51
|
Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J Virol 2007; 81:9437-42. [PMID: 17581995 PMCID: PMC1951428 DOI: 10.1128/jvi.02216-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 06/12/2007] [Indexed: 11/20/2022] Open
Abstract
The fate of most human endogenous retroviruses (HERVs) has been to undergo recombinational deletion. This process involves homologous recombination between the flanking long terminal repeats (LTRs) of a full-length element, leaving a relic structure in the genome termed a solo LTR. We examined loci in one family, HERV-K(HML2), and found that the deletion rate decreased markedly with age: the rate among recently integrated loci was almost 200-fold higher than that among loci whose insertion predated the divergence of humans and chimpanzees (8 x 10(-5) and 4 x 10(-7) recombinational deletion events per locus per generation, respectively). One hypothesis for this finding is that increasing mutational divergence between the flanking LTRs reduces the probability of homologous recombination and thus the rate of solo LTR formation. Consistent with this idea, we were able to replicate the observed rates by a simulation in which the probability of recombinational deletion was reduced 10-fold by a single mutation and 100-fold by any additional mutations. We also discuss the evidence for other factors that may influence the relationship between locus age and the rate of deletion, for example, host recombination rates and selection, and highlight the consequences of recombinational deletion for dating recent HERV integrations.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
52
|
Sperber GO, Airola T, Jern P, Blomberg J. Automated recognition of retroviral sequences in genomic data--RetroTector. Nucleic Acids Res 2007; 35:4964-76. [PMID: 17636050 PMCID: PMC1976444 DOI: 10.1093/nar/gkm515] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic genomes contain many endogenous retroviral sequences (ERVs). ERVs are often severely mutated, therefore difficult to detect. A platform independent (Java) program package, RetroTector© (ReTe), was constructed. It has three basic modules: (i) detection of candidate long terminal repeats (LTRs), (ii) detection of chains of conserved retroviral motifs fulfilling distance constraints and (iii) attempted reconstruction of original retroviral protein sequences, combining alignment, codon statistics and properties of protein ends. Other features are prediction of additional open reading frames, automated database collection, graphical presentation and automatic classification. ReTe favors elements >1000-bp long due to its dependence on order of and distances between retroviral fragments. It detects single or low-copy-number elements. ReTe assigned a ‘retroviral’ score of 890–2827 to 10 exogenous retroviruses from seven genera, and accurately predicted their genes. In a simulated model, ReTe was robust against mutational decay. The human genome was analyzed in 1–2 days on a LINUX cluster. Retroviral sequences were detected in divergent vertebrate genomes. Most ReTe detected chains were coincident with Repeatmasker output and the HERVd database. ReTe did not report most of the evolutionary old HERV-L related and MalR sequences, and is not yet tailored for single LTR detection. Nevertheless, ReTe rationally detects and annotates many retroviral sequences.
Collapse
Affiliation(s)
- Göran O. Sperber
- Department of Neuroscience, Physiology and Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala and Department of Biology and Chemical Engineering, Mälardalens Högskola, Eskilstuna, Sweden
| | - Tove Airola
- Department of Neuroscience, Physiology and Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala and Department of Biology and Chemical Engineering, Mälardalens Högskola, Eskilstuna, Sweden
| | - Patric Jern
- Department of Neuroscience, Physiology and Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala and Department of Biology and Chemical Engineering, Mälardalens Högskola, Eskilstuna, Sweden
| | - Jonas Blomberg
- Department of Neuroscience, Physiology and Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala and Department of Biology and Chemical Engineering, Mälardalens Högskola, Eskilstuna, Sweden
- *To whom correspondence should be addressed.+46 18 611 55 93+46 18 55 10 12
| |
Collapse
|
53
|
Contreras-Galindo R, López P, Vélez R, Yamamura Y. HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro. AIDS Res Hum Retroviruses 2007; 23:116-22. [PMID: 17263641 DOI: 10.1089/aid.2006.0117] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies to HERV-K antigens have been linked to HIV-1 infection and expression of HERV-K proteins generates T-cell cytotoxic responses in many cancers. HERV-K RNA and protein abundance was measured in HIV-1-infected and control cells. In vitro exposure of HIV-1 laboratory-adapted and primary isolates on U87MG cells increased the expression of HERV-K RNA in a dose-dependent manner. HERV-K RNA and protein burdens were significantly increased in HIV-1-producing H9 cell lines compared to H9 cells. The expression of HERV-K was synergistically increased in HIV-1-infected PBMCs after stimulation with PMA/ionomycin. Furthermore, the expression of HERV-K in PBMCs, and particularly in CD4(+) T cells, was higher in HIV-1 patients compared to control subjects. The expression of HERV-K might be related to HIV-1 pathogenesis and AIDS-associated cancers.
