51
|
Zhu DM, Evans RK. Molecular mechanism and thermodynamics study of plasmid DNA and cationic surfactants interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3735-43. [PMID: 16584250 DOI: 10.1021/la052161s] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The molecular mechanism and thermodynamics of the interactions between plasmid DNA and cationic surfactants were investigated by isothermal titration calorimetry (ITC), dynamic light scattering, surface tension measurements, and UV spectroscopy. The cationic surfactants studied include benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, cetylpyridinium chloride, and cetyltrimethylammonium chloride. The results indicate a critical aggregation concentration (cac) of a surfactant: above the cac the surfactant forms aggregates with plasmid DNA; below the cac, however, there is no detectable interaction between DNA and surfactant. Surfactants with longer hydrocarbon chains have smaller cac, indicating that hydrophobic interaction plays a key role in DNA-surfactant complexation. Moreover, an increase in ionic strength (I) increases the cac but decreases the critical micellization concentration (cmc). These opposite effects lead to a critical ionic strength (I(c)) at which cac = cmc; when I < I(c), cac < cmc; when I > I(c), DNA does not form complexes with surfactant micelles. In the interaction DNA exhibits a pseudophase property as the cac is a constant over a wide range of DNA concentrations. ITC data showed that the reaction is solely driven by entropy because both deltaH(o) (approximately 2-6 kJ mol(-1)) and deltaS(o) (approximately 70-110 J K(-1) mol(-1)) have positive values. In the complex, the molar ratio of DNA phosphate to surfactant is in the range of 0.63-1.05. The reaction forms sub-micrometer-sized primary particles; those aggregate at high surfactant concentrations. Taken together, the results led to an inference that there is no interaction between surfactant monomers and DNA molecules and demonstrated that DNA-cationic surfactant interactions are mediated by the hydrophobic interactions of surfactant molecules and counterion binding of DNA phosphates to the cationic surfactant aggregates.
Collapse
Affiliation(s)
- De-Min Zhu
- Biologics and Vaccines, Pharmaceutical Research and Development, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania 19486, USA.
| | | |
Collapse
|
52
|
Liberi G, Cotta-Ramusino C, Lopes M, Sogo J, Conti C, Bensimon A, Foiani M. Methods to study replication fork collapse in budding yeast. Methods Enzymol 2006; 409:442-62. [PMID: 16793417 DOI: 10.1016/s0076-6879(05)09026-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Replication of the eukaryotic genome is a difficult task, as cells must coordinate chromosome replication with chromatin remodeling, DNA recombination, DNA repair, transcription, cell cycle progression, and sister chromatid cohesion. Yet, DNA replication is a potentially genotoxic process, particularly when replication forks encounter a bulge in the template: forks under these conditions may stall and restart or even break down leading to fork collapse. It is now clear that fork collapse stimulates chromosomal rearrangements and therefore represents a potential source of DNA damage. Hence, the comprehension of the mechanisms that preserve replication fork integrity or that promote fork collapse are extremely relevant for the understanding of the cellular processes controlling genome stability. Here we describe some experimental approaches that can be used to physically visualize the quality of replication forks in the yeast S. cerevisiae and to distinguish between stalled and collapsed forks.
