51
|
Perli T, Wronska AK, Ortiz‐Merino RA, Pronk JT, Daran J. Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast 2020; 37:283-304. [PMID: 31972058 PMCID: PMC7187267 DOI: 10.1002/yea.3461] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Chemically defined media for yeast cultivation (CDMY) were developed to support fast growth, experimental reproducibility, and quantitative analysis of growth rates and biomass yields. In addition to mineral salts and a carbon substrate, popular CDMYs contain seven to nine B-group vitamins, which are either enzyme cofactors or precursors for their synthesis. Despite the widespread use of CDMY in fundamental and applied yeast research, the relation of their design and composition to the actual vitamin requirements of yeasts has not been subjected to critical review since their first development in the 1940s. Vitamins are formally defined as essential organic molecules that cannot be synthesized by an organism. In yeast physiology, use of the term "vitamin" is primarily based on essentiality for humans, but the genome of the Saccharomyces cerevisiae reference strain S288C harbours most of the structural genes required for synthesis of the vitamins included in popular CDMY. Here, we review the biochemistry and genetics of the biosynthesis of these compounds by S. cerevisiae and, based on a comparative genomics analysis, assess the diversity within the Saccharomyces genus with respect to vitamin prototrophy.
Collapse
Affiliation(s)
- Thomas Perli
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Anna K. Wronska
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Jack T. Pronk
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Jean‐Marc Daran
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
52
|
Gibson B, Dahabieh M, Krogerus K, Jouhten P, Magalhães F, Pereira R, Siewers V, Vidgren V. Adaptive Laboratory Evolution of Ale and Lager Yeasts for Improved Brewing Efficiency and Beer Quality. Annu Rev Food Sci Technol 2020; 11:23-44. [DOI: 10.1146/annurev-food-032519-051715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Yeasts directly impact the efficiency of brewery fermentations as well as the character of the beers produced. In recent years, there has been renewed interest in yeast selection and development inspired by the demand to utilize resources more efficiently and the need to differentiate beers in a competitive market. Reviewed here are the different, non-genetically modified (GM) approaches that have been considered, including bioprospecting, hybridization, and adaptive laboratory evolution (ALE). Particular emphasis is placed on the latter, which represents an extension of the processes that have led to the domestication of strains already used in commercial breweries. ALE can be used to accentuate the positive traits of brewing yeast as well as temper some of the traits that are less desirable from a modern brewer's perspective. This method has the added advantage of being non-GM and therefore suitable for food and beverage production.
Collapse
Affiliation(s)
- B. Gibson
- VTT Technical Research Centre of Finland Ltd, FI-02044 Espoo, Finland
| | - M. Dahabieh
- Renaissance BioScience, Vancouver, British Columbia, Canada, V6T1Z3
| | - K. Krogerus
- VTT Technical Research Centre of Finland Ltd, FI-02044 Espoo, Finland
| | - P. Jouhten
- VTT Technical Research Centre of Finland Ltd, FI-02044 Espoo, Finland
| | - F. Magalhães
- VTT Technical Research Centre of Finland Ltd, FI-02044 Espoo, Finland
| | - R. Pereira
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - V. Siewers
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - V. Vidgren
- VTT Technical Research Centre of Finland Ltd, FI-02044 Espoo, Finland
| |
Collapse
|
53
|
Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Rokas A, Hittinger CT. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res 2020; 20:foaa008. [PMID: 32009143 PMCID: PMC7067299 DOI: 10.1093/femsyr/foaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina
| | - D Peris
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain
| | - F A Cubillos
- Millennium Institute for Integrative Biology (iBio). General del Canto 51 (7500574), Santiago
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología. Alameda 3363 (9170002). Estación Central. Santiago, Chile
| | - J L Steenwyk
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
| | - A Rokas
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| |
Collapse
|
54
|
Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, Thierry A, Coton E, Le Piver M, Roueyre D, Ropars J, Branca A, Giraud T. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol 2020; 29:2639-2660. [PMID: 31960565 PMCID: PMC7497015 DOI: 10.1111/mec.15359] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Domestication provides an excellent framework for studying adaptive divergence. Using population genomics and phenotypic assays, we reconstructed the domestication history of the blue cheese mould Penicillium roqueforti. We showed that this fungus was domesticated twice independently. The population used in Roquefort originated from an old domestication event associated with weak bottlenecks and exhibited traits beneficial for pre‐industrial cheese production (slower growth in cheese and greater spore production on bread, the traditional multiplication medium). The other cheese population originated more recently from the selection of a single clonal lineage, was associated with all types of blue cheese worldwide except Roquefort, and displayed phenotypes more suited for industrial cheese production (high lipolytic activity, efficient cheese cavity colonization ability and salt tolerance). We detected genomic regions affected by recent positive selection and putative horizontal gene transfers. This study sheds light on the processes of rapid adaptation and raises questions about genetic resource conservation. see also the Perspective by Brigida Gallone, Jan Steensels and Kevin J. Verstrepen.
Collapse
Affiliation(s)
- Emilie Dumas
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, The Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent, Belgium
| | - Alice Feurtey
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Anne Thierry
- Science et Technologie du Lait et de l'Œuf (STLO), UMR1253, Agrocampus Ouest, INRAE, Rennes, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Jeanne Ropars
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
55
|
Designing New Yeasts for Craft Brewing: When Natural Biodiversity Meets Biotechnology. BEVERAGES 2020. [DOI: 10.3390/beverages6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beer is a fermented beverage with a history as old as human civilization. Ales and lagers are by far the most common beers; however, diversification is becoming increasingly important in the brewing market and the brewers are continuously interested in improving and extending the range of products, especially in the craft brewery sector. Fermentation is one of the widest spaces for innovation in the brewing process. Besides Saccharomyces cerevisiae ale and Saccharomyces pastorianus lager strains conventionally used in macro-breweries, there is an increasing demand for novel yeast starter cultures tailored for producing beer styles with diversified aroma profiles. Recently, four genetic engineering-free approaches expanded the genetic background and the phenotypic biodiversity of brewing yeasts and allowed novel costumed-designed starter cultures to be developed: (1) the research for new performant S. cerevisiae yeasts from fermented foods alternative to beer; (2) the creation of synthetic hybrids between S. cerevisiae and Saccharomyces non-cerevisiae in order to mimic lager yeasts; (3) the exploitation of evolutionary engineering approaches; (4) the usage of non-Saccharomyces yeasts. Here, we summarized the pro and contra of these approaches and provided an overview on the most recent advances on how brewing yeast genome evolved and domestication took place. The resulting correlation maps between genotypes and relevant brewing phenotypes can assist and further improve the search for novel craft beer starter yeasts, enhancing the portfolio of diversified products offered to the final customer.
Collapse
|
56
|
Origone AC, González Flores M, Rodríguez ME, Querol A, Lopes CA. Inheritance of winemaking stress factors tolerance in Saccharomyces uvarum/S. eubayanus × S. cerevisiae artificial hybrids. Int J Food Microbiol 2020; 320:108500. [PMID: 32007764 DOI: 10.1016/j.ijfoodmicro.2019.108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/30/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Stress has been defined as any environmental factor that impairs the growth of a living organism. High concentrations of ethanol, sugars and SO2 as well as temperature variations occurring during winemaking processes are some recognized stress factors that yeasts must overcome in order to avoid stuck or sluggish fermentations. At least two of these factors -sugar and ethanol concentrations- are strongly influenced by the global warming, which become them a worry for the future years in the winemaking industry. One of the most interesting strategies to face this complex situation is the generation of hybrids possessing, in a single yeast strain, a broader range of stress factors tolerance than their parents. In the present study, we evaluated four artificial hybrids generated with S. cerevisiae, S. uvarum and S. eubayanus using a non-GMO-generating method, in their tolerance to a set of winemaking stress factors. Their capacity to overcome specific artificial winemaking situations associated with global warming was also analyzed. All four hybrids were able to grow in a wider temperature range (8-37 °C) than their parents. Hybrids showed intermediate tolerance to higher ethanol, sugar and sulphite concentrations than their parents. Additionally, the hybrids showed an excellent fermentative behaviour in musts containing high fructose concentrations at low temperature as well as under a condition mimicking a stuck fermentation.
Collapse
Affiliation(s)
- Andrea Cecilia Origone
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Argentina
| | - Melisa González Flores
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Argentina
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA, CSIC. Agustín Escardino Benlloch, 7, 46980 Paterna, Spain
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Argentina.
| |
Collapse
|
57
|
Salazar AN, Gorter de Vries AR, van den Broek M, Brouwers N, de la Torre Cortès P, Kuijpers NGA, Daran JMG, Abeel T. Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization. BMC Genomics 2019; 20:916. [PMID: 31791228 PMCID: PMC6889557 DOI: 10.1186/s12864-019-6263-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged from a hybridization event distinct from Group 1 strains. Current genome assemblies of S. pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate their evolutionary history. RESULTS To fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly assembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary history of S. pastorianus strains, we developed Alpaca: a method to compute sequence similarity between genomes without assuming linear evolution. Alpaca revealed high similarities between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from sequenced S. cerevisiae strains. CONCLUSIONS Our findings suggest that Group 1 and Group 2 strains originated from a single hybridization involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories. The clear differences between both groups may originate from a severe population bottleneck caused by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive method to analyse evolutionary relationships while considering non-linear evolution such as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint beyond traditional phylogenetic approaches.
Collapse
Affiliation(s)
- Alex N Salazar
- Delft Bioinformatics Lab, Delft University of Technology, 2628, CD, Delft, The Netherlands
| | - Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Pilar de la Torre Cortès
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Niels G A Kuijpers
- HEINEKEN Supply Chain B.V., Global Innovation and Research, Zoeterwoude, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628, CD, Delft, The Netherlands.
- Broad Institute of MIT and Harvard, Boston, MA, 02142, USA.
| |
Collapse
|
58
|
Brouwers N, Brickwedde A, Gorter de Vries AR, van den Broek M, Weening SM, van den Eijnden L, Diderich JA, Bai FY, Pronk JT, Daran JMG. Himalayan Saccharomyces eubayanus Genome Sequences Reveal Genetic Markers Explaining Heterotic Maltotriose Consumption by Saccharomyces pastorianus Hybrids. Appl Environ Microbiol 2019; 85:e01516-19. [PMID: 31519660 PMCID: PMC6821976 DOI: 10.1128/aem.01516-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces pastorianus strains are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus that have been domesticated for centuries in lager beer brewing environments. As sequences and structures of S. pastorianus genomes are being resolved, molecular mechanisms and evolutionary origins of several industrially relevant phenotypes remain unknown. This study investigates how maltotriose metabolism, a key feature in brewing, may have arisen in early S. eubayanus × S. cerevisiae hybrids. To address this question, we generated a nearly complete genome assembly of Himalayan S. eubayanus strains of the Holarctic subclade. This group of strains has been proposed to be the S. eubayanus subgenome origin of current S. pastorianus strains. The Himalayan S. eubayanus genomes harbored several copies of an S. eubayanusAGT1 (SeAGT1) α-oligoglucoside transporter gene with high sequence identity to genes encountered in S. pastorianus Although Himalayan S. eubayanus strains cannot grow on maltose and maltotriose, their maltose-hydrolase and SeMALT1 and SeAGT1 maltose transporter genes complemented the corresponding null mutants of S. cerevisiae Expression, in Himalayan S. eubayanus of a functional S. cerevisiae maltose metabolism regulator gene (MALx3) enabled growth on oligoglucosides. The hypothesis that the maltotriose-positive phenotype in S. pastorianus is a result of heterosis was experimentally tested by constructing an S. cerevisiae × S. eubayanus laboratory hybrid with a complement of maltose metabolism genes that resembles that of current S. pastorianus strains. The ability of this hybrid to consume maltotriose in brewer's wort demonstrated regulatory cross talk between subgenomes and thereby validated this hypothesis. These results support experimentally the new postulated hypothesis on the evolutionary origin of an essential phenotype of lager brewing strains and valuable knowledge for industrial exploitation of laboratory-made S. pastorianus-like hybrids.IMPORTANCES. pastorianus, an S. cerevisiae × S. eubayanus hybrid, is used for production of lager beer, the most produced alcoholic beverage worldwide. It emerged by spontaneous hybridization and colonized early lager brewing processes. Despite accumulation and analysis of genome sequencing data of S. pastorianus parental genomes, the genetic blueprint of industrially relevant phenotypes remains unresolved. Assimilation of maltotriose, an abundant sugar in wort, has been postulated to be inherited from the S. cerevisiae parent. Here, we demonstrate that although Asian S. eubayanus isolates harbor a functional maltotriose transporter SeAGT1 gene, they are unable to grow on α-oligoglucosides, but expression of S. cerevisiae regulator MAL13 (ScMAL13) was sufficient to restore growth on trisaccharides. We hypothesized that the S. pastorianus maltotriose phenotype results from regulatory interaction between S. cerevisiae maltose transcription activator and the promoter of SeAGT1 We experimentally confirmed the heterotic nature of the phenotype, and thus these results provide experimental evidence of the evolutionary origin of an essential phenotype of lager brewing strains.
Collapse
Affiliation(s)
- Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Susan M Weening
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Jasper A Diderich
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
59
|
Langdon QK, Peris D, Baker EP, Opulente DA, Nguyen HV, Bond U, Gonçalves P, Sampaio JP, Libkind D, Hittinger CT. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat Ecol Evol 2019; 3:1576-1586. [PMID: 31636426 DOI: 10.1038/s41559-019-0998-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The most common fermented beverage, lager beer, is produced by interspecies hybrids of the brewing yeast Saccharomyces cerevisiae and its wild relative S. eubayanus. Lager-brewing yeasts are not the only example of hybrid vigour or heterosis in yeasts, but the full breadth of interspecies hybrids associated with human fermentations has received less attention. Here we present a comprehensive genomic analysis of 122 Saccharomyces hybrids and introgressed strains. These strains arose from hybridization events between two to four species. Hybrids with S. cerevisiae contributions originated from three lineages of domesticated S. cerevisiae, including the major wine-making lineage and two distinct brewing lineages. In contrast, the undomesticated parents of these interspecies hybrids were all from wild Holarctic or European lineages. Most hybrids have inherited a mitochondrial genome from a parent other than S. cerevisiae, which recent functional studies suggest could confer adaptation to colder temperatures. A subset of hybrids associated with crisp flavour profiles, including both lineages of lager-brewing yeasts, have inherited inactivated S. cerevisiae alleles of critical phenolic off-flavour genes and/or lost functional copies from the wild parent through multiple genetic mechanisms. These complex hybrids shed light on the convergent and divergent evolutionary trajectories of interspecies hybrids and their impact on innovation in lager brewing and other diverse fermentation industries.
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology, CSIC, Valencia, Spain
| | - EmilyClare P Baker
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA. .,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA. .,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
60
|
Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R, Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hutzler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in beer yeast. Nat Ecol Evol 2019; 3:1562-1575. [PMID: 31636425 DOI: 10.1038/s41559-019-0997-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Steensels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Stijn Mertens
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Jonathan L Gordon
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Ruben Wauters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Florian A Theßeling
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Francesca Bellinazzo
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research, Leuven, Belgium
| | | | | | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | - Franz Meußdoerffer
- Research Center Weihenstephan for Brewing and Food Quality, TU München, Freising, Germany
| | | | | | | | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium. .,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium. .,Leuven Institute for Beer Research, Leuven, Belgium.
| |
Collapse
|
61
|
Smukowski Heil CS, Large CRL, Patterson K, Hickey ASM, Yeh CLC, Dunham MJ. Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genet 2019; 15:e1008383. [PMID: 31525194 PMCID: PMC6762194 DOI: 10.1371/journal.pgen.1008383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/26/2019] [Accepted: 08/22/2019] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.
Collapse
Affiliation(s)
- Caiti S. Smukowski Heil
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Christopher R. L. Large
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Kira Patterson
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Angela Shang-Mei Hickey
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Chiann-Ling C. Yeh
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Genome Sciences Department, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
62
|
Overexpression of RAD51 Enables PCR-Based Gene Targeting in Lager Yeast. Microorganisms 2019; 7:microorganisms7070192. [PMID: 31284488 PMCID: PMC6680445 DOI: 10.3390/microorganisms7070192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022] Open
Abstract
Lager beer fermentations rely on specific polyploid hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus falling into the two groups of S. carlsbergensis/Saaz-type and S. pastorianus/Frohberg-type. These strains provide a terroir to lager beer as they have long traditional associations and local selection histories with specific breweries. Lager yeasts share, based on their common origin, several phenotypes. One of them is low transformability, hampering the gene function analyses required for proof-of-concept strain improvements. PCR-based gene targeting is a standard tool for manipulating S. cerevisiae and other ascomycetes. However, low transformability paired with the low efficiency of homologous recombination practically disable targeted gene function analyses in lager yeast strains. For genetic manipulations in lager yeasts, we employed a yeast transformation protocol based on lithium-acetate/PEG incubation combined with electroporation. We first introduced freely replicating CEN/ARS plasmids carrying ScRAD51 driven by a strong heterologous promoter into lager yeast. RAD51 overexpression in the Weihenstephan 34/70 lager yeast was necessary and sufficient in our hands for gene targeting using short-flanking homology regions of 50 bp added to a selection marker by PCR. We successfully targeted two independent loci, ScADE2/YOR128C and ScHSP104/YLL026W, and confirmed correct integration by diagnostic PCR. With these modifications, genetic alterations of lager yeasts can be achieved efficiently and the RAD51-containing episomal plasmid can be removed after successful strain construction.