Collapse
|
54
|
Contreras-Galindo R, Kaplan MH, Markovitz DM, Lorenzo E, Yamamura Y. Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals. AIDS Res Hum Retroviruses 2006; 22:979-84. [PMID: 17067267 DOI: 10.1089/aid.2006.22.979] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately 8% of the human genome sequence is composed by human endogenous retroviruses (HERVs), most of which are defective. HERV-K(HML-2) is the youngest and most active family and has maintained some proviruses with intact open reading frames (ORFs) that code for viral proteins that may assemble into viral particles. Many HERV-K(HML-2) sequences are polymorphic in humans (present in some individuals but not in others) and probably many others may be unfixed (not inserted permanently in a specific chromosomal location of the human genome). In the present study HIV-1 and HCV-1-positive plasma samples were screened for the presence of HERV-K(HML-2) RNA in an RT-PCR using HERV-K pol specific primers. HERV-K(HML-2) viral RNA sequences were found almost universally in HIV-1(+) plasma samples (95.33%) but were rarely detected in HCV-1 patients (5.2%) or control subjects (7.69%). Other HERV-K(HML-2) viral segments of the RNA genome including gag, prt, and both env regions, surface (su), and transmembrane (tm) were amplified from HERV-K pol-positive plasma of HIV-1 patients. Type 1 and type 2 HERV-K(HML- 2) viral RNA genomes were found to coexist in the same plasma of HIV-1 patients. These results suggest the HERV-K(HML-2) viral particles are induced in HIV-1-infected individuals.
Collapse
|
55
|
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 2006; 34:5402-15. [PMID: 17012276 PMCID: PMC1636468 DOI: 10.1093/nar/gkl655] [Citation(s) in RCA: 1879] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
G-quadruplexes are higher-order DNA and RNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Potential quadruplex sequences have been identified in G-rich eukaryotic telomeres, and more recently in non-telomeric genomic DNA, e.g. in nuclease-hypersensitive promoter regions. The natural role and biological validation of these structures is starting to be explored, and there is particular interest in them as targets for therapeutic intervention. This survey focuses on the folding and structural features on quadruplexes formed from telomeric and non-telomeric DNA sequences, and examines fundamental aspects of topology and the emerging relationships with sequence. Emphasis is placed on information from the high-resolution methods of X-ray crystallography and NMR, and their scope and current limitations are discussed. Such information, together with biological insights, will be important for the discovery of drugs targeting quadruplexes from particular genes.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Neidle
- To whom correspondence should be addressed. Tel: +44 207 753 5969; Fax: +44 207 753 5970;
| |
Collapse
|
56
|
Romano CM, Ramalho RF, Zanotto PMDA. Tempo and mode of ERV-K evolution in human and chimpanzee genomes. Arch Virol 2006; 151:2215-28. [PMID: 16830071 DOI: 10.1007/s00705-006-0792-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 04/24/2006] [Indexed: 11/25/2022]
Abstract
Several families of endogenous retrovirus (ERV) exist in copious numbers in the genomes of primate species. Therefore, we undertook a systematic search for endogenous retrovirus sequences from the ERV-K family, comparing across both human (Homo sapiens) and chimpanzee (Pan troglodytes) genomes. Using conserved motifs of the ERV-K as query we identified and characterized 76 complete ERV-K elements, 54 in human (HERV-K), 34 of which were described previously, and 21 in the chimpanzee (CERV-K). Phylogenetic analysis using coding regions and LTRs showed the existence of two main branches. Group I was the most heterogeneous and had an average integration time of 18.3 MYBP (million years before present), using rates ranging from 1.5 to 4.0 x 10(-9) s/s/y (substitution per site per year). Group O/N integrated around 19.4 MYBP and nested Group N integrated about 14 MYBP. We found evidence for strong positive selection on the gag, pol and env coding regions and for A/T hypermutation. Our data suggest that the endogenous elements were possibly involved in chromosomal rearrangements and retained a great deal of information from their active stage, most likely as a consequence of host interactions. This study also contributes to the annotation effort of both human and chimpanzee genomes.
Collapse
Affiliation(s)
- C M Romano
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute - ICB II, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
57
|
Katzourakis A, Rambaut A, Pybus OG. The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 2005; 13:463-8. [PMID: 16109487 DOI: 10.1016/j.tim.2005.08.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/22/2005] [Accepted: 08/08/2005] [Indexed: 11/23/2022]
Abstract
Endogenous retroviruses (ERVs) are vertically transmitted intragenomic elements derived from integrated retroviruses. ERVs can proliferate within the genome of their host until they either acquire inactivating mutations or are lost by recombinational deletion. We present a model that unifies current knowledge of ERV biology into a single evolutionary framework. The model predicts the possible long-term outcomes of retroviral germline infection and can account for the variable patterns of observed ERV genetic diversity. We hope the model will provide a useful framework for understanding ERV evolution, enabling the testing of evolutionary hypotheses and the estimation of parameters governing ERV proliferation.
Collapse
Affiliation(s)
- Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | | | |
Collapse
|
58
|
Belshaw R, Dawson ALA, Woolven-Allen J, Redding J, Burt A, Tristem M. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005; 79:12507-14. [PMID: 16160178 PMCID: PMC1211540 DOI: 10.1128/jvi.79.19.12507-12514.2005] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/01/2005] [Indexed: 11/20/2022] Open
Abstract
The published human genome sequence contains many thousands of endogenous retroviruses (HERVs) but all are defective, containing nonsense mutations or major deletions. Only the HERV-K(HML2) family has been active since the divergence of humans and chimpanzees; it contains many members that are human specific, as well as several that are insertionally polymorphic (an inserted element present only in some human individuals). Here we perform a genomewide survey of insertional polymorphism levels in this family by using the published human genome sequence and a diverse sample of 19 humans. We find that there are 113 human-specific HERV-K(HML2) elements in the human genome sequence, 8 of which are insertionally polymorphic (11 if we extrapolate to those within regions of the genome that were not suitable for amplification). The average rate of accumulation since the divergence with chimpanzees is thