scientifique, Université de Toulouse 3, Toulouse, France
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of
Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação
Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto,
Portugal
| | - Warren Clark
- National Parks and Wildlife, Sturt Highway, Buronga, NSW 2739
Australia
| | | | | | - Pascale Gerbault
- UCL Research Department of Genetics, Evolution and Environment,
Darwin building, Gower Street, London WC1E 6BT, UK
| | - Darren Injie
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - George Koki
- Papua New Guinea Institute of Medical Research, P.O. Box 60,
Goroka, Papua New Guinea
| | - Matthew Leavesley
- Archaeology, School of Humanities & Social Sciences,
University PO Box 320, University of Papua New Guinea & College of Arts,
Society & Education, James Cook University, Cairns, Australia
| | - Betty Logan
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Aubrey Lynch
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | | | | | - Alexander J Mentzer
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | | | - Andrea B Migliano
- UCL Department of Anthropology, 14 Taviton Street, London WC1H 0BW,
UK
| | - Les Murgha
- 86 Workshop Road, Yarrabah, QLD 4871 Australia
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine & Health Sciences, Monash
University Malaysia, Jalan Lagoon Selatan, Sunway City, 46150 Selangor,
Malaysia
| | - William Pomat
- Papua New Guinea Institute of Medical Research, P.O. Box 60,
Goroka, Papua New Guinea
| | - Doc Reynolds
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
| | - Francois-Xavier Ricaut
- Evolutionary Medicine group, Laboratoire d’Anthropologie
Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la
Recherche Scientifique, Université de Toulouse 3, Toulouse, France
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, P.O. Box 60,
Goroka, Papua New Guinea
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment,
University College London, Gower Street, London WC1E 6BT
| | | | | | - Stephen J Oppenheimer
- School of Anthropology and Museum Ethnography, Oxford University,
Oxford, OX2 6PE, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | - Joe Dortch
- Centre for Rock Art Research + Management, University of Western
Australia
| | - Andrea Manica
- Dept of Zoology, University of Cambridge, Downing Street, CB2 3EJ,
UK
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus,
Denmark
| | - Robert A Foley
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
- Leverhulme Centre for Human Evolutionary Studies, Department of
Archaeology and Anthropology, University of Cambridge, Fitzwilliam St, Cambridge CB2
1QH, UK
| | - Marta Mirazón Lahr
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
- Leverhulme Centre for Human Evolutionary Studies, Department of
Archaeology and Anthropology, University of Cambridge, Fitzwilliam St, Cambridge CB2
1QH, UK
| | - Claire Bowern
- Department of Linguistics, PO Box 208366 (370 Temple St), New
Haven, CT, 06520, USA
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California, San
Francisco, CA, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus,
Denmark
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for
Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Rasmus Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
- Departments of Integrative Biology and Statistics, University of
California, Berkeley, CA, USA
| | - Manjinder S Sandhu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern,
Baltzerstrasse 6, CH-3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David M Lambert
- Environmental Futures Research Institute, Griffith University,
Nathan, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Øster Voldgade 5–7, 1350, Copenhagen,
Denmark
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge, CB10 1SA, UK
- Dept of Zoology, University of Cambridge, Downing Street, CB2 3EJ,
UK
| |
Collapse
|
72
|
Yasukochi Y, Ohashi J. Elucidating the origin of HLA-B*73 allelic lineage: Did modern humans benefit by archaic introgression? Immunogenetics 2016; 69:63-67. [PMID: 27695917 PMCID: PMC5203853 DOI: 10.1007/s00251-016-0952-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/16/2016] [Indexed: 12/01/2022]
Abstract
A previous study reported that some of the human leukocyte antigen (HLA) alleles and haplotypes in present-day humans were acquired by admixture with archaic humans; specifically, an exceptionally diverged HLA-B*73 allele was proposed to be transmitted from Denisovans, although the DNA sequence of HLA-B*73 has not been detected in the Denisovan genome. Here, we argue against the hypothesis that HLA-B*73 introgressed from Denisovans into early modern humans. A phylogenetic analysis revealed that HLA-B*73:01 formed a monophyletic group with a chimpanzee MHC-B allele, strongly suggesting that the HLA-B*73 allelic lineage has been maintained in humans as well as in chimpanzees since the divergence of humans and chimpanzees. The global distribution of HLA-B*73 allele showed that the population frequency of HLA-B*73 in west Asia (0.24 %)—a possible site of admixture with Denisovans—is lower than that in Europe (0.72 %) and in south Asia (0.69 %). Furthermore, HLA-B*73 is not observed in Melanesia even though the Melanesian genome contains the highest proportion of Denisovan ancestry in present-day human populations. Single nucleotide polymorphisms in HLA-A*11-HLA-C*12:02 or HLA-A*11-C*15 haplotypes, one of which was assumed to be transmitted together with HLA-B*73 from Denisovans by the study of Abi-Rached and colleagues, were not differentiated from those in other HLA-A-C haplotypes in modern humans. These results do not support the introgression hypothesis. Thus, we conclude that it is highly likely that HLA-B*73 allelic lineage has been maintained in the direct ancestors of modern humans.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan.
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
73
|
Ancestral Origins and Genetic History of Tibetan Highlanders. Am J Hum Genet 2016; 99:580-594. [PMID: 27569548 DOI: 10.1016/j.ajhg.2016.07.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022] Open
Abstract
The origin of Tibetans remains one of the most contentious puzzles in history, anthropology, and genetics. Analyses of deeply sequenced (30×-60×) genomes of 38 Tibetan highlanders and 39 Han Chinese lowlanders, together with available data on archaic and modern humans, allow us to comprehensively characterize the ancestral makeup of Tibetans and uncover their origins. Non-modern human sequences compose ∼6% of the Tibetan gene pool and form unique haplotypes in some genomic regions, where Denisovan-like, Neanderthal-like, ancient-Siberian-like, and unknown ancestries are entangled and elevated. The shared ancestry of Tibetan-enriched sequences dates back to ∼62,000-38,000 years ago, predating the Last Glacial Maximum (LGM) and representing early colonization of the plateau. Nonetheless, most of the Tibetan gene pool is of modern human origin and diverged from that of Han Chinese ∼15,000 to ∼9,000 years ago, which can be largely attributed to post-LGM arrivals. Analysis of ∼200 contemporary populations showed that Tibetans share ancestry with populations from East Asia (∼82%), Central Asia and Siberia (∼11%), South Asia (∼6%), and western Eurasia and Oceania (∼1%). Our results support that Tibetans arose from a mixture of multiple ancestral gene pools but that their origins are much more complicated and ancient than previously suspected. We provide compelling evidence of the co-existence of Paleolithic and Neolithic ancestries in the Tibetan gene pool, indicating a genetic continuity between pre-historical highland-foragers and present-day Tibetans. In particular, highly differentiated sequences harbored in highlanders' genomes were most likely inherited from pre-LGM settlers of multiple ancestral origins (SUNDer) and maintained in high frequency by natural selection.
Collapse
|
74
|
Morozova I, Flegontov P, Mikheyev AS, Bruskin S, Asgharian H, Ponomarenko P, Klyuchnikov V, ArunKumar G, Prokhortchouk E, Gankin Y, Rogaev E, Nikolsky Y, Baranova A, Elhaik E, Tatarinova TV. Toward high-resolution population genomics using archaeological samples. DNA Res 2016; 23:295-310. [PMID: 27436340 PMCID: PMC4991838 DOI: 10.1093/dnares/dsw029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.
