51
|
Charrier A, Planchet E, Cerveau D, Gimeno-Gilles C, Verdu I, Limami AM, Lelièvre E. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco. PLANTA 2012; 236:567-77. [PMID: 22476292 DOI: 10.1007/s00425-012-1635-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.
Collapse
Affiliation(s)
- Aurélie Charrier
- University of Angers, UMR 1345 Research Institute of Horticulture and Seeds (INRA, Agrocampus-Ouest, University of Angers), SFR 4207 Quasav, 2 Bd Lavoisier, 49045, Angers cedex, France
| | | | | | | | | | | | | |
Collapse
|
52
|
Ben Saad R, Fabre D, Mieulet D, Meynard D, Dingkuhn M, Al-Doss A, Guiderdoni E, Hassairi A. Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis. PLANT, CELL & ENVIRONMENT 2012; 35:626-43. [PMID: 21988523 DOI: 10.1111/j.1365-3040.2011.02441.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The expression of AlSAP, in rice cv. Nipponbare, enhances plant tolerance to cold, drought and salt stresses. AlSAP lines showed 100% survival rate and set seeds while control plants did not recover from the cold treatment. Under a severe drought stress treatment (fraction of transpirable soil water down to 0.1), AlSAP lines exhibited enhanced Transpiration Efficiency (TE) and maintained a high A (Assimilation rate) value (22 µmol·m(-2) s(-1) ) while these values dramatically decreased (A = 4 µmol·m(-2) s(-1) ) in control plants which were subsequently unable to recover from the stress. Of noteworthy is that AlSAP rice plants yielded a similar and a 60% seed set under control and stress conditions respectively, with regard to wild-type (WT) plants grown under control conditions. This indicates that AlSAP expression imposes no yield penalty and allows seed production even following a severe drought stress at the vegetative stage. Furthermore, AlSAP rice was shown to accumulate transcripts of a pilot set of eight stress-related genes at a significantly higher level than WT plants, both under control and stressed conditions. The results suggest that AlSAP expression generates stress tolerance in plants through maintenance of the photosynthetic apparatus integrity and by stimulating an endogenous adaptive potential which is not effectively accomplished in WT plants.
Collapse
Affiliation(s)
- Rania Ben Saad
- University of Sfax, Centre of Biotechnology of Sfax, LPAP, Sfax, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Giri J, Vij S, Dansana PK, Tyagi AK. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. THE NEW PHYTOLOGIST 2011; 191:721-732. [PMID: 21534973 DOI: 10.1111/j.1469-8137.2011.03740.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• The inbuilt mechanisms of plant survival have been exploited for improving tolerance to abiotic stresses. Stress-associated proteins (SAPs), containing A20/AN1 zinc-finger domains, confer abiotic stress tolerance in different plants, however, their interacting partners and downstream targets remain to be identified. • In this study, we have investigated the subcellular interactions of rice SAPs and their interacting partner using yeast two-hybrid and fluorescence resonance energy transfer (FRET) approaches. Their efficacy in improving abiotic stress tolerance was analysed in transgenic Arabidopsis plants. Regulation of gene expression by genome-wide microarray in transgenics was used to identify downstream targets. • It was found that the A20 domain mediates the interaction of OsSAP1 with self, its close homolog OsSAP11 and a rice receptor-like cytoplasmic kinase, OsRLCK253. Such interactions between OsSAP1/11 and with OsRLCK253 occur at nuclear membrane, plasma membrane and in nucleus. Functionally, both OsSAP11 and OsRLCK253 could improve the water-deficit and salt stress tolerance in transgenic Arabidopsis plants via a signaling pathway affecting the expression of several common endogenous genes. • Components of a novel stress-responsive pathway have been identified. Their stress-inducible expression provided the protection against yield loss in transgenic plants, indicating the agronomic relevance of OsSAP11 and OsRLCK253 in conferring abiotic stress tolerance.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Arabidopsis/genetics
- Arabidopsis/physiology
- Cell Membrane/metabolism
- Cell Nucleus/metabolism
- Cells, Cultured
- Droughts
- Fluorescence Resonance Energy Transfer
- Gene Expression Regulation, Plant/physiology
