51
|
Jeon HJ, Shin HJ, Choi JJ, Hoe HS, Kim HK, Suh SW, Kwon ST. Mutational analyses of the thermostable NAD+-dependent DNA ligase fromThermus filiformis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09685.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
52
|
Chen X, Sullivan PF. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. THE PHARMACOGENOMICS JOURNAL 2004; 3:77-96. [PMID: 12746733 DOI: 10.1038/sj.tpj.6500167] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The large number of single nucleotide polymorphism (SNP) markers available in the public databases makes studies of association and fine mapping of disease loci very practical. To provide information for researchers who do not follow SNP genotyping technologies but need to use them for their research, we review here recent developments in the fields. We start with a general description of SNP typing protocols and follow this with a summary of current methods for each step of the protocol and point out the unique features and weaknesses of these techniques as well as comparing the cost and throughput structures of the technologies. Finally, we describe some popular techniques and the applications that are suitable for these techniques.
Collapse
Affiliation(s)
- X Chen
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E Leigh Street, Richmond, VA 23298-0424, USA.
| | | |
Collapse
|
53
|
Abstract
T4 DNA ligase is an Mg2+-dependent and ATP-dependent enzyme that seals DNA nicks in three steps: it covalently binds AMP, transadenylates the nick phosphate, and catalyses formation of the phosphodiester bond releasing AMP. In this kinetic study, we further detail the reaction mechanism, showing that the overall ligation reaction is a superimposition of two parallel processes: a 'processive' ligation, in which the enzyme transadenylates and seals the nick without dissociating from dsDNA, and a 'nonprocessive' ligation, in which the enzyme takes part in the abortive adenylation cycle (covalent binding of AMP, transadenylation of the nick, and dissociation). At low concentrations of ATP (<10 microM) and when the DNA nick is sealed with mismatching base pairs (e.g. five adjacent), this superimposition resolves into two kinetic phases, a burst ligation (approximately 0.2 min(-1)) and a subsequent slow ligation (approximately 2x10(-3) min(-1)). The relative rate and extent of each phase depend on the concentrations of ATP and Mg2+. The activation energies of self-adenylation (16.2 kcal.mol(-1)), transadenylation of the nick (0.9 kcal.mol(-1)), and nick-sealing (16.3-18.8 kcal.mol(-1)) were determined for several DNA substrates. The low activation energy of transadenylation implies that the transfer of AMP to the terminal DNA phosphate is a spontaneous reaction, and that the T4 DNA ligase-AMP complex is a high-energy intermediate. To summarize current findings in the DNA ligation field, we delineate a kinetic mechanism of T4 DNA ligase catalysis.
Collapse
Affiliation(s)
- Alexey V Cherepanov
- Kluyver Department of Biotechnology, Delft University of Technology, The Netherlands
| | | |
Collapse
|
54
|
Wang Y, Vaidya B, Farquar HD, Stryjewski W, Hammer RP, McCarley RL, Soper SA, Cheng YW, Barany F. Microarrays assembled in microfluidic chips fabricated from poly(methyl methacrylate) for the detection of low-abundant DNA mutations. Anal Chem 2003; 75:1130-40. [PMID: 12641233 DOI: 10.1021/ac020683w] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-density arrays were assembled into microfluidic channels hot-embossed in poly(methyl methacrylate) (PMMA) to allow the detection of low-abundant mutations in gene fragments (K-ras) that carry point mutations with high diagnostic value for colorectal cancers. Following spotting, the chip was assembled with a cover plate and the array accessed using microfluidics in order to enhance the kinetics associated with hybridization. The array was configured with zip code sequences (24-mers) that were complementary to sequences present on the target. The hybridization targets were generated using an allele-specific ligase detection reaction (LDR), in which two primers (discriminating primer that carriers the complement base to the mutation being interrogated and a common primer) that flank the point mutation and were ligated joined together) only when the particular mutation was present in the genomic DNA. The discriminating primer contained on its 5'-end the zip code complement (directs the LDR product to the appropriate site of the array), and the common primer carried on its 3' end a fluorescent dye (near-IR dye IRD-800). The coupling chemistry (5'-amine-containing oligonucleotide tethered to PMMA surface) was optimized to maximize the loading level of the zip code oligonucleotide, improve hybridization sensitivity (detection of low-abundant mutant DNAs in high copy numbers of normal sequences), and increase the stability of the linkage chemistry to permit re-interrogation of the array. It was found that microfluidic addressing of the array reduced the hybridization time from 3 h for a conventional array to less than 1 min. In addition, the coupling chemistry allowed reuse of the array > 12 times before noticing significant loss of hybridization signal. The array was used to detect a point mutation in a K-ras oncogene at a level of 1 mutant DNA in 10,000 wild-type sequences.
Collapse
Affiliation(s)
- Yun Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Kirk BW, Feinsod M, Favis R, Kliman RM, Barany F. Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 2002; 30:3295-311. [PMID: 12140314 PMCID: PMC137089 DOI: 10.1093/nar/gkf466] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Revised: 04/02/2002] [Accepted: 06/12/2002] [Indexed: 12/16/2022] Open
Abstract
Successful investigation of common diseases requires advances in our understanding of the organization of the genome. Linkage disequilibrium provides a theoretical basis for performing candidate gene or whole-genome association studies to analyze complex disease. However, to constructively interrogate SNPs for these studies, technologies with sufficient throughput and sensitivity are required. A plethora of suitable and reliable methods have been developed, each of which has its own unique advantage. The characteristics of the most promising genotyping and polymorphism scanning technologies are presented. These technologies are examined both in the context of complex disease investigation and in their capacity to face the unique physical and molecular challenges (allele amplification, loss of heterozygosity and stromal contamination) of solid tumor research.
Collapse
Affiliation(s)
- Brian W Kirk
- Department of Microbiology, Box 62, Hearst Microbiology Research Center, Joan and Sanford I. Weill Medical College of Cornell University, Room B-406, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
56
|
Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30:e57. [PMID: 12060695 PMCID: PMC117299 DOI: 10.1093/nar/gnf056] [Citation(s) in RCA: 1835] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe a new method for relative quantification of 40 different DNA sequences in an easy to perform reaction requiring only 20 ng of human DNA. Applications shown of this multiplex ligation-dependent probe amplification (MLPA) technique include the detection of exon deletions and duplications in the human BRCA1, MSH2 and MLH1 genes, detection of trisomies such as Down's syndrome, characterisation of chromosomal aberrations in cell lines and tumour samples and SNP/mutation detection. Relative quantification of mRNAs by MLPA will be described elsewhere. In MLPA, not sample nucleic acids but probes added to the samples are amplified and quantified. Amplification of probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two oligonucleotides, one synthetic and one M13 derived, that hybridise to adjacent sites of the target sequence. Such hybridised probe oligonucleotides are ligated, permitting subsequent amplification. All ligated probes have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are small (50-70 nt). The prerequisite of a ligation reaction provides the opportunity to discriminate single nucleotide differences.
Collapse
Affiliation(s)
- Jan P Schouten
- MRC-Holland, Hudsonstraat 68, 1057SN Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
57
|
Huang J, Kirk B, Favis R, Soussi T, Paty P, Cao W, Barany F. An endonuclease/ligase based mutation scanning method especially suited for analysis of neoplastic tissue. Oncogene 2002; 21:1909-21. [PMID: 11896624 DOI: 10.1038/sj.onc.1205109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2001] [Revised: 10/15/2001] [Accepted: 10/29/2001] [Indexed: 11/09/2022]
Abstract
Knowledge of inherited and sporadic mutations in known and candidate cancer genes may influence clinical decisions. We have developed a mutation scanning method that combines thermostable EndonucleaseV (Endo V) and DNA ligase. Variant and wild-type PCR amplicons are generated using fluorescently labeled primers, and heteroduplexed. Thermotoga maritima (Tma) EndoV recognizes and primarily cleaves heteroduplex DNA one base 3' to the mismatch, as well as nicking matched DNA at low levels. Thermus species (Tsp.) AK16D DNA ligase reseals the background nicks to create a highly sensitive and specific assay. The fragment mobility on a DNA sequencing gel reveals the approximate position of the mutation. This method identified 31/35 and 8/8 unique point mutations and insertions/deletions, respectively, in the p53, VHL, K-ras, APC, BRCA1, and BRCA2 genes. The method has the sensitivity to detect K-ras mutations diluted 1 : 20 with wild-type DNA, a p53 mutation in a 1.7 kb amplicon, and unknown p53 mutations in pooled DNA samples. EndoV/Ligase mutation scanning combined with PCR/LDR/Universal array proved superior to automated DNA sequencing for detecting p53 mutations in colon tumors. This technique is well suited for scanning low-frequency mutations in pooled samples and for analysing tumor DNA containing a minority of the unknown mutation.
Collapse
Affiliation(s)
- Jianmin Huang
- Department of Microbiology, Box 62, Hearst Microbiology Research Center, Strang Cancer Prevention Center, Joan and Sanford I Weill Medical College of Cornell University, Room B-406, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Nakatani M, Ezaki S, Atomi H, Imanaka T. Substrate recognition and fidelity of strand joining by an archaeal DNA ligase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:650-6. [PMID: 11856324 DOI: 10.1046/j.0014-2956.2001.02695.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously identified a DNA ligase (LigTk) from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. The enzyme is the only characterized ATP-dependent DNA ligase from a hyperthermophile, and allows the analysis of enzymatic DNA ligation reactions at temperatures above the melting point of the substrates. Here we have focused on the interactions of LigTk with various DNA substrates, and its specificities toward metal cations. LigTk could utilize Mg2+, Mn2+, Sr2+ and Ca2+ as a metal cation, but not Co2+, Zn2+, Ni2+, or Cu2+. The enzyme displayed typical Michaelis-Menten steady-state kinetics with an apparent Km of 1.4 microm for nicked DNA. The kcat value of the enzyme was 0.11*s-1. Using various 3' hydroxyl group donors (L-DNA) and 5' phosphate group donors (R-DNA), we could detect ligation products as short as 16 nucleotides, the products of 7 + 9 nucleotide or 8 + 8 nucleotide combinations at 40 degrees C. An elevation in temperature led to a decrease in reaction efficiency when short oligonucleotides were used, suggesting that the formation of a nicked, double-stranded DNA substrate preceded enzyme-substrate recognition. LigTk was not inhibited by the addition of excess duplex DNA, implying that the enzyme did not bind strongly to the double-stranded ligation product after nick-sealing. In terms of reaction fidelity, LigTk was found to ligate various substrates with mismatched base-pairing at the 5' end of the nick, but did not show activity towards the 3' mismatched substrates. LigTk could not seal substrates with a 1-nucleotide or 2-nucleotide gap. Small amounts of ligation products were detected with DNA substrates containing a single nucleotide insertion, relatively more with the 5' insertions. The results revealed the importance of proper base-pairing at the 3' hydroxyl side of the nick for the ligation reaction by LigTk.
Collapse
Affiliation(s)
- Masaru Nakatani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | |
Collapse
|
59
|
|
60
|
Lopez-Crapez E, Bazin H, Andre E, Noletti J, Grenier J, Mathis G. A homogeneous europium cryptate-based assay for the diagnosis of mutations by time-resolved fluorescence resonance energy transfer. Nucleic Acids Res 2001; 29:E70. [PMID: 11452039 PMCID: PMC55817 DOI: 10.1093/nar/29.14.e70] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oligonucleotide ligation assay (OLA) is considered to be a very useful methodology for the detection and characterization of mutations, particularly for clinical purposes. The fluorescence resonance energy transfer between a fluorescent donor and a suitable fluorophore as acceptor has been applied in the past to several scientific fields. This technique is well adapted to nucleic acid analysis such as DNA sequencing, DNA hybridization and polymerase chain reaction. We describe here a homogeneous format based on the use of a rare earth cryptate label as donor: tris-bipyridine-Eu(3+). The long-lived fluorescence of this label makes it possible to reach a high sensitivity by using a time-resolved detection mode. A non-radiative energy transfer technology, known as time-resolved amplification of cryptate emission (TRACE((R))) characterized by a temporal and spectral selectivity has been developed. The TRACE((R)) detection of characterized single nucleotide polymorphism using the OLA for allelic discrimination is proposed. We demonstrate the potentialities of this OLA-TRACE((R)) methodology through the analysis of K-ras oncogene point mutations.
Collapse
Affiliation(s)
- E Lopez-Crapez
- Centre de Recherche en Cancérologie, C.R.L.C. Val d'Aurelle, Parc Euromédecine, 34298 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
61
|
Dong SM, Traverso G, Johnson C, Geng L, Favis R, Boynton K, Hibi K, Goodman SN, D'Allessio M, Paty P, Hamilton SR, Sidransky D, Barany F, Levin B, Shuber A, Kinzler KW, Vogelstein B, Jen J. Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst 2001; 93:858-65. [PMID: 11390535 DOI: 10.1093/jnci/93.11.858] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer cells are shed into the stool, providing a potential means for the early detection of the disease using noninvasive approaches. Our goal was to develop reliable, specific molecular genetic tests for the detection of colorectal cancer in stool samples. METHODS Stool DNA was isolated from paired stools and primary tumor samples from 51 colorectal cancer patients. Three genetic targets-TP53, BAT26, and K-RAS-were used to detect tumor-associated mutations in the stool prior to or without regard to the molecular analyses of the paired tumors. TP53 gene mutations were detected with a mismatch-ligation assay that detects nine common p53 gene mutations. Deletions within the BAT26 locus were detected by a modified solid-phase minisequencing method. Mutations in codons 12 and 13 of K-RAS were detected with a digital polymerase chain reaction-based method. RESULTS TP53 gene mutations were detected in the tumor DNA of 30 patients, all of whom had the identical TP53 mutation in their stools. Tumors from three patients contained a noninherited deletion at the BAT26 locus, and the same alterations were identified in these patients' stool specimens. Nineteen of 50 tumors tested had a K-RAS mutation; identical mutations were detected in the paired stool DNA samples from eight patients. In no case was a mutation found in stool that was not also present in the primary tumor. Thus, the three genetic markers together detected 36 (71%) of 51 patients (95% confidence interval [CI] = 56% to 83%) with colorectal cancer and 36 (92%) of 39 patients (95% CI = 79% to 98%) whose tumors had an alteration. CONCLUSION We were able to detect the majority of colorectal cancers by analyzing stool DNA for just three genetic markers. Additional work is needed to determine the specificity of these genetic tests for detecting colorectal neoplasia in asymptomatic patients and to more precisely estimate the prevalence of the mutations and sensitivity of the assay.
Collapse
Affiliation(s)
- S M Dong
- Division of Head and Neck Cancer Research, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical School, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
DNA ligases join breaks in the phosphodiester backbone of DNA molecules and are used in many essential reactions within the cell. All DNA ligases follow the same reaction mechanism, but they may use either ATP or NAD+ as a cofactor. All Bacteria (eubacteria) contain NAD+-dependent DNA ligases, and the uniqueness of these enzymes to Bacteria makes them an attractive target for novel antibiotics. In addition to their NAD+-dependent enzymes, some Bacteria contain genes for putative ATP-dependent DNA ligases. The requirement for these different isozymes in Bacteria is unknown, but may be related to their utilization in different aspects of DNA metabolism. The putative ATP-dependent DNA ligases found in Bacteria are most closely related to proteins from Archaea and viruses. Phylogenetic analysis suggests that all NAD+-dependent DNA ligases are closely related, but the ATP-dependent enzymes have been acquired by Bacterial genomes on a number of separate occasions.