Collapse
|
63
|
Langdon QK, Peris D, Kyle B, Hittinger CT. sppIDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing. Mol Biol Evol 2019; 35:2835-2849. [PMID: 30184140 PMCID: PMC6231485 DOI: 10.1093/molbev/msy166] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The genomics era has expanded our knowledge about the diversity of the living world, yet harnessing high-throughput sequencing data to investigate alternative evolutionary trajectories, such as hybridization, is still challenging. Here we present sppIDer, a pipeline for the characterization of interspecies hybrids and pure species, that illuminates the complete composition of genomes. sppIDer maps short-read sequencing data to a combination genome built from reference genomes of several species of interest and assesses the genomic contribution and relative ploidy of each parental species, producing a series of colorful graphical outputs ready for publication. As a proof-of-concept, we use the genus Saccharomyces to detect and visualize both interspecies hybrids and pure strains, even with missing parental reference genomes. Through simulation, we show that sppIDer is robust to variable reference genome qualities and performs well with low-coverage data. We further demonstrate the power of this approach in plants, animals, and other fungi. sppIDer is robust to many different inputs and provides visually intuitive insight into genome composition that enables the rapid identification of species and their interspecies hybrids. sppIDer exists as a Docker image, which is a reusable, reproducible, transparent, and simple-to-run package that automates the pipeline and installation of the required dependencies (https://github.com/GLBRC/sppIDer; last accessed September 6, 2018).
Collapse
Affiliation(s)
- Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI
| | - David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Brian Kyle
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
64
|
Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-Duarte R, Marcet-Houben M, Gabaldon T, Schuller D, Sampaio JP, Dequin S. Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Mol Biol Evol 2019; 35:1712-1727. [PMID: 29746697 PMCID: PMC5995190 DOI: 10.1093/molbev/msy066] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.
Collapse
Affiliation(s)
- Jean-Luc Legras
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Galeote
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Frédéric Bigey
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Carole Camarasa
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Souhir Marsit
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Arnaud Couloux
- Centre National de Séquençage, Institut de Genomique, Genoscope, Evry Cedex, France
| | - Julie Guy
- Centre National de Séquençage, Institut de Genomique, Genoscope, Evry Cedex, France
| | - Ricardo Franco-Duarte
- CBMA, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Dorit Schuller
- CBMA, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sylvie Dequin
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
65
|
Sampaio JP. Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts. MICROBIOLOGY-SGM 2019; 164:1069-1071. [PMID: 30175956 PMCID: PMC6230766 DOI: 10.1099/mic.0.000677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Saccharomyces eubayanus was described less than 10 years ago and its discovery settled the long-lasting debate on the origins of the cold-tolerant yeast responsible for lager beer fermentation. The largest share of the genetic diversity of S. eubayanus is located in South America, and strains of this species have not yet been found in Europe. One or more hybridization events between S. eubayanus and S. cerevisiae ale beer strains gave rise to S. pastorianus, the allopolyploid yeasts responsible for lager beer production worldwide. The identification of the missing progenitor of lager yeast opened new avenues for brewing yeast research. It allowed not only the selective breeding of new lager strains, but revealed also a wild yeast with interesting brewing abilities so that a beer solely fermented by S. eubayanus is currently on the market.
Collapse
Affiliation(s)
- José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
66
|
Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of Industrial Microbes. Curr Biol 2019; 29:R381-R393. [DOI: 10.1016/j.cub.2019.04.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
67
|
Brouwers N, Gorter de Vries AR, van den Broek M, Weening SM, Elink Schuurman TD, Kuijpers NGA, Pronk JT, Daran JMG. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genet 2019; 15:e1007853. [PMID: 30946741 PMCID: PMC6448828 DOI: 10.1371/journal.pgen.1007853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces eubayanus is the non-S. cerevisiae parent of the lager-brewing hybrid S. pastorianus. In contrast to most S. cerevisiae and Frohberg-type S. pastorianus strains, S. eubayanus cannot utilize the α-tri-glucoside maltotriose, a major carbohydrate in brewer’s wort. In Saccharomyces yeasts, utilization of maltotriose is encoded by the subtelomeric MAL gene family, and requires transporters for maltotriose uptake. While S. eubayanus strain CBS 12357T harbors four SeMALT genes which enable uptake of the α-di-glucoside maltose, it lacks maltotriose transporter genes. In S. cerevisiae, sequence identity indicates that maltotriose and maltose transporters likely evolved from a shared ancestral gene. To study the evolvability of maltotriose utilization in S. eubayanus CBS 12357T, maltotriose-assimilating mutants obtained after UV mutagenesis were subjected to laboratory evolution in carbon-limited chemostat cultures on maltotriose-enriched wort. An evolved strain showed improved maltose and maltotriose fermentation in 7 L fermenter experiments on industrial wort. Whole-genome sequencing revealed a novel mosaic SeMALT413 gene, resulting from repeated gene introgressions by non-reciprocal translocation of at least three SeMALT genes. The predicted tertiary structure of SeMalT413 was comparable to the original SeMalT transporters, but overexpression of SeMALT413 sufficed to enable growth on maltotriose, indicating gene neofunctionalization had occurred. The mosaic structure of SeMALT413 resembles the structure of S. pastorianus maltotriose-transporter gene SpMTY1, which has high sequences identity to alternatingly S. cerevisiae MALx1, S. paradoxus MALx1 and S. eubayanus SeMALT3. Evolution of the maltotriose transporter landscape in hybrid S. pastorianus lager-brewing strains is therefore likely to have involved mechanisms similar to those observed in the present study. Fermentation of the wort sugar maltotriose is critical for the flavor profile obtained during beer brewing. The recently discovered yeast Saccharomyces eubayanus is gaining popularity as an alternative to S. pastorianus and S. cerevisiae for brewing, however it is unable to utilize maltotriose. Here, a combination of non-GMO mutagenesis and laboratory evolution of the S. eubayanus type strain CBS 12357T was used to enable maltotriose fermentation and improve brewing performance. The improved strain expressed a novel transporter gene, SeMALT413, which was formed by recombination between three different SeMALT maltose-transporter genes. Overexpression of SeMALT413 in CBS 12357T confirmed its neofunctionalization as a maltotriose transporter. As the S. pastorianus maltotriose transporter SpMty1 has a mosaic structure similar to SeMalT413, maltotriose utilization likely involved similar recombination events during the domestication of current lager brewing strains. Based on a posteriori sequence analysis, the emergence of gene functions has been attributed to gene neofunctionalization in a broad range of organisms. The real-time observation of neofunctionalization during laboratory evolution constitutes an important validation of the relevance and importance of this mechanism for Darwinian evolution.
Collapse
Affiliation(s)
- Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Susan M. Weening
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | | | - Niels G. A. Kuijpers
- HEINEKEN Supply Chain B.V., Global Innovation and Research, Zoeterwoude, Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
- * E-mail:
| |
Collapse
|
68
|
Baker EP, Hittinger CT. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLoS Genet 2019; 15:e1007786. [PMID: 30946740 PMCID: PMC6448821 DOI: 10.1371/journal.pgen.1007786] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022] Open
Abstract
At the molecular level, the evolution of new traits can be broadly divided between changes in gene expression and changes in protein-coding sequence. For proteins, the evolution of novel functions is generally thought to proceed through sequential point mutations or recombination of whole functional units. In Saccharomyces, the uptake of the sugar maltotriose into the cell is the primary limiting factor in its utilization, but maltotriose transporters are relatively rare, except in brewing strains. No known wild strains of Saccharomyces eubayanus, the cold-tolerant parent of hybrid lager-brewing yeasts (Saccharomyces cerevisiae x S. eubayanus), are able to consume maltotriose, which limits their ability to fully ferment malt extract. In one strain of S. eubayanus, we found a gene closely related to a known maltotriose transporter and were able to confer maltotriose consumption by overexpressing this gene or by passaging the strain on maltose. Even so, most wild strains of S. eubayanus lack native maltotriose transporters. To determine how this rare trait could evolve in naive genetic backgrounds, we performed an adaptive evolution experiment for maltotriose consumption, which yielded a single strain of S. eubayanus able to grow on maltotriose. We mapped the causative locus to a gene encoding a novel chimeric transporter that was formed by an ectopic recombination event between two genes encoding transporters that are unable to import maltotriose. In contrast to classic models of the evolution of novel protein functions, the recombination breakpoints occurred within a single functional domain. Thus, the ability of the new protein to carry maltotriose was likely acquired through epistatic interactions between independently evolved substitutions. By acquiring multiple mutations at once, the transporter rapidly gained a novel function, while bypassing potentially deleterious intermediate steps. This study provides an illuminating example of how recombination between paralogs can establish novel interactions among substitutions to create adaptive functions. Hybrids of the yeasts Saccharomyces cerevisiae and Saccharomyces eubayanus (lager-brewing yeasts) dominate the modern brewing industry. S. cerevisiae, also known as baker’s yeast, is well-known for its role in industry and scientific research. Less well recognized is S. eubayanus, which was only discovered as a pure species in 2011. While most lager-brewing yeasts rapidly and completely utilize the important brewing sugar maltotriose, no strain of S. eubayanus isolated to date is known to do so. Despite being unable to consume maltotriose, we identified one strain of S. eubayanus carrying a gene for a functional maltotriose transporter, although most strains lack this gene. During an adaptive evolution experiment, a strain of S. eubayanus without native maltotriose transporters evolved the ability to grow on maltotriose. Maltotriose consumption in the evolved strain resulted from a chimeric transporter that arose by shuffling genes encoding parent proteins that were unable to transport maltotriose. Traditionally, functional chimeric proteins are thought to evolve by shuffling discrete functional domains or modules, but the breakpoints in the chimera studied here occurred within the single functional module of the protein. These results support the less well-recognized role of shuffling duplicate gene sequences to generate novel proteins with adaptive functions.
Collapse
Affiliation(s)
- EmilyClare P. Baker
- Laboratory of Genetics, Microbiology Doctoral Training Program, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Microbiology Doctoral Training Program, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
69
|
Gorter de Vries AR, Voskamp MA, van Aalst ACA, Kristensen LH, Jansen L, van den Broek M, Salazar AN, Brouwers N, Abeel T, Pronk JT, Daran JMG. Laboratory Evolution of a Saccharomyces cerevisiae × S. eubayanus Hybrid Under Simulated Lager-Brewing Conditions. Front Genet 2019; 10:242. [PMID: 31001314 PMCID: PMC6455053 DOI: 10.3389/fgene.2019.00242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces pastorianus lager-brewing yeasts are domesticated hybrids of S. cerevisiae x S. eubayanus that display extensive inter-strain chromosome copy number variation and chromosomal recombinations. It is unclear to what extent such genome rearrangements are intrinsic to the domestication of hybrid brewing yeasts and whether they contribute to their industrial performance. Here, an allodiploid laboratory hybrid of S. cerevisiae and S. eubayanus was evolved for up to 418 generations on wort under simulated lager-brewing conditions in six independent sequential batch bioreactors. Characterization of 55 single-cell isolates from the evolved cultures showed large phenotypic diversity and whole-genome sequencing revealed a large array of mutations. Frequent loss of heterozygosity involved diverse, strain-specific chromosomal translocations, which differed from those observed in domesticated, aneuploid S. pastorianus brewing strains. In contrast to the extensive aneuploidy of domesticated S. pastorianus strains, the evolved isolates only showed limited (segmental) aneuploidy. Specific mutations could be linked to calcium-dependent flocculation, loss of maltotriose utilization and loss of mitochondrial activity, three industrially relevant traits that also occur in domesticated S. pastorianus strains. This study indicates that fast acquisition of extensive aneuploidy is not required for genetic adaptation of S. cerevisiae × S. eubayanus hybrids to brewing environments. In addition, this work demonstrates that, consistent with the diversity of brewing strains for maltotriose utilization, domestication under brewing conditions can result in loss of this industrially relevant trait. These observations have important implications for the design of strategies to improve industrial performance of novel laboratory-made hybrids.
Collapse
Affiliation(s)
- Arthur R. Gorter de Vries
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Maaike A. Voskamp
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Aafke C. A. van Aalst
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Line H. Kristensen
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Liset Jansen
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Marcel van den Broek
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Alex N. Salazar
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| | - Nick Brouwers
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Jack T. Pronk
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G. Daran
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
70
|
Fay JC, Liu P, Ong GT, Dunham MJ, Cromie GA, Jeffery EW, Ludlow CL, Dudley AM. A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biol 2019; 17:e3000147. [PMID: 30835725 PMCID: PMC6400334 DOI: 10.1371/journal.pbio.3000147] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Strains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure. We examined the population genetic history of beer strains and found that ale strains and the S. cerevisiae portion of allotetraploid lager strains were derived from admixture between populations closely related to European grape wine strains and Asian rice wine strains. Similar to both lager and baking strains, ale strains are polyploid, providing them with a passive means of remaining isolated from other populations and providing us with a living relic of their ancestral hybridization. To reconstruct their polyploid origin, we phased the genomes of two ale strains and found ale haplotypes to both be recombinants between European and Asian alleles and to also contain novel alleles derived from extinct or as yet uncharacterized populations. We conclude that modern beer strains are the product of a historical melting pot of fermentation technology.
Collapse
Affiliation(s)
- Justin C. Fay
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| | - Ping Liu
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Giang T. Ong
- Department of Genome Sciences, Seattle, Washington, United States of America
| | - Maitreya J. Dunham
- Department of Genome Sciences, Seattle, Washington, United States of America
| | - Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Eric W. Jeffery
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Catherine L. Ludlow
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
71
|
De Roos J, De Vuyst L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:25-38. [PMID: 30246252 DOI: 10.1002/jsfa.9291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 05/18/2023]
Abstract
Acidic beers, such as Belgian lambic beers and American and other coolship ales, are becoming increasingly popular worldwide thanks to their refreshing acidity and fruity notes. The traditional fermentation used to produce them does not apply pure yeast cultures but relies on spontaneous, environmental inoculation. The fermentation and maturation process is carried out in wooden barrels and can take up to three years. It is characterized by different microbial species belonging to the enterobacteria, acetic acid bacteria, lactic acid bacteria, and yeasts. This review provides an introduction to the technology and four fermentation strategies of beer production, followed by the microbiology of acidic beer production, focusing on the main microorganisms present during the long process used for the production of Belgian lambic beers. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonas De Roos
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
72
|
Mertens S, Gallone B, Steensels J, Herrera-Malaver B, Cortebeek J, Nolmans R, Saels V, Vyas VK, Verstrepen KJ. Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts. PLoS One 2019; 14:e0209124. [PMID: 30625138 PMCID: PMC6326464 DOI: 10.1371/journal.pone.0209124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
Today’s beer market is challenged by a decreasing consumption of traditional beer styles and an increasing consumption of specialty beers. In particular, lager-type beers (pilsner), characterized by their refreshing and unique aroma and taste, yet very uniform, struggle with their sales. The development of novel variants of the common lager yeast, the interspecific hybrid Saccharomyces pastorianus, has been proposed as a possible solution to address the need of product diversification in lager beers. Previous efforts to generate new lager yeasts through hybridization of the ancestral parental species (S. cerevisiae and S. eubayanus) yielded strains with an aromatic profile distinct from the natural biodiversity. Unfortunately, next to the desired properties, these novel yeasts also inherited unwanted characteristics. Most notably is their phenolic off-flavor (POF) production, which hampers their direct application in the industrial production processes. Here, we describe a CRISPR-based gene editing strategy that allows the systematic and meticulous introduction of a natural occurring mutation in the FDC1 gene of genetically complex industrial S. cerevisiae strains, S. eubayanus yeasts and interspecific hybrids. The resulting cisgenic POF- variants show great potential for industrial application and diversifying the current lager beer portfolio.
Collapse
Affiliation(s)
- Stijn Mertens
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
| | - Brigida Gallone
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
| | - Beatriz Herrera-Malaver
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
| | - Jeroen Cortebeek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
| | - Robbe Nolmans
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Laboratory for Systems Biology, VIB Centre for Microbiology, Bio-Incubator, Leuven, Belgium
- Leuven Institute for Beer Research, KU Leuven, Bio-Incubator, Leuven, Belgium
- * E-mail:
| |
Collapse
|
73
|
Baker EP, Peris D, Moriarty RV, Li XC, Fay JC, Hittinger CT. Mitochondrial DNA and temperature tolerance in lager yeasts. SCIENCE ADVANCES 2019; 5:eaav1869. [PMID: 30729163 PMCID: PMC6353617 DOI: 10.1126/sciadv.aav1869] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/03/2019] [Indexed: 06/01/2023]
Abstract
A growing body of research suggests that the mitochondrial genome (mtDNA) is important for temperature adaptation. In the yeast genus Saccharomyces, species have diverged in temperature tolerance, driving their use in high- or low-temperature fermentations. Here, we experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial hybrids (Saccharomyces cerevisiae × Saccharomyces eubayanus or Saccharomyces pastorianus), which cold-brew lager beer. We find that the relative temperature tolerances of hybrids correspond to the parent donating mtDNA, allowing us to modulate lager strain temperature preferences. The strong influence of mitotype on the temperature tolerance of otherwise identical hybrid strains provides support for the mitochondrial climactic adaptation hypothesis in yeasts and demonstrates how mitotype has influenced the world's most commonly fermented beverage.
Collapse
Affiliation(s)
- EmilyClare P. Baker
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Paterna, Valencia, Spain
| | - Ryan V. Moriarty
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Xueying C. Li
- Molecular Genetics and Genomics Program, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
- Center for Genome Sciences and System Biology, Washington University, St. Louis, MO, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C. Fay
- Molecular Genetics and Genomics Program, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
- Center for Genome Sciences and System Biology, Washington University, St. Louis, MO, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
74
|
Sipiczki M. Interspecies Hybridisation and Genome Chimerisation in Saccharomyces: Combining of Gene Pools of Species and Its Biotechnological Perspectives. Front Microbiol 2018; 9:3071. [PMID: 30619156 PMCID: PMC6297871 DOI: 10.3389/fmicb.2018.03071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last one and a half decade, interspecies hybridisation has gained continuously increasing attention as a breeding technique suitable for transferring of genetic information between Saccharomyces species and mixing of their gene pools without genetic engineering. The hybrids frequently show positive transgressive phenotypes. Segregation of the hybrid genome results in mosaic (chimeric) strains that can outperform both the parents and the hybrids or exhibit novel positive phenotypic properties. Mitotic segregation can take place during the vegetative propagation of the sterile allodiploid hybrid cells. Meiotic segregation becomes possible after genome duplication (tetraploidisation) if it is followed by break-down of sterility. The allotetraploid cells are seemingly fertile because they form viable spores. But because of the autodiploidisation of the meiosis, sterile allodiploid spores are produced and thus the hybrid genome does not segregate (the second sterility barrier). However, malsegregation of MAT-carrying chromosomes in one of the subgenomes during allotetraploid meiosis (loss of MAT heterozygosity) results in fertile alloaneuploid spores. The breakdown of (the second) sterility barrier is followed by the loss of additional chromosomes in rapid succession and recombination between the subgenomes. The process (genome autoreduction in meiosis or GARMe) chimerises the genome and generates strains with chimeric (mosaic) genomes composed of various combinations of the genes of the parental strains. Since one of the subgenomes is preferentially reduced, the outcome is usually a strain having an (almost) complete genome from one parent and only a few genes or mosaics from the genome of the other parent. The fertility of the spores produced during GARMe provides possibilities also for introgressive backcrossing with one or the other parental strain, but genome chimerisation and gene transfer through series of backcrosses always with the same parent is likely to be less efficient than through meiotic or mitotic genome autoreduction. Hybridisation and the evolution of the hybrid genome (resizing and chimerisation) have been exploited in the improvement of industrial strains and applied to the breeding of new strains for specific purposes. Lists of successful projects are shown and certain major trends are discussed.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
75
|
Oomuro M, Motoyama Y, Watanabe T. Isolation of a lager yeast with an increased copy number of theYCK1gene and high fermentation performance. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mayu Oomuro
- Department of Fermentation and Microbiology Technology; Asahi Breweries Ltd; 1-1-21 Midori Moriya Ibaraki 302-0106 Japan
| | - Yasuo Motoyama
- Department of Fermentation and Microbiology Technology; Asahi Breweries Ltd; 1-1-21 Midori Moriya Ibaraki 302-0106 Japan
| | - Tetsuya Watanabe
- Department of Fermentation and Microbiology Technology; Asahi Breweries Ltd; 1-1-21 Midori Moriya Ibaraki 302-0106 Japan
| |
Collapse
|
76
|
Boonekamp FJ, Dashko S, van den Broek M, Gehrmann T, Daran JM, Daran-Lapujade P. The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the Saccharomyces Genus. Front Genet 2018; 9:504. [PMID: 30505317 PMCID: PMC6250768 DOI: 10.3389/fgene.2018.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/05/2022] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.
Collapse
Affiliation(s)
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
77
|
Varela J, Varela C. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr Opin Biotechnol 2018; 56:88-96. [PMID: 30390603 DOI: 10.1016/j.copbio.2018.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 11/25/2022]
Abstract
Changes in consumer preferences, government policies and environmental conditions have driven research efforts towards producing alcoholic beverages with reduced alcohol content, namely wine and beer. While the strategies available to accomplish this goal vary for wine and beer, a common approach relies on the use of yeast strains which are less efficient at producing ethanol. Here we discuss current research on the isolation and/or generation of yeast strains able to produce beer or wine with reduced ethanol concentration. Particular consideration is given to the impact of 'low-ethanol' yeasts on volatile composition and sensory profile of beer and wine.
Collapse
Affiliation(s)
- Javier Varela
- School of Microbiology/Centre for Synthetic Biology and Biotechnology/Environmental Research Institute/APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Cristian Varela
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064, Australia.
| |
Collapse
|
78
|
Godinho CP, Dias PJ, Ponçot E, Sá-Correia I. The Paralogous Genes PDR18 and SNQ2, Encoding Multidrug Resistance ABC Transporters, Derive From a Recent Duplication Event, PDR18 Being Specific to the Saccharomyces Genus. Front Genet 2018; 9:476. [PMID: 30374366 PMCID: PMC6196229 DOI: 10.3389/fgene.2018.00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters play a key role in the simultaneous acquisition of resistance to a wide range of structurally and functionally unrelated cytotoxic compounds in yeasts. Saccharomyces cerevisiae Pdr18 was proposed to transport ergosterol at the plasma membrane, contributing to the maintenance of adequate ergosterol content and decreased levels of stress-induced membrane disorganization and permeabilization under multistress challenge leading to resistance to ethanol, acetic acid and the herbicide 2,4-D, among other compounds. PDR18 is a paralog of SNQ2, first described as a determinant of resistance to the chemical mutagen 4-NQO. The phylogenetic and neighborhood analysis performed in this work to reconstruct the evolutionary history of ScPDR18 gene in Saccharomycetaceae yeasts was focused on the 214 Pdr18/Snq2 homologs from the genomes of 117 strains belonging to 29 yeast species across that family. Results support the idea that a single duplication event occurring in the common ancestor of the Saccharomyces genus yeasts was at the origin of PDR18 and SNQ2, and that by chromosome translocation PDR18 gained a subtelomeric region location in chromosome XIV. The multidrug/multixenobiotic phenotypic profiles of S. cerevisiae pdr18Δ and snq2Δ deletion mutants were compared, as well as the susceptibility profile for Candida glabrata snq2Δ deletion mutant, given that this yeast species has diverged previously to the duplication event on the origin of PDR18 and SNQ2 genes and encode only one Pdr18/Snq2 homolog. Results show a significant overlap between ScSnq2 and CgSnq2 roles in multidrug/multixenobiotic resistance (MDR/MXR) as well as some overlap in azole resistance between ScPdr18 and CgSnq2. The fact that ScSnq2 and ScPdr18 confer resistance to different sets of chemical compounds with little overlapping is consistent with the subfunctionalization and neofunctionalization of these gene copies. The elucidation of the real biological role of ScSNQ2 will enlighten this issue. Remarkably, PDR18 is only found in Saccharomyces genus genomes and is present in almost all the recently available 1,000 deep coverage genomes of natural S. cerevisiae isolates, consistent with the relevant encoded physiological function.
Collapse
Affiliation(s)
- Cláudia P Godinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo J Dias
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Elise Ponçot
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
79
|
Gibson B, Vidgren V, Peddinti G, Krogerus K. Diacetyl control during brewery fermentation via adaptive laboratory engineering of the lager yeast Saccharomyces pastorianus. J Ind Microbiol Biotechnol 2018; 45:1103-1112. [PMID: 30306366 PMCID: PMC6267509 DOI: 10.1007/s10295-018-2087-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/30/2018] [Indexed: 01/12/2023]
Abstract
Diacetyl contributes to the flavor profile of many fermented products. Its typical buttery flavor is considered as an off flavor in lager-style beers, and its removal has a major impact on time and energy expenditure in breweries. Here, we investigated the possibility of lowering beer diacetyl levels through evolutionary engineering of lager yeast for altered synthesis of α-acetolactate, the precursor of diacetyl. Cells were exposed repeatedly to a sub-lethal level of chlorsulfuron, which inhibits the acetohydroxy acid synthase responsible for α-acetolactate production. Initial screening of 7 adapted isolates showed a lower level of diacetyl during wort fermentation and no apparent negative influence on fermentation rate or alcohol yield. Pilot-scale fermentation was carried out with one isolate and results confirmed the positive effect of chlorsulfuron adaptation. Diacetyl levels were over 60% lower at the end of primary fermentation relative to the non-adapted lager yeast and no significant change in fermentation performance or volatile flavor profile was observed due to the adaptation. Whole-genome sequencing revealed a non-synonymous SNP in the ILV2 gene of the adapted isolate. This mutation is known to confer general tolerance to sulfonylurea compounds, and is the most likely cause of the improved tolerance. Adaptive laboratory evolution appears to be a natural, simple and cost-effective strategy for diacetyl control in brewing.