- Genes, Plant/genetics
- Germination/physiology
- Oligonucleotide Array Sequence Analysis
- Onions/genetics
- Onions/metabolism
- Oryza/genetics
- Oryza/physiology
- Oryza/ultrastructure
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Plants, Genetically Modified/ultrastructure
- Protein Interaction Mapping
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Salt Tolerance
- Seeds/genetics
- Seeds/physiology
- Signal Transduction
- Stress, Physiological
- Transcriptome
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- Jitender Giri
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prasant K Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India
| |
Collapse
|
54
|
Dixit AR, Dhankher OP. A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS One 2011; 6:e20921. [PMID: 21695274 PMCID: PMC3111467 DOI: 10.1371/journal.pone.0020921] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022] Open
Abstract
We describe here the functional characterization of a novel AtSAP10, a member of the Stress Associated Protein (SAP) gene family, from Arabidopsis thaliana ecotype Columbia. AtSAP10 contains an A20 and AN1 zinc-finger domain at the N- and C-terminal, respectively. Arabidopsis SAP10 showed differential regulation by various abiotic stresses such as heavy metals and metalloids (Ni, Cd, Mn, Zn, and As), high and low temperatures, cold, and ABA. Overexpression of AtSAP10 in Arabidopsis conferred strong tolerance to heavy metals such as Ni, Mn, and Zn and to high temperature stress. AtSAP10 transgenic plants under these stress conditions grew green and healthy, attained several-fold more biomass, and had longer roots as compared to wild type plants. Further, while these transgenic plants accumulated significantly greater amounts of Ni and Mn in both shoots and root tissues, there was no significant difference in the accumulation of Zn. AtSAP10 promoter-GUS fusion studies revealed a root and floral organ-specific expression of AtSAP10. Overexpression of AtSAP10-GFP fusion protein showed the localization in both nucleus and cytoplasm. Taken together, these results showed that AtSAP10 is a potentially useful candidate gene for engineering tolerance to heavy metals and to abiotic stress in cultivated plants.
Collapse
Affiliation(s)
- Anirudha R. Dixit
- Department of Plant, Soil, and Insect Sciences, and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Om Parkash Dhankher
- Department of Plant, Soil, and Insect Sciences, and Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
55
|
Couturier J, Ströher E, Albetel AN, Roret T, Muthuramalingam M, Tarrago L, Seidel T, Tsan P, Jacquot JP, Johnson MK, Dietz KJ, Didierjean C, Rouhier N. Arabidopsis chloroplastic glutaredoxin C5 as a model to explore molecular determinants for iron-sulfur cluster binding into glutaredoxins. J Biol Chem 2011; 286:27515-27. [PMID: 21632542 DOI: 10.1074/jbc.m111.228726] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Unlike thioredoxins, glutaredoxins are involved in iron-sulfur cluster assembly and in reduction of specific disulfides (i.e. protein-glutathione adducts), and thus they are also important redox regulators of chloroplast metabolism. Using GFP fusion, AtGrxC5 isoform, present exclusively in Brassicaceae, was shown to be localized in chloroplasts. A comparison of the biochemical, structural, and spectroscopic properties of Arabidopsis GrxC5 (WCSYC active site) with poplar GrxS12 (WCSYS active site), a chloroplastic paralog, indicated that, contrary to the solely apomonomeric GrxS12 isoform, AtGrxC5 exists as two forms when expressed in Escherichia coli. The monomeric apoprotein possesses deglutathionylation activity mediating the recycling of plastidial methionine sulfoxide reductase B1 and peroxiredoxin IIE, whereas the dimeric holoprotein incorporates a [2Fe-2S] cluster. Site-directed mutagenesis experiments and resolution of the x-ray crystal structure of AtGrxC5 in its holoform revealed that, although not involved in its ligation, the presence of the second active site cysteine (Cys(32)) is required for cluster formation. In addition, thiol titrations, fluorescence measurements, and mass spectrometry analyses showed that, despite the presence of a dithiol active site, AtGrxC5 does not form any inter- or intramolecular disulfide bond and that its activity exclusively relies on a monothiol mechanism.