Collapse
Affiliation(s)
- A Wilkinson
- Molecular Biology Sector, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
63
|
Banér J, Nilsson M, Isaksson A, Mendel-Hartvig M, Antson DO, Landegren U. More keys to padlock probes: mechanisms for high-throughput nucleic acid analysis. Curr Opin Biotechnol 2001; 12:11-5. [PMID: 11167066 DOI: 10.1016/s0958-1669(00)00174-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the impending availability of total information about nucleic acid sequences in humans and other organisms, tools to investigate these sequences on a large scale assume increasing importance. Methods currently in use, however, cannot offer the required combination of high-throughput, sensitivity and specificity of detection. Padlock probes, circularizing oligonucleotides, may provide a means to detect, distinguish, quantitate and also locate very large numbers of DNA or RNA sequences. Recent developments in areas such as the biochemistry of ligation and characterization of ligases, methods to replicate circularized probes and the development of assays based on these principles augment the potential of padlock probes.
Collapse
Affiliation(s)
- J Banér
- The Beijer Laboratory, Department of Genetics and Pathology, Rudbeck Laboratory, Se-751 85, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
Major recent advances in molecular amplification in the past year were initial validation of two new amplification technologies (rolling circle amplification and Invader), a significant increase in the number of molecular diagnostic assays, achievement of amplification directly on microarrays (by strand displacement amplification and rolling circle amplification), and description of two new read-out probes (Scorpions and nanoparticles).
Collapse
Affiliation(s)
- B Schweitzer
- Molecular Staging Inc., 66 High Street, Guilford, CT 06437, USA.
| | | |
Collapse
|
65
|
Nilsson M, Antson DO, Barbany G, Landegren U. RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res 2001; 29:578-81. [PMID: 11139629 PMCID: PMC29667 DOI: 10.1093/nar/29.2.578] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ligase-mediated gene detection has proven valuable for detection and precise distinction of DNA sequence variants. We have recently shown that T4 DNA ligase can also be used to distinguish single nucleotide variants of RNA sequences. Here we describe parameters that influence RNA-templated DNA ligation by T4 DNA ligase. The reaction proceeds much more slowly, requiring more enzyme, compared to ligation of the same oligonucleotides hybridized to the corresponding DNA sequence. The reaction is inhibited at high concentrations of ATP and NaCl and both magnesium and manganese ions can support the reaction. We define reaction conditions where 80% of RNA target molecules can template a diagnostic ligation reaction. Ligase-mediated RNA detection should provide a useful mechanism for sensitive and accurate detection and distinction of RNA sequence variants.
Collapse
Affiliation(s)
- M Nilsson
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | | | |
Collapse
|
66
|
Nilsson M, Barbany G, Antson DO, Gertow K, Landegren U. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat Biotechnol 2000; 18:791-3. [PMID: 10888852 DOI: 10.1038/77367] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is important that RNA molecules representing members of gene families are distinguished in expression analyses, and even greater resolving power may be required to identify allelic variants of transcripts in order to investigate imprinting or to study the distribution of mutant genes in tissues. Ligase-mediated gene detection allows precise distinction of DNA sequence variants, but it is not known if ligases can also be used to distinguish variants of RNA sequences. Here we present conditions for efficient ligation of pairs of DNA oligonucleotides hybridizing next to one another on RNA strands, permitting discrimination of any single nucleotide probe-target mismatch by a factor of between 20- and 200-fold. The mechanism allows padlock probes to be used to distinguish single-nucleotide variants in RNA. Ligase-mediated gene detection could therefore provide highly sensitive and accurate ligase-mediated detection and distinction of RNA sequence variants in solution, on DNA microarrays, and in situ.