Collapse
Affiliation(s)
- Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, FI-02044, Espoo, Finland.
| | - Virve Vidgren
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Gopal Peddinti
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, FI-02044, Espoo, Finland
| | - Kristoffer Krogerus
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, FI-02044, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, P.O. Box 16100, 00076, Espoo, Finland
| |
Collapse
|
80
|
Liu C, Niu C, Zhao Y, Tian Y, Wang J, Li Q. Genome Analysis of the Yeast M14, an Industrial Brewing Yeast Strain Widely Used in China. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2018.1496633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Yun Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Yaping Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
- Lab of Brewing Science and Engineering, Jiangnan University, Wuxi, JiangSu Province, P. R. of China
| |
Collapse
|
81
|
Eizaguirre JI, Peris D, Rodríguez ME, Lopes CA, De Los Ríos P, Hittinger CT, Libkind D. Phylogeography of the wild Lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environ Microbiol 2018; 20:3732-3743. [PMID: 30105823 DOI: 10.1111/1462-2920.14375] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/06/2018] [Indexed: 11/28/2022]
Abstract
Saccharomyces eubayanus is the close relative of the Lager-brewing yeast and was firstly found in North Patagonia associated with Nothofagus trees. In recent years additional strains were found in North America, Asia and New Zealand, and genomic analyses showed the existence of two main populations of this yeast, both of them present in Patagonia. Here, we performed the most comprehensive study of S. eubayanus in Patagonia natural environments (400 samples) and confirmed that this region has the highest isolation success rate for this species described worldwide (more than 10-fold). The genetic characterization of 200 isolates (COX2, DCR1, intFR) revealed five geographically structured subpopulations. We hypothesized that marine ingressions and glaciations, which shaped the Patagonian landscape, contributed on population differentiation. The first large screening of fermentation performance of 60 wild S. eubayanus strains indicated which subpopulations would be more suitable for beer production.
Collapse
Affiliation(s)
- Juan I Eizaguirre
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| | - David Peris
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Valencia, Spain
| | - María E Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Neuquén, Argentina
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática de Levaduras, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue, CONICET, CRUB, Quintral 1250, San Carlos de Bariloche, 8400, Río Negro, Argentina
| |
Collapse
|
82
|
Krogerus K, Preiss R, Gibson B. A Unique Saccharomyces cerevisiae × Saccharomyces uvarum Hybrid Isolated From Norwegian Farmhouse Beer: Characterization and Reconstruction. Front Microbiol 2018; 9:2253. [PMID: 30319573 PMCID: PMC6165869 DOI: 10.3389/fmicb.2018.02253] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/04/2018] [Indexed: 12/04/2022] Open
Abstract
An unknown interspecies Saccharomyces hybrid, "Muri," was recently isolated from a "kveik" culture, a traditional Norwegian farmhouse brewing yeast culture (Preiss et al., 2018). Here we used whole genome sequencing to reveal the strain as an allodiploid Saccharomyces cerevisiae × Saccharomyces uvarum hybrid. Phylogenetic analysis of its sub-genomes revealed that the S. cerevisiae and S. uvarum parent strains of Muri appear to be most closely related to English ale and Central European cider and wine strains, respectively. We then performed phenotypic analysis on a number of brewing-relevant traits in a range of S. cerevisiae, S. uvarum and hybrid strains closely related to the Muri hybrid. The Muri strain possesses a range of industrially desirable phenotypic properties, including broad temperature tolerance, good ethanol tolerance, and efficient carbohydrate use, therefore making it an interesting candidate for not only brewing applications, but potentially various other industrial fermentations, such as biofuel production and distilling. We identified the two S. cerevisiae and S. uvarum strains that were genetically and phenotypically most similar to the Muri hybrid, and then attempted to reconstruct the Muri hybrid by generating de novo interspecific hybrids between these two strains. The de novo hybrids were compared with the original Muri hybrid, and many appeared phenotypically more similar to Muri than either of the parent strains. This study introduces a novel approach to studying hybrid strains and strain development by combining genomic and phenotypic analysis to identify closely related parent strains for construction of de novo hybrids.
Collapse
Affiliation(s)
- Kristoffer Krogerus
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, Espoo, Finland
| | - Richard Preiss
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Escarpment Laboratories, Guelph, ON, Canada
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
83
|
Preiss R, Tyrawa C, Krogerus K, Garshol LM, van der Merwe G. Traditional Norwegian Kveik Are a Genetically Distinct Group of Domesticated Saccharomyces cerevisiae Brewing Yeasts. Front Microbiol 2018; 9:2137. [PMID: 30258422 PMCID: PMC6145013 DOI: 10.3389/fmicb.2018.02137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023] Open
Abstract
The widespread production of fermented food and beverages has resulted in the domestication of Saccharomyces cerevisiae yeasts specifically adapted to beer production. While there is evidence beer yeast domestication was accelerated by industrialization of beer, there also exists a farmhouse brewing culture in western Norway which has passed down yeasts referred to as kveik for generations. This practice has resulted in ale yeasts which are typically highly flocculant, phenolic off flavor negative (POF-), and exhibit a high rate of fermentation, similar to previously characterized lineages of domesticated yeast. Additionally, kveik yeasts are reportedly high-temperature tolerant, likely due to the traditional practice of pitching yeast into warm (>28°C) wort. Here, we characterize kveik yeasts from 9 different Norwegian sources via PCR fingerprinting, whole genome sequencing of selected strains, phenotypic screens, and lab-scale fermentations. Phylogenetic analysis suggests that kveik yeasts form a distinct group among beer yeasts. Additionally, we identify a novel POF- loss-of-function mutation, as well as SNPs and CNVs potentially relevant to the thermotolerance, high ethanol tolerance, and high fermentation rate phenotypes of kveik strains. We also identify domestication markers related to flocculation in kveik. Taken together, the results suggest that Norwegian kveik yeasts are a genetically distinct group of domesticated beer yeasts with properties highly relevant to the brewing sector.
Collapse
Affiliation(s)
- Richard Preiss
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Escarpment Laboratories, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Espoo, Finland
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, Espoo, Finland
| | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
84
|
Lopandic K. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments. Yeast 2018; 35:21-38. [PMID: 29131388 DOI: 10.1002/yea.3294] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ksenija Lopandic
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11/3, A-1190, Vienna, Austria
| |
Collapse
|
85
|
Whole Genome Sequencing, de Novo Assembly and Phenotypic Profiling for the New Budding Yeast Species Saccharomyces jurei. G3-GENES GENOMES GENETICS 2018; 8:2967-2977. [PMID: 30097472 PMCID: PMC6118302 DOI: 10.1534/g3.118.200476] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Saccharomyces sensu stricto complex consist of yeast species, which are not only important in the fermentation industry but are also model systems for genomic and ecological analysis. Here, we present the complete genome assemblies of Saccharomyces jurei, a newly discovered Saccharomyces sensu stricto species from high altitude oaks. Phylogenetic and phenotypic analysis revealed that S. jurei is more closely related to S. mikatae, than S. cerevisiae, and S. paradoxus. The karyotype of S. jurei presents two reciprocal chromosomal translocations between chromosome VI/VII and I/XIII when compared to the S. cerevisiae genome. Interestingly, while the rearrangement I/XIII is unique to S. jurei, the other is in common with S. mikatae strain IFO1815, suggesting shared evolutionary history of this species after the split between S. cerevisiae and S. mikatae. The number of Ty elements differed in the new species, with a higher number of Ty elements present in S. jurei than in S. cerevisiae. Phenotypically, the S. jurei strain NCYC 3962 has relatively higher fitness than the other strain NCYC 3947T under most of the environmental stress conditions tested and showed remarkably increased fitness in higher concentration of acetic acid compared to the other sensu stricto species. Both strains were found to be better adapted to lower temperatures compared to S. cerevisiae.