Collapse
Affiliation(s)
- Giordano Liberi
- F.I.R.C. Institute of Molecular Oncology Foundation and DSBB-University of Milan, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
Prado F, Aguilera A. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol 2005; 25:1526-36. [PMID: 15684401 PMCID: PMC548009 DOI: 10.1128/mcb.25.4.1526-1536.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA replication can be a source of genetic instability. Given the tight connection between DNA replication and nucleosome assembly, we analyzed the effect of a partial depletion of histone H4 on genetic instability mediated by homologous recombination. A Saccharomyces cerevisiae strain was constructed in which the expression of histone H4 was driven by the regulated tet promoter. In agreement with defective nucleosome assembly, partial depletion of histone H4 led to subtle changes in plasmid superhelical density and chromatin sensitivity to micrococcal nuclease. Under these conditions, homologous recombination between ectopic DNA sequences was increased 20-fold above the wild-type levels. This hyperrecombination was not associated with either defective repair or transcription but with an accumulation of recombinogenic DNA lesions during the S and G(2)/M phases, as determined by an increase in the proportion of budded cells containing Rad52-yellow fluorescent protein foci. Consistently, partial depletion of histone H4 caused a delay during the S and G(2)/M phases. Our results suggest that histone deposition defects lead to the formation of recombinogenic DNA structures during replication that increase genomic instability.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | |
Collapse
|
54
|
Prado F, Aguilera A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J 2005; 24:1267-76. [PMID: 15775982 PMCID: PMC556405 DOI: 10.1038/sj.emboj.7600602] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/07/2005] [Indexed: 01/27/2023] Open
Abstract
Homologous recombination safeguards genome integrity, but it can also cause genome instability of important consequences for cell proliferation and organism development. Transcription induces recombination, as shown in prokaryotes and eukaryotes for both spontaneous and developmentally regulated events such as those responsible for immunoglobulin class switching. Deciphering the molecular basis of transcription-associated recombination (TAR) is important in understanding genome instability. Using novel plasmid-borne recombination constructs in Saccharomyces cerevisiae, we show that RNA polymerase II (RNAPII) transcription induces recombination by impairing replication fork progression. RNAPII transcription concomitant to head-on oncoming replication causes a replication fork pause (RFP) that is linked to a significant increase in recombination. However, transcription that is codirectional with replication has little effect on replication fork progression and recombination. Transcription occurring in the absence of replication does not affect either recombination or replication fork progression. The Rrm3 helicase, which is required for replication fork progression through nucleoprotein complexes, facilitates replication through the transcription-dependent RFP site and reduces recombination. Therefore, our work provides evidence that one mechanism responsible for TAR is RNAP-mediated replication impairment.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain. Tel.: +34 95 455 7107; Fax: +34 95 455 7104; E-mail:
| |
Collapse
|
55
|
Burkhalter MD, Sogo JM. rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol Cell 2004; 15:409-21. [PMID: 15304221 DOI: 10.1016/j.molcel.2004.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/18/2004] [Accepted: 05/24/2004] [Indexed: 02/04/2023]
Abstract
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Institute of Cell Biology, Department of Biology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
56
|
Lopes M, Cotta-Ramusino C, Liberi G, Foiani M. Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol Cell 2004; 12:1499-510. [PMID: 14690603 DOI: 10.1016/s1097-2765(03)00473-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cells overcome intra-S DNA damage and replication impediments by coupling chromosome replication to sister chromatid-mediated recombination and replication-bypass processes. Further, molecular junctions between replicated molecules have been suggested to assist sister chromatid cohesion until anaphase. Using two-dimensional gel electrophoresis, we have identified, in yeast cells, replication-dependent X-shaped molecules that appear during origin activation, branch migrate, and distribute along the replicon through a mechanism influenced by the rate of fork progression. Their formation is independent of Rad51- and Rad52-mediated homologous recombination events and is not affected by DNA damage or replication blocks. Further, in hydroxyurea-treated rad53 mutants, altered in the replication checkpoint, the branched molecules progressively degenerate and likely contribute to generate pathological structures. We suggest that cells couple sister chromatid tethering with replication initiation by generating specialized joint molecules resembling hemicatenanes: this process might prime cohesion and assist sister chromatid-mediated recombination and replication events.
Collapse
Affiliation(s)
- Massimo Lopes
- Istituto F.I.R.C. di Oncologia Molecolare, Via Adamello 16, Milano 20141, Italy
| | | | | | | |
Collapse
|
57
|
Wellinger RE, Schär P, Sogo JM. Rad52-independent accumulation of joint circular minichromosomes during S phase in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:6363-72. [PMID: 12944465 PMCID: PMC193689 DOI: 10.1128/mcb.23.18.6363-6372.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 04/02/2003] [Accepted: 06/20/2003] [Indexed: 01/10/2023] Open
Abstract
We investigated the formation of X-shaped molecules consisting of joint circular minichromosomes (joint molecules) in Saccharomyces cerevisiae by two-dimensional neutral/neutral gel electrophoresis of psoralen-cross-linked DNA. The appearance of joint molecules was found to be replication dependent. The joint molecules had physical properties reminiscent of Holliday junctions or hemicatenanes, as monitored by strand displacement, branch migration, and nuclease digestion. Physical linkage of the joint molecules was detected along the entire length of the minichromosome and most likely involved newly replicated sister chromatids. Surprisingly, the formation of joint molecules was found to be independent of Rad52p as well as of other factors associated with a function in homologous recombination or in the resolution of stalled replication intermediates. These findings thus imply the existence of a nonrecombinational pathway(s) for the formation of joint molecules during the process of DNA replication or minichromosome segregation.