Collapse
Affiliation(s)
- Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sergey Bruskin
- Vavilov Institute of General Genetics RAS, Moscow, Russia
| | - Hosseinali Asgharian
- Department of Computational and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Petr Ponomarenko
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | | | | | - Egor Prokhortchouk
- Research Center of Biotechnology RAS, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Russia
| | | | - Evgeny Rogaev
- Vavilov Institute of General Genetics RAS, Moscow, Russia University of Massachusetts Medical School, Worcester, MA, USA
| | - Yuri Nikolsky
- Vavilov Institute of General Genetics RAS, Moscow, Russia F1 Genomics, San Diego, CA, USA School of Systems Biology, George Mason University, VA, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, VA, USA Research Centre for Medical Genetics, Moscow, Russia Atlas Biomed Group, Moscow, Russia
| | - Eran Elhaik
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Tatiana V Tatarinova
- Bioinformatics Center, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
75
|
Affiliation(s)
- Louxin Zhang
- Department of Mathematics, National University of Singapore, Singapore
| |
Collapse
|
76
|
Schaefer NK, Shapiro B, Green RE. Detecting hybridization using ancient DNA. Mol Ecol 2016; 25:2398-412. [PMID: 26826668 PMCID: PMC5063030 DOI: 10.1111/mec.13556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/06/2016] [Indexed: 01/18/2023]
Abstract
It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genomewide sequence data and discuss how these innovations have revised our understanding of human evolutionary history.
Collapse
Affiliation(s)
- Nathan K. Schaefer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Beth Shapiro
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| |
Collapse
|
77
|
Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors. Am J Hum Genet 2016; 98:22-33. [PMID: 26748514 PMCID: PMC4716682 DOI: 10.1016/j.ajhg.2015.11.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022] Open
Abstract
Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with reduced microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans.
Collapse
|
78
|
López S, van Dorp L, Hellenthal G. Human Dispersal Out of Africa: A Lasting Debate. Evol Bioinform Online 2016; 11:57-68. [PMID: 27127403 PMCID: PMC4844272 DOI: 10.4137/ebo.s33489] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 01/01/2023] Open
Abstract
Unraveling the first migrations of anatomically modern humans out of Africa has invoked great interest among researchers from a wide range of disciplines. Available fossil, archeological, and climatic data offer many hypotheses, and as such genetics, with the advent of genome-wide genotyping and sequencing techniques and an increase in the availability of ancient samples, offers another important tool for testing theories relating to our own history. In this review, we report the ongoing debates regarding how and when our ancestors left Africa, how many waves of dispersal there were and what geographical routes were taken. We explore the validity of each, using current genetic literature coupled with some of the key archeological findings.
Collapse
Affiliation(s)
- Saioa López
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucy van Dorp
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
79
|
Vernot B, Tucci S, Kelso J, Schraiber JG, Wolf AB, Gittelman RM, Dannemann M, Grote S, McCoy RC, Norton H, Scheinfeldt LB, Merriwether DA, Koki G, Friedlaender JS, Wakefield J, Pääbo S, Akey JM. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 2016; 352:235-9. [PMID: 26989198 PMCID: PMC6743480 DOI: 10.1126/science.aad9416] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Abstract
Although Neandertal sequences that persist in the genomes of modern humans have been identified in Eurasians, comparable studies in people whose ancestors hybridized with both Neandertals and Denisovans are lacking. We developed an approach to identify DNA inherited from multiple archaic hominin ancestors and applied it to whole-genome sequences from 1523 geographically diverse individuals, including 35 previously unknown Island Melanesian genomes. In aggregate, we recovered 1.34 gigabases and 303 megabases of the Neandertal and Denisovan genome, respectively. We use these maps of archaic sequences to show that Neandertal admixture occurred multiple times in different non-African populations, characterize genomic regions that are significantly depleted of archaic sequences, and identify signatures of adaptive introgression.