Collapse
|
86
|
Brickwedde A, Brouwers N, van den Broek M, Gallego Murillo JS, Fraiture JL, Pronk JT, Daran JMG. Structural, Physiological and Regulatory Analysis of Maltose Transporter Genes in Saccharomyces eubayanus CBS 12357 T. Front Microbiol 2018; 9:1786. [PMID: 30147677 PMCID: PMC6097016 DOI: 10.3389/fmicb.2018.01786] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces pastorianus lager brewing yeasts are domesticated hybrids of Saccharomyces cerevisiae and cold-tolerant Saccharomyces eubayanus. To understand the contribution of both parental genomes to maltose metabolism in brewing wort, this study focuses on maltose transport in the S. eubayanus type strain CBS 12357T/FM1318. To obtain complete sequences of the MAL loci of this strain, a near-complete genome assembly was generated using the Oxford Nanopore Technology MinION sequencing platform. Except for CHRXII, all sixteen chromosomes were assembled as single contigs. Four loci harboring putative maltose transporter genes (SeMALT1-4), located in subtelomeric regions of CHRII, CHRV, CHRXIII, and CHRXVI, were completely resolved. The near-identical loci on CHRV and CHRXVI strongly resembled canonical S. cerevisiae MAL loci, while those on CHRII and CHRXIII showed different structures suggestive of gene loss. Overexpression of SeMALT1-4 in a maltose-transport-deficient S. cerevisiae strain restored growth on maltose, but not on maltotriose, indicating maltose-specific transport functionality of all four transporters. Simultaneous CRISPR-Cas9-assisted deletion of only SeMALT2 and SeMALT4, which shared 99.7% sequence identity, eliminated growth of S. eubayanus CBS 12357T on maltose. Transcriptome analysis of S. eubayanus CBS 12357T established that SeMALT1 and SeMALT3, are poorly expressed in maltose-grown cultures, while SeMALT2 and SeMALT4 were expressed at much higher levels than SeMALT1 and SeMALT3, indicating that only SeMALT2/4 are responsible for maltose consumption in CBS 12357T. These results represent a first genomic and physiological characterization of maltose transport in S. eubayanus CBS 12357T and provides a valuable resource for further industrial exploitation of this yeast.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | | | - Julie L Fraiture
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
87
|
Diderich JA, Weening SM, van den Broek M, Pronk JT, Daran JMG. Selection of Pof -Saccharomyces eubayanus Variants for the Construction of S. cerevisiae × S. eubayanus Hybrids With Reduced 4-Vinyl Guaiacol Formation. Front Microbiol 2018; 9:1640. [PMID: 30100898 PMCID: PMC6074607 DOI: 10.3389/fmicb.2018.01640] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 01/27/2023] Open
Abstract
Saccharomyces pastorianus is an interspecies hybrid between S. cerevisiae and S. eubayanus. The identification of the parental species of S. pastorianus enabled the de novo reconstruction of hybrids that could potentially combine a wide array of phenotypic traits. Lager yeasts are characterized by their inability to decarboxylate ferulic acid present in wort, a phenotype also known as Pof - (phenolic off-flavor). However, all known S. eubayanus strains characterized so far produce clove-like aroma specific of 4-vinyl guaiacol, a decarboxylated form of ferulic acid. This study explored a non-GMO approach to construct Pof -S. eubayanus variants derived from the parental strain S. eubayanus CBS 12357. To rapidly screen a population of UV-mutagenized cells two complementary assays were developed. The first assay was based on the difference of light absorption spectra of ferulic acid and 4-vinyl guaiacol, while the second was based on the difference of sensitivity of Pof - and Pof+ strains to cinnamic acid. The S. eubayanus variant HTSE042 was selected and was confirmed not to produce 4-vinyl guaiacol. Whole genome sequencing revealed that this variant lost the subtelomeric region of the CHRXIII right arm that carried the two clustered genes SePAD1- SeFDC1 whose deletion in a naïve S. eubayanus strain (CBS 12357/FM1318) resulted in an identical phenotype. Subsequently, the Pof - variant was crossed with a Pof-S. cerevisiae partner. The resulting hybrid was not able to convert ferulic acid demonstrating the undisputable value of the mutagenized variant HTSE042 to eventually construct S. cerevisiae × S. eubayanus hybrids with phenotypic characteristics of S. pastorianus.
Collapse
Affiliation(s)
- Jasper A Diderich
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Susan M Weening
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
88
|
Nguyen HV, Boekhout T. Characterization of Saccharomyces uvarum (Beijerinck, 1898) and related hybrids: assessment of molecular markers that predict the parent and hybrid genomes and a proposal to name yeast hybrids. FEMS Yeast Res 2018; 17:3061370. [PMID: 28334169 DOI: 10.1093/femsyr/fox014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The use of the nuclear DNA reassociation technique has led taxonomists to consider Saccharomyces uvarum a synonym of S. bayanus. The latter, however, is not a species but a hybrid harbouring S. eubayanus (Seu) and S. uvarum (Su) subgenomes with a minor DNA contribution from S. cerevisiae (Sc). To recognize genetically pure lines of S. uvarum and putative interspecies hybrids among so-called S. bayanus strains present in public culture collections, we propose the use of four markers that were defined from the S. bayanus CBS 380T composite genome, namely SeuNTS2 (rDNA), ScMAL31, MTY1 and SuMEL1. Saccharomyces carlsbergensis CBS 1513 was found to be similar to S. bayanus except that it carries the SeuMEL1 allele. Different marker combinations revealed that among 33 strains examined only a few were similar to CBS 380T, but many pure S. uvarum lines and putative Su/Seu-related hybrids occurred. Our results demonstrated that these hybrids were erroneously considered authentic S. bayanus and therefore the varietal state 'Saccharomyces bayanus var. uvarum comb. nov. Naumov' is not valid. Our markers constitute a tool to get insights into the genomic makeup of Saccharomyces interspecies hybrids. We also make a proposal to name those hybrids that may also be applicable to other fungal hybrids.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
89
|
Horizontal transfer and proliferation of Tsu4 in Saccharomyces paradoxus. Mob DNA 2018; 9:18. [PMID: 29942366 PMCID: PMC5998506 DOI: 10.1186/s13100-018-0122-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Recent evidence suggests that horizontal transfer plays a significant role in the evolution of of transposable elements (TEs) in eukaryotes. Many cases of horizontal TE transfer (HTT) been reported in animals and plants, however surprisingly few examples of HTT have been reported in fungi. Findings Here I report evidence for a novel HTT event in fungi involving Tsu4 in Saccharomyces paradoxus based on (i) unexpectedly high similarity between Tsu4 elements in S. paradoxus and S. uvarum, (ii) a patchy distribution of Tsu4 in S. paradoxus and general absence from its sister species S. cerevisiae, and (iii) discordance between the phylogenetic history of Tsu4 sequences and species in the Saccharomyces sensu stricto group. Available data suggests the HTT event likely occurred somewhere in the Nearctic, Neotropic or Indo-Australian part of the S. paradoxus species range, and that a lineage related to S. uvarum or S. eubayanus was the likely donor species. The HTT event has led to massive proliferation of Tsu4 in the South American lineage of S. paradoxus, which exhibits partial reproductive isolation with other strains of this species because of multiple reciprocal translocations. Full-length Tsu4 elements are associated with both breakpoints of one of these reciprocal translocations. Conclusions This work shows that comprehensive analysis of TE sequences in essentially-complete genome assemblies derived from long-read sequencing provides new opportunities to detect HTT events in fungi and other organisms. This work also provides support for the hypothesis that HTT and subsequent TE proliferation can induce genome rearrangements that contribute to post-zygotic isolation in yeast. Electronic supplementary material The online version of this article (10.1186/s13100-018-0122-7) contains supplementary material, which is available to authorized users.
Collapse
|
90
|
Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury JM, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, Schacherer J. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 2018; 556:339-344. [PMID: 29643504 PMCID: PMC6784862 DOI: 10.1038/s41586-018-0030-5] [Citation(s) in RCA: 664] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single 'out-of-China' origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.
Collapse
Affiliation(s)
- Jackson Peter
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - David Pflieger
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | | | - Benjamin Barre
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Kelle Freel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Agnès Llored
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Benjamin Istace
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, Valbonne, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, Valbonne, France
| | - Stefan Engelen
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Arnaud Lemainque
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France.,CNRS UMR 8030, Université d'Evry Val d'Essonne, Evry, France
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| | | |
Collapse
|
91
|
Leducq JB, Henault M, Charron G, Nielly-Thibault L, Terrat Y, Fiumera HL, Shapiro BJ, Landry CR. Mitochondrial Recombination and Introgression during Speciation by Hybridization. Mol Biol Evol 2018; 34:1947-1959. [PMID: 28444332 PMCID: PMC7328687 DOI: 10.1093/molbev/msx139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation.
