51
|
Lace B, Prandi C. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones. MOLECULAR PLANT 2016; 9:1099-1118. [PMID: 27378726 DOI: 10.1016/j.molp.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 05/14/2023]
Abstract
Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications.
Collapse
Affiliation(s)
- Beatrice Lace
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Cristina Prandi
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
52
|
Zwanenburg B, Pospíšil T, Ćavar Zeljković S. Strigolactones: new plant hormones in action. PLANTA 2016; 243:1311-26. [PMID: 26838034 PMCID: PMC4875949 DOI: 10.1007/s00425-015-2455-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/18/2015] [Indexed: 05/07/2023]
Abstract
MAIN CONCLUSION The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic.
| | - Tomáš Pospíšil
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Central Laboratories and Research Support, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
53
|
Abstract
The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic.
| | - Tomáš Pospíšil
- Department of Growth Regulators, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Central Laboratories and Research Support, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
54
|
Screpanti C, Fonné-Pfister R, Lumbroso A, Rendine S, Lachia M, De Mesmaeker A. Strigolactone derivatives for potential crop enhancement applications. Bioorg Med Chem Lett 2016; 26:2392-2400. [PMID: 27036522 DOI: 10.1016/j.bmcl.2016.03.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/09/2023]
Abstract
New technologies able to mitigate the main abiotic stresses (i.e., drought, salinity, cold and heat) represent a substantial opportunity to contribute to a sustainable increase of agricultural production. In this context, the recently discovered phytohormone strigolactone is an important area of study which can underpin the quest for new anti-stress technologies. The pleiotropic roles played by strigolactones in plant growth/development and in plant adaptation to environmental changes can pave the way for new innovative crop enhancement applications. Although a significant scientific effort has been dedicated to the strigolactone subject, an updated review with emphasis on the crop protection perspective was missing. This paper aims to analyze the advancement in different areas of the strigolactone domain and the implications for agronomical applications.
Collapse
Affiliation(s)
- Claudio Screpanti
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Raymonde Fonné-Pfister
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Alexandre Lumbroso
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Stefano Rendine
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Mathilde Lachia
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AG, Chemical Research, Schaffhausenstrasse 101, CH-4332, Switzerland
| |
Collapse
|
55
|
Kapulnik Y, Koltai H. Fine-tuning by strigolactones of root response to low phosphate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:203-12. [PMID: 26667884 DOI: 10.1111/jipb.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
56
|
Zwanenburg B, Ćavar Zeljković S, Pospíšil T. Synthesis of strigolactones, a strategic account. PEST MANAGEMENT SCIENCE 2016; 72:15-29. [PMID: 26304779 DOI: 10.1002/ps.4105] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones (SLs) constitute a new class of plant hormones that have received growing interest in recent years. They firstly became known as signalling molecules for host recognition by parasitic plants, and for symbiosis of plants with arbuscular mycorrhizal fungi. Furthermore, they are involved in numerous physiological processes in plants, such as the regulation of plant architecture and the response to abiotic factors. SLs are produced by plants in extremely low quantities, and they may be unstable during the purification process. Therefore, their total synthesis is highly relevant for confirming the structures assigned on the basis of spectroscopic and other physical data. A second important theme in SL research is the design and synthesis of SL analogues that have a simplified structure while still featuring the essential bioproperties. This review summarises the strategy and synthesis of naturally occurring SLs, and the design and synthesis of SL analogues with appreciable bioactivity.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Radboud University Nijmegen, Institute for Molecules and Materials, Cluster of Organic Chemistry, Nijmegen, The Netherlands
- Palacky University, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Department of Growth Regulators, Olomouc, Czech Republic
| | - Sanja Ćavar Zeljković
- Palacky University, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Central Laboratories and Research Support, Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Palacky University, Faculty of Science, Centre of Region Haná for Biotechnological and Agricultural Research, Department of Growth Regulators, Olomouc, Czech Republic
| |
Collapse
|
57
|
Makhzoum A, Yousefzadi M, Malik S, Gantet P, Tremouillaux-Guiller J. Strigolactone biology: genes, functional genomics, epigenetics and applications. Crit Rev Biotechnol 2015; 37:151-162. [PMID: 26669271 DOI: 10.3109/07388551.2015.1121967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Strigolactones (SLs) represent an important new plant hormone class marked by their multifunctional role in plant and rhizosphere interactions. These compounds stimulate hyphal branching in arbuscular mycorrhizal fungi (AMF) and seed germination of root parasitic plants. In addition, they are involved in the control of plant architecture by inhibiting bud outgrowth as well as many other morphological and developmental processes together with other plant hormones such as auxins and cytokinins. The biosynthetic pathway of SLs that are derived from carotenoids was partially decrypted based on the identification of mutants from a variety of plant species. Only a few SL biosynthetic and regulated genes and related regulatory transcription factors have been identified. However, functional genomics and epigenetic studies started to give first elements on the modality of the regulation of SLs related genes. Since they control plant architecture and plant-rhizosphere interaction, SLs start to be used for agronomical and biotechnological applications. Furthermore, the genes involved in the SL biosynthetic pathway and genes regulated by SL constitute interesting targets for plant breeding. Therefore, it is necessary to decipher and better understand the genetic determinants of their regulation at different levels.