Collapse
Affiliation(s)
- M Nilsson
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
67
|
Sriskanda V, Kelman Z, Hurwitz J, Shuman S. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum. Nucleic Acids Res 2000; 28:2221-8. [PMID: 10871342 PMCID: PMC102631 DOI: 10.1093/nar/28.11.2221] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2000] [Revised: 04/05/2000] [Accepted: 04/05/2000] [Indexed: 11/12/2022] Open
Abstract
We report the production, purification and characterization of a DNA ligase encoded by the thermophilic archaeon Methanobacterium thermoautotrophicum. The 561 amino acid MTH: ligase catalyzed strand-joining on a singly nicked DNA in the presence of a divalent cation (magnesium, manganese or cobalt) and ATP (K(m) 1.1 microM). dATP can substitute for ATP, but CTP, GTP, UTP and NAD(+) cannot. MTH: ligase activity is thermophilic in vitro, with optimal nick-joining at 60 degrees C. Mutational analysis of the conserved active site motif I (KxDG) illuminated essential roles for Lys251 and Asp253 at different steps of the ligation reaction. Mutant K251A is unable to form the covalent ligase-adenylate intermediate (step 1) and hence cannot seal a 3'-OH/5'-PO(4) nick. Yet, K251A catalyzes phosphodiester bond formation at a pre-adenylated nick (step 3). Mutant D253A is active in ligase-adenylate formation, but defective in activating the nick via formation of the DNA-adenylate intermediate (step 2). D253A is also impaired in phosphodiester bond formation at a pre-adenylated nick. A profound step 3 arrest, with accumulation of high levels of DNA-adenylate, could be elicited for the wild-type MTH: ligase by inclusion of calcium as the divalent cation cofactor. MTH: ligase sediments as a monomer in a glycerol gradient. Structure probing by limited proteolysis suggested that MTH: ligase is a tightly folded protein punctuated by a surface-accessible loop between nucleotidyl transferase motifs III and IIIa.
Collapse
Affiliation(s)
- V Sriskanda
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
68
|
Favis R, Day JP, Gerry NP, Phelan C, Narod S, Barany F. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat Biotechnol 2000; 18:561-4. [PMID: 10802632 DOI: 10.1038/75452] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Array-based mutation detection methodology typically relies on direct hybridization of the fluorescently labeled query sequence to surface-bound oligonucleotide probes. These probes contain either small sequence variations or perfect-match sequence. The intensity of fluorescence bound to each oligonucleotide probe is intended to reveal which sequence is perfectly complementary to the query sequence. However, these approaches have not always been successful, especially for detection of small frameshift mutations. Here we describe a multiplex assay to detect small insertions and deletions by using a modified PCR to evenly amplify each amplicon (PCR/PCR), followed by ligase detection reaction (LDR). Mutations were identified by screening reaction products with a universal DNA microarray, which uncouples mutation detection from array hybridization and provides for high sensitivity. Using the three BRCA1 and BRCA2 founder mutations in the Ashkenazi Jewish population (BRCA1 185delAG; BRCA1 5382insC; BRCA2 6174delT) as a model system, the assay readily detected these mutations in multiplexed reactions. Our results demonstrate that universal microarray analysis of PCR/PCR/LDR products permits rapid identification of small insertion and deletion mutations in the context of both clinical diagnosis and population studies.