Collapse
Affiliation(s)
- Jérémy Couturier
- Unité Mixte de Recherches 1136, Institut National de la Recherche Agronomique-Nancy Université, Interactions Arbres Microorganismes, Institut Fédératif de Recherche 110 Ecosystèmes Forestiers, Agroressources, Biomolécule et Alimentation, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Dietz KJ, Jacquot JP, Harris G. Hubs and bottlenecks in plant molecular signalling networks. THE NEW PHYTOLOGIST 2010; 188:919-38. [PMID: 20958306 DOI: 10.1111/j.1469-8137.2010.03502.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conditional control of plant cell function and development relies on appropriate signal perception, signal integration and processing. The development of high throughput technologies such as proteomics and interactomics has enabled the identification of protein interaction networks that mediate signal processing from inputs to appropriate outputs. Such networks can be depicted in graphical representations using nodes and edges allowing for the immediate visualization and analysis of the network's topology. Hubs are network elements characterized by many edges (often degree grade k ≥ 5) which confer a degree of topological importance to them. The review introduces the concept of networks, hubs and bottlenecks and describes four examples from plant science in more detail, namely hubs in the redox regulatory network of the chloroplast with ferredoxin, thioredoxin and peroxiredoxin, in mitogen activated protein (MAP) kinase signal processing, in photomorphogenesis with the COP9 signalosome, COP1 and CDD, and monomeric GTPase function. Some guidance is provided to appropriate internet resources, web repositories, databases and their use. Plant networks can be generated from existing public databases and this type of analysis is valuable in support of existing hypotheses, or to allow for the generation of new concepts or ideas. However, intensive manual curating of in silico networks is still always necessary.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Plant Biochemistry and Physiology, Bielefeld University, D-33501 Bielefeld, Germany.
| | | | | |
Collapse
|
57
|
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gärtner F, Ströher E, Kandlbinder A, Dietz KJ. Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast. MOLECULAR PLANT 2009; 2:1273-88. [PMID: 19995730 DOI: 10.1093/mp/ssp089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the highly abundant 2-cysteine peroxiredoxin (2-CysPrx) is associated with the chloroplast and involved in protecting photosynthesis. This work addresses the multiple interactions of the 2-CysPrx in the chloroplast, which depend on its redox state. Transcript co-regulation analysis showed a strong linkage to the peptidyl-prolyl-cis/trans isomerase Cyclophilin 20-3 (Cyp20-3) and other components of the photosynthetic apparatus. Co-expression in protoplasts and quantification of fluorescence resonance energy transfer (FRET) efficiency in vivo confirmed protein interactions of 2-CysPrx with Cyp20-3 as well as NADPH-dependent thioredoxin reductase C (NTRC), while thioredoxin x (Trx-x) did not form complexes that could enable FRET. Likewise, changes in FRET of fluorescently labeled 2-CysPrx in vitro and in vivo proved redox dependent dynamics of 2-CysPrx. Addition of Cyp20-3 to an in vitro peroxidase assay with 2-CysPrx had no significant effect on peroxide reduction. Also, in the presence of NTRC, addition of Cyp20-3 did not further enhance peroxide reduction. In addition, 2-CysPrx functioned as chaperone and inhibited aggregation of citrate synthase during heat treatment. This activity was partly inhibited by Cyp20-3. As a new interaction partner of decameric 2-CysPrx, photosystem II could be identified after chloroplast fractionation and in pull-down assays after reconstitution. In summary, the data indicate a dynamic function of plant 2-CysPrx as redox sensor, chaperone, and regulator in the chloroplast with diverse functions beyond its role as thiol peroxidase.
Collapse
|
58
|
Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Mol Genet Genomics 2009; 282:153-64. [DOI: 10.1007/s00438-009-0455-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/21/2009] [Indexed: 01/31/2023]
|