Collapse
Affiliation(s)
- Abdullah Makhzoum
- a Department of Biology , University of Western Ontario , London , Ontario , Canada
| | - Morteza Yousefzadi
- b Department of Marine Biology , Faculty of Marine Sciences and Technology, Hormozgan University , Bandar Abbas , Iran
| | - Sonia Malik
- c Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão , São Luís, MA , Brazil
| | - Pascal Gantet
- d Faculté des Sciences , Université de Montpellier , UMR DIADE , Montpellier , France , and
| | | |
Collapse
|
58
|
Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S. Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis. ACTA ACUST UNITED AC 2015; 56:1059-72. [DOI: 10.1093/pcp/pcv028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/15/2015] [Indexed: 01/02/2023]
|
59
|
Goossens H, Heugebaert TSA, Dereli B, Van Overtveldt M, Karahan O, Dogan I, Waroquier M, Van Speybroeck V, Aviyente V, Catak S, Stevens CV. Elucidating the Structural Isomerism of Fluorescent Strigolactone Analogue CISA-1. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
60
|
Kapulnik Y, Koltai H. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. PLANT PHYSIOLOGY 2014; 166:560-9. [PMID: 25037210 PMCID: PMC4213088 DOI: 10.1104/pp.114.244939] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 05/02/2023]
Abstract
Strigolactones, recently discovered as plant hormones, regulate the development of different plant parts. In the root, they regulate root architecture and affect root hair length and density. Their biosynthesis and exudation increase under low phosphate levels, and they are associated with root responses to these conditions. Their signaling pathway in the plant includes protein interactions and ubiquitin-dependent repressor degradation. In the root, they lead to changes in actin architecture and dynamics as well as localization of the PIN-FORMED auxin transporter in the plasma membrane. Strigolactones are also involved with communication in the rhizosphere. They are necessary for germination of parasitic plant seeds, they enhance hyphal branching of arbuscular mycorrhizal fungi of the Glomus and Gigaspora spp., and they promote rhizobial symbiosis. This review focuses on the role played by strigolactones in root development, their response to nutrient deficiency, and their involvement with plant interactions in the rhizosphere.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
61
|
Gutjahr C. Phytohormone signaling in arbuscular mycorhiza development. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:26-34. [PMID: 24853646 DOI: 10.1016/j.pbi.2014.04.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
To establish arbuscular mycorhiza (AM) symbiosis glomeromycotan fungi colonize the interior of roots. This process is associated with developmental changes of root cells as well as fungal hyphae. The formation of fungal colonization-structures and the extent of root colonization are largely under plant control, depending on environmental conditions and the resulting physiological state of the host. Phytohormone signaling pathways are currently emerging as important regulators of AM development. Root exuded strigolactones activate AM fungi before colonization and a host strigolactone receptor component is required for AM development. Auxin quantitatively influences AM colonization and might perform an additional cell-autonomous function in the promotion of arbuscule development. Gibberellin signaling inhibits AM and conversely DELLA proteins are required for AM formation. Given the importance of phytohormone signaling in plant developmental responses to the environment it can be predicted that elucidating how phytohormones regulate AM development will provide a lead into understanding how plants orchestrate AM symbiosis with their physiological needs under changing environmental conditions.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Str. 2-4, 82152 Martinsried, Germany.
| |
Collapse
|
62
|
Koltai H. Implications of non-specific strigolactone signaling in the rhizosphere. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:9-14. [PMID: 25017154 DOI: 10.1016/j.plantsci.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
Strigolactones produced by various plant species are involved in the development of different plant parts. They are also exuded by plant roots to the rhizosphere, where they are involved in the induction of seed germination of the parasitic plants Striga and Orobanche, hyphal branching of the symbiotic arbuscular mycorrhizal fungi (AMF), and the symbiotic interaction with Rhizobium. In the present discussion paper, the essentialness of strigolactones as communication signals in these plant interactions is discussed in view of the existence of other plant-derived substances that are able to promote these plant interactions. In addition, the importance of strigolactones for determination of interaction specificity is discussed based on current knowledge on strigolactone composition, perception and delivery. The different activities of strigolactones in plant development and in the rhizosphere suggest their possible use in agriculture. However, despite efforts made in this direction, there is no current, practical implementation. Possible reasons for the encountered difficulties and suggested solutions to promote strigolactone use in agriculture are discussed.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, ARO, Volcani Center, Bet-Dagan 50250, Israel.