Collapse
Affiliation(s)
- Jean-Baptiste Leducq
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada.,Département des Sciences Biologiques, Pavillon Marie-Victorin, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Henault
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| | - Lou Nielly-Thibault
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| | - Yves Terrat
- Département des Sciences Biologiques, Pavillon Marie-Victorin, Université de Montréal, Montréal, QC, Canada
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY
| | - B Jesse Shapiro
- Département des Sciences Biologiques, Pavillon Marie-Victorin, Université de Montréal, Montréal, QC, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, Québec, QC, Canada
| |
Collapse
|
92
|
Hittinger CT, Steele JL, Ryder DS. Diverse yeasts for diverse fermented beverages and foods. Curr Opin Biotechnol 2018; 49:199-206. [DOI: 10.1016/j.copbio.2017.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
|
93
|
Gallone B, Mertens S, Gordon JL, Maere S, Verstrepen KJ, Steensels J. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr Opin Biotechnol 2018; 49:148-155. [DOI: 10.1016/j.copbio.2017.08.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
|
94
|
Enhanced Wort Fermentation with De Novo Lager Hybrids Adapted to High-Ethanol Environments. Appl Environ Microbiol 2018; 84:AEM.02302-17. [PMID: 29196294 DOI: 10.1128/aem.02302-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Interspecific hybridization is a valuable tool for developing and improving brewing yeast in a number of industry-relevant aspects. However, the genomes of newly formed hybrids can be unstable. Here, we exploited this trait by adapting four brewing yeast strains, three of which were de novo interspecific lager hybrids with different ploidy levels, to high ethanol concentrations in an attempt to generate variant strains with improved fermentation performance in high-gravity wort. Through a batch fermentation-based adaptation process and selection based on a two-step screening process, we obtained eight variant strains which we compared to the wild-type strains in 2-liter-scale wort fermentations replicating industrial conditions. The results revealed that the adapted variants outperformed the strains from which they were derived, and the majority also possessed several desirable brewing-relevant traits, such as increased ester formation and ethanol tolerance, as well as decreased diacetyl formation. The variants obtained from the polyploid hybrids appeared to show greater improvements in fermentation performance than those derived from diploid strains. Interestingly, it was not only the hybrid strains, but also the Saccharomyces cerevisiae parent strain, that appeared to adapt and showed considerable changes in genome size. Genome sequencing and ploidy analysis revealed that changes had occurred at both the chromosome and single nucleotide levels in all variants. Our study demonstrates the possibility of improving de novo lager yeast hybrids through adaptive evolution by generating stable and superior variants that possess traits relevant to industrial lager beer fermentation.IMPORTANCE Recent studies have shown that hybridization is a valuable tool for creating new and diverse strains of lager yeast. Adaptive evolution is another strain development tool that can be applied in order to improve upon desirable traits. Here, we apply adaptive evolution to newly created lager yeast hybrids by subjecting them to environments containing high ethanol levels. We isolated and characterized a number of adapted variants which possess improved fermentation properties and ethanol tolerance. Genome analysis revealed substantial changes in the variants compared to the original strains. These improved variant strains were produced without any genetic modification and are suitable for industrial lager beer fermentations.
Collapse
|
95
|
Peris D, Pérez-Torrado R, Hittinger CT, Barrio E, Querol A. On the origins and industrial applications ofSaccharomyces cerevisiae×Saccharomyces kudriavzeviihybrids. Yeast 2017; 35:51-69. [DOI: 10.1002/yea.3283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Peris
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Eladio Barrio
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
- Department of Genetics; University of Valencia; Valencia Spain
| | - Amparo Querol
- Department of Food Biotechnology; Institute of Agrochemistry and Food Technology (IATA), CSIC; Valencia Spain
| |
Collapse
|
96
|
Sulo P, Szabóová D, Bielik P, Poláková S, Šoltys K, Jatzová K, Szemes T. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the 'yeast mitochondrial genetic code'. DNA Res 2017; 24:571-583. [PMID: 28992063 PMCID: PMC5726470 DOI: 10.1093/dnares/dsx026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species.
Collapse
Affiliation(s)
- Pavol Sulo
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava 842 15, Slovakia
| | - Dana Szabóová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava 842 15, Slovakia
| | - Peter Bielik
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava 842 15, Slovakia
| | - Silvia Poláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava 842 15, Slovakia
| | - Katarína Šoltys
- Comenius University Science Park, Bratislava 841 04, Slovakia
| | - Katarína Jatzová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava 842 15, Slovakia
| | - Tomáš Szemes
- Comenius University Science Park, Bratislava 841 04, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava 842 15, Slovakia
- Geneton s.r.o., Galvaniho 7, Bratislava 821 04, Slovakia
| |
Collapse
|
97
|
Boynton PJ, Janzen T, Greig D. Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility. Yeast 2017; 35:85-98. [PMID: 28967670 DOI: 10.1002/yea.3282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Errors in meiosis can be important postzygotic barriers between different species. In Saccharomyces hybrids, chromosomal missegregation during meiosis I produces gametes with missing or extra chromosomes. Gametes with missing chromosomes are inviable, but we do not understand how extra chromosomes (disomies) influence hybrid gamete inviability. We designed a model predicting rates of missegregation in interspecific hybrid meioses assuming several different mechanisms of disomy tolerance, and compared predictions from the model with observations of sterility in hybrids between Saccharomyces yeast species. Sterility observations were consistent with the hypothesis that chromosomal missegregation causes hybrid sterility, and the model indicated that missegregation probabilities of 13-50% per chromosome can cause observed values of 90-99% hybrid sterility regardless of how cells tolerate disomies. Missing chromosomes in gametes are responsible for most infertility, but disomies may kill as many as 11% of the gametes produced by hybrids between Saccharomyces cerevisiae and Saccharomyces paradoxus. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Primrose J Boynton
- Environmental Genomics Group, Max Planck Institute for Evolutionary Biology, 24 306, Plön, Germany
| | - Thijs Janzen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24 306, Plön, Germany.,Institute for Biology and Environmental Sciences, Carl von Ossietzky University, 26 111, Oldenburg, Germany
| | - Duncan Greig
- Department of Genetics, Evolution, and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
98
|
Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML, Dunham MJ. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. Mol Biol Evol 2017; 34:1596-1612. [PMID: 28369610 PMCID: PMC5455960 DOI: 10.1093/molbev/msx098] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we examine hybrid genome evolution using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae × Saccharomyces uvarum and their parentals. We evolved these strains in nutrient-limited conditions for hundreds of generations and sequenced the resulting cultures identifying numerous point mutations, copy number changes, and loss of heterozygosity (LOH) events, including species-biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated LOH at the high-affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the LOH is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Collapse
Affiliation(s)
| | - Christopher G DeSevo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Dave A Pai
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Cheryl M Tucker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Margaret L Hoang
- Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution, Baltimore, MD.,Department of Biology, Johns Hopkins University, Baltimore, MD
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
99
|
Smukowski Heil C, Burton JN, Liachko I, Friedrich A, Hanson NA, Morris CL, Schacherer J, Shendure J, Thomas JH, Dunham MJ. Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast 2017; 35:71-84. [PMID: 28892574 DOI: 10.1002/yea.3280] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022] Open
Abstract
Interspecific hybridization is a common mechanism enabling genetic diversification and adaptation; however, the detection of hybrid species has been quite difficult. The identification of microbial hybrids is made even more complicated, as most environmental microbes are resistant to culturing and must be studied in their native mixed communities. We have previously adapted the chromosome conformation capture method Hi-C to the assembly of genomes from mixed populations. Here, we show the method's application in assembling genomes directly from an uncultured, mixed population from a spontaneously inoculated beer sample. Our assembly method has enabled us to de-convolute four bacterial and four yeast genomes from this sample, including a putative yeast hybrid. Downstream isolation and analysis of this hybrid confirmed its genome to consist of Pichia membranifaciens and that of another related, but undescribed, yeast. Our work shows that Hi-C-based metagenomic methods can overcome the limitation of traditional sequencing methods in studying complex mixtures of genomes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ivan Liachko
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anne Friedrich
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Noah A Hanson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Joseph Schacherer
- Genetics, Genomics, and Microbiology, University of Strasbourg, Strasbourg, France
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - James H Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
100
|
Monerawela C, Bond U. The hybrid genomes of Saccharomyces pastorianus
: A current perspective. Yeast 2017; 35:39-50. [DOI: 10.1002/yea.3250] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Chandre Monerawela
- Moyne Institute, School of Genetics and Microbiology; Trinity College Dublin; Dublin 2 Ireland
| | - Ursula Bond
- Moyne Institute, School of Genetics and Microbiology; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|