Collapse
Affiliation(s)
- Benjamin Vernot
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Serena Tucci
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA. Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Joshua G Schraiber
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Aaron B Wolf
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Rachel M Gittelman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael Dannemann
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Steffi Grote
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Heather Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, OH, USA
| | - Laura B Scheinfeldt
- Department of Biology and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | | | - George Koki
- Institute for Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | | | - Jon Wakefield
- Department of Statistics, University of Washington, Seattle, Washington, USA
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
80
|
Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 2016; 531:504-7. [PMID: 26976447 DOI: 10.1038/nature17405] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
A unique assemblage of 28 hominin individuals, found in Sima de los Huesos in the Sierra de Atapuerca in Spain, has recently been dated to approximately 430,000 years ago. An interesting question is how these Middle Pleistocene hominins were related to those who lived in the Late Pleistocene epoch, in particular to Neanderthals in western Eurasia and to Denisovans, a sister group of Neanderthals so far known only from southern Siberia. While the Sima de los Huesos hominins share some derived morphological features with Neanderthals, the mitochondrial genome retrieved from one individual from Sima de los Huesos is more closely related to the mitochondrial DNA of Denisovans than to that of Neanderthals. However, since the mitochondrial DNA does not reveal the full picture of relationships among populations, we have investigated DNA preservation in several individuals found at Sima de los Huesos. Here we recover nuclear DNA sequences from two specimens, which show that the Sima de los Huesos hominins were related to Neanderthals rather than to Denisovans, indicating that the population divergence between Neanderthals and Denisovans predates 430,000 years ago. A mitochondrial DNA recovered from one of the specimens shares the previously described relationship to Denisovan mitochondrial DNAs, suggesting, among other possibilities, that the mitochondrial DNA gene pool of Neanderthals turned over later in their history.
Collapse
|
81
|
A Burden of Rare Variants Associated with Extremes of Gene Expression in Human Peripheral Blood. Am J Hum Genet 2016; 98:299-309. [PMID: 26849112 DOI: 10.1016/j.ajhg.2015.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
In order to evaluate whether rare regulatory variants in the vicinity of promoters are likely to impact gene expression, we conducted a novel burden test for enrichment of rare variants at the extremes of expression. After sequencing 2-kb promoter regions of 472 genes in 410 healthy adults, we performed a quadratic regression of rare variant count on bins of peripheral blood transcript abundance from microarrays, summing over ranks of all genes. After adjusting for common eQTLs and the major axes of gene expression covariance, a highly significant excess of variants with minor allele frequency less than 0.05 at both high and low extremes across individuals was observed. Further enrichment was seen in sites annotated as potentially regulatory by RegulomeDB, but a deficit of effects was associated with known metabolic disease genes. The main result replicates in an independent sample of 75 individuals with RNA-seq and whole-genome sequence information. Three of four predicted large-effect sites were validated by CRISPR/Cas9 knockdown in K562 cells, but simulations indicate that effect sizes need not be unusually large to produce the observed burden. Unusually divergent low-frequency promoter haplotypes were observed at 31 loci, at least 9 of which appear to be derived from Neandertal admixture, but these were not associated with divergent gene expression in blood. The overall burden test results are consistent with rare and private regulatory variants driving high or low transcription at specific loci, potentially contributing to disease.
Collapse
|
82
|
Skoglund P, Mallick S, Bortolini MC, Chennagiri N, Hünemeier T, Petzl-Erler ML, Salzano FM, Patterson N, Reich D. Genetic evidence for two founding populations of the Americas. Nature 2015; 525:104-8. [PMID: 26196601 PMCID: PMC4982469 DOI: 10.1038/nature14895] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022]
Abstract
Genetic studies have consistently indicated a single common origin of Native American groups from Central and South America. However, some morphological studies have suggested a more complex picture, whereby the northeast Asian affinities of present-day Native Americans contrast with a distinctive morphology seen in some of the earliest American skeletons, which share traits with present-day Australasians (indigenous groups in Australia, Melanesia, and island Southeast Asia). Here we analyse genome-wide data to show that some Amazonian Native Americans descend partly from a Native American founding population that carried ancestry more closely related to indigenous Australians, New Guineans and Andaman Islanders than to any present-day Eurasians or Native Americans. This signature is not present to the same extent, or at all, in present-day Northern and Central Americans or in a ∼12,600-year-old Clovis-associated genome, suggesting a more diverse set of founding populations of the Americas than previously accepted.
Collapse
Affiliation(s)
- Pontus Skoglund
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Niru Chennagiri
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, SP, Brazil
| | | | - Francisco Mauro Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|