| |
Collapse
|
63
|
Hoffmann B, Proust H, Belcram K, Labrune C, Boyer FD, Rameau C, Bonhomme S. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PLoS One 2014; 9:e99206. [PMID: 24911649 PMCID: PMC4049778 DOI: 10.1371/journal.pone.0099206] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
In vascular plants, strigolactones (SLs) are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investigated the effect of exogenously added molecules (SLs or analogs) in moss growth media. We used the previously characterized Ppccd8 mutant that is deficient in SL synthesis and showed that SLs affect moss protonema extension by reducing caulonema cell elongation and mainly cell division rate, both in light and dark conditions. Based on this effect, we set up bioassays to examine chemical structure requirements for SL activity in moss. The results suggest that compounds GR24, GR5, and 5-deoxystrigol are active in moss (as in pea), while other analogs that are highly active in the control of pea branching show little activity in moss. Interestingly, the karrikinolide KAR1, which shares molecular features with SLs, did not have any effect on filament growth, even though the moss genome contains several genes homologous to KAI2 (encoding the KAR1 receptor) and no canonical homologue to D14 (encoding the SL receptor). Further studies should investigate whether SL signaling pathways have been conserved during land plant evolution.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Hélène Proust
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Cécile Labrune
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Gif-sur-Yvette, France
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| |
Collapse
|
64
|
|
65
|
Nakamura H, Asami T. Target sites for chemical regulation of strigolactone signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:623. [PMID: 25414720 PMCID: PMC4220635 DOI: 10.3389/fpls.2014.00623] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/22/2014] [Indexed: 05/22/2023]
Abstract
Demands for plant growth regulators (PGRs; chemicals that control plant growth) are increasing globally, especially in developing countries. Both positive and negative PGRs are widely used to enhance crop production and to suppress unwanted shoot growth, respectively. Strigolactones (SLs) are multifunctional molecules that function as phytohormones, inhibiting shoot branching and also functioning in the rhizospheric communication with symbiotic fungi and parasitic weeds. Therefore, it is anticipated that chemicals that regulate the functions of SLs will be widely used in agricultural applications. Although the SL biosynthetic pathway is not fully understood, it has been demonstrated that β-carotene isomerases, carotenoid cleavage dioxygenases (CCDs), and a cytochrome P450 monooxygenase are involved in strigolactone biosynthesis. A CCD inhibitor, abamine, which is also an inhibitor of abscisic acid biosynthesis, reduces the levels of SL in several plant species and reduces the germination rate of Orobanche minor seeds grown with tobacco. On the basis of the structure of abamine, several chemicals have been designed to specifically inhibit CCDs during SL synthesis. Cytochrome P450 monooxygenase is another target enzyme in the development of SL biosynthesis inhibitors, and the triazole-derived TIS series of chemicals is known to include SL biosynthesis inhibitors, although their target enzyme has not been identified. Recently, DWARF14 (D14) has been shown to be a receptor for SLs, and the D-ring moiety of SL is essential for its recognition by D14. A variety of SL agonists are currently under development and most agonists commonly contain the D-ring or a D-ring-like moiety. Several research groups have also resolved the crystal structure of D14 in the last two years. It is expected that this information on the D14 structure will be invaluable not only for developing SL agonists with novel structures but also in the design of inhibitors of SL receptors.
Collapse
Affiliation(s)
- Hidemitsu Nakamura
- The Chemical Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
| | - Tadao Asami
- The Chemical Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyo, Japan
- Program of Japan Science and Technology Agency, Core Research for Evolutional Science and TechnologyKawaguchi, Japan
- King Abdulaziz UniversityJedda, Saudi Arabia
- *Correspondence: Tadao Asami, The Chemical Biology Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan e-mail:
| |
Collapse
|
66
|
Rigal A, Ma Q, Robert S. Unraveling plant hormone signaling through the use of small molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:373. [PMID: 25126092 PMCID: PMC4115670 DOI: 10.3389/fpls.2014.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
Plants have acquired the capacity to grow continuously and adjust their morphology in response to endogenous and external signals, leading to a high architectural plasticity. The dynamic and differential distribution of phytohormones is an essential factor in these developmental changes. Phytohormone perception is a fast but complex process modulating specific developmental reprogramming. In recent years, chemical genomics or the use of small molecules to modulate target protein function has emerged as a powerful strategy to study complex biological processes in plants such as hormone signaling. Small molecules can be applied in a conditional, dose-dependent and reversible manner, with the advantage of circumventing the limitations of lethality and functional redundancy inherent to traditional mutant screens. High-throughput screening of diverse chemical libraries has led to the identification of bioactive molecules able to induce plant hormone-related phenotypes. Characterization of the cognate targets and pathways of those molecules has allowed the identification of novel regulatory components, providing new insights into the molecular mechanisms of plant hormone signaling. An extensive structure-activity relationship (SAR) analysis of the natural phytohormones, their designed synthetic analogs and newly identified bioactive molecules has led to the determination of the structural requirements essential for their bioactivity. In this review, we will summarize the so far identified small molecules and their structural variants targeting specific phytohormone signaling pathways. We will highlight how the SAR analyses have enabled better interrogation of the molecular mechanisms of phytohormone responses. Finally, we will discuss how labeled/tagged hormone analogs can be exploited, as compelling tools to better understand hormone signaling and transport mechanisms.
Collapse
Affiliation(s)
| | | | - Stéphanie Robert
- *Correspondence: Stéphanie Robert, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden e-mail:
| |
Collapse
|