Collapse
Affiliation(s)
- Ralf Erik Wellinger
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
58
|
Gerton JL, DeRisi JL. Mnd1p: an evolutionarily conserved protein required for meiotic recombination. Proc Natl Acad Sci U S A 2002; 99:6895-900. [PMID: 12011448 PMCID: PMC124500 DOI: 10.1073/pnas.102167899] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used a functional genomics approach to identify a gene required for meiotic recombination, YGL183c or MND1. MND1 was spliced in meiotic cells, extending the annotated YGL183c ORF N terminus by 45 aa. Saccharomyces cerevisiae mnd1-1 mutants, in which the majority of the MND1 coding sequence was removed, arrested before the first meiotic division with a phenotype reminiscent of dmc1 mutants. Physical and genetic analysis showed that these cells initiated recombination, but did not form heteroduplex DNA or double Holliday junctions, suggesting that Mnd1p is involved in strand invasion. Orthologs of MND1 were identified in protists, several yeasts, plants, and mammals, suggesting that its function has been conserved throughout evolution.
Collapse
Affiliation(s)
- Jennifer L Gerton
- Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, Box 0448, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
59
|
Allers T, Lichten M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 2001; 106:47-57. [PMID: 11461701 DOI: 10.1016/s0092-8674(01)00416-0] [Citation(s) in RCA: 520] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unitary models of meiotic recombination postulate that a central intermediate containing Holliday junctions is resolved to generate either noncrossover or crossover recombinants, both of which contain heteroduplex DNA. Contrary to this expectation, we find that during meiosis in Saccharomyces cerevisiae, noncrossover heteroduplex products are formed at the same time as Holliday junction intermediates. Crossovers appear later, when these intermediates are resolved. Furthermore, noncrossover and crossover recombination are regulated differently. ndt80 mutants arrest in meiosis with unresolved Holliday junction intermediates and very few crossovers, while noncrossover heteroduplex products are formed at normal levels and with normal timing. These results suggest that crossovers are formed by resolution of Holliday junction intermediates, while most noncrossover recombinants arise by a different, earlier pathway.
Collapse
Affiliation(s)
- T Allers
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
60
|
Hunter N, Kleckner N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 2001; 106:59-70. [PMID: 11461702 DOI: 10.1016/s0092-8674(01)00430-5] [Citation(s) in RCA: 531] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We identify a novel meiotic recombination intermediate, the single-end invasion (SEI), which occurs during the transition from double-strand breaks (DSBs) to double-Holliday junction (dHJs). SEIs are products of strand exchange between one DSB end and its homolog. The structural asymmetry of SEIs indicates that the two ends of a DSB interact with the homolog in temporal succession, via structurally (and thus biochemically) distinct processes. SEIs arise surprisingly late in prophase, concomitant with synaptonemal complex (SC) formation. These and other data imply that SEIs are preceded by nascent DSB-partner intermediates, which then undergo selective differentiation into crossover and noncrossover types, with SC formation and strand exchange as downstream consequences. Late occurrence of strand exchange provides opportunity to reverse recombinational fate even after homologs are coaligned and/or synapsed. This feature can explain crossover suppression between homeologous and structurally heterozygous chromosomes.
Collapse
Affiliation(s)
- N Hunter
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
61
|
Abstract
The formation of heteroduplex DNA features prominently in all models for homologous recombination. A central intermediate in the current double-strand break repair model contains two Holliday junctions flanking a region of heteroduplex DNA. Studies of yeast meiosis have identified such intermediates but failed to detect associated heteroduplex DNA. We show here that these intermediates contain heteroduplex DNA, providing an important validation of the double-strand break repair model. However, we also detect intermediates where both Holliday junctions are to one side of the initiating DSB site, while the intervening region shows no evidence of heteroduplex DNA. Such structures are not easily accommodated by the canonical version of the double-strand break repair model.
Collapse
Affiliation(s)
- T Allers
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|