Collapse
Affiliation(s)
- R Favis
- Department of Microbiology, Hearst Microbiology Research Center and Strang Cancer Prevention Center, Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Ave., Box 62, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
69
|
Tong J, Barany F, Cao W. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus. Nucleic Acids Res 2000; 28:1447-54. [PMID: 10684941 PMCID: PMC111035 DOI: 10.1093/nar/28.6.1447] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An NAD(+)-dependent DNA ligase from the hyperthermophilic bacterium Aquifex aeolicus was cloned, expressed in Escherichia coli and purified to homogeneity. The enzyme is most active in slightly alkaline pH conditions with either Mg(2+)or Mn(2+)as the metal cofactor. Ca(2+)and Ni(2+)mainly support formation of DNA-adenylate intermediates. The catalytic cycle is characterized by a low k (cat)value of 2 min(-1)with concomitant accumulation of the DNA - adenylate intermediate when Mg(2+)is used as the metal cofactor. The ligation rates of matched substrates vary by up to 4-fold, but exhibit a general trend of T/A < or = G/C < C/G < A/T on both the 3'- and 5'-side of the nick. Consistent with previous studies on Thermus ligases, this Aquifex ligase exhibits greater discrimination against a mismatched base pair on the 3'-side of the nick junction. The requirement of 3' complementarity for a ligation reaction is reaffirmed by results from 1 nt insertions on either the 3'- or 5'-side of the nick. Furthermore, most of the unligatable 3' mismatched base pairs prohibit formation of the DNA-adenylate intermediate, indicating that the substrate adenylation step is also a control point for ligation fidelity. Unlike previously studied ATP ligases, gapped substrates cannot be ligated and intermediate accumulation is minimal, suggesting that complete elimination of base pair complementarity on one side of the nick affects substrate adenylation on the 5'-side of the nick junction. Relationships among metal cofactors, ligation products and intermediate, and ligation fidelity are discussed.
Collapse
Affiliation(s)
- J Tong
- Department of Microbiology and Immunology, Hearst Microbiology Research Center and Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
70
|
Lee JY, Chang C, Song HK, Moon J, Yang JK, Kim HK, Kwon ST, Suh SW. Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications. EMBO J 2000; 19:1119-29. [PMID: 10698952 PMCID: PMC305650 DOI: 10.1093/emboj/19.5.1119] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA ligases catalyze the crucial step of joining the breaks in duplex DNA during DNA replication, repair and recombination, utilizing either ATP or NAD(+) as a cofactor. Despite the difference in cofactor specificity and limited overall sequence similarity, the two classes of DNA ligase share basically the same catalytic mechanism. In this study, the crystal structure of an NAD(+)-dependent DNA ligase from Thermus filiformis, a 667 residue multidomain protein, has been determined by the multiwavelength anomalous diffraction (MAD) method. It reveals highly modular architecture and a unique circular arrangement of its four distinct domains. It also provides clues for protein flexibility and DNA-binding sites. A model for the multidomain ligase action involving large conformational changes is proposed.
Collapse
Affiliation(s)
- J Y Lee
- Center for Molecular Catalysis, Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Housby JN, Thorbjarnardóttir SH, Jónsson ZO, Southern EM. Optimised ligation of oligonucleotides by thermal ligases: comparison of Thermus scotoductus and Rhodothermus marinus DNA ligases to other thermophilic ligases. Nucleic Acids Res 2000; 28:E10. [PMID: 10637340 PMCID: PMC102565 DOI: 10.1093/nar/28.3.e10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe the characterisation of four thermo-stable NAD(+)-dependent DNA ligases, from Thermus thermophilus (Tth), Thermus scotoductus (Ts), Rhodothermus marinus (Rm) and Thermus aquaticus (Taq), by an assay which measures ligation rate and mismatch discrimination. Complete libraries of octa-, nona- and decanucleotides were used as substrates. The assay comprised the polymerisation of oligo-nucleotides initiated from a 17 base 'primer', using M13mp18 ssDNA as template. Polymers of ligation products were analysed by polyacrylamide gel electro-phoresis. Under optimum conditions, the enzymes produced polymers ranging from 8 to 16 additions; there was variation between enzymes and the length of the oligonucleotides had a strong effect. The optimal total oligonucleotide concentration for each library was approximately 4 nmol. We compared the rates of ligation between the four ligases using an octanucleotide library as substrate. By this criterion, the Ts and Rm ligases are far more active compared to the more commonly available thermostable ligases.
Collapse
Affiliation(s)
- J N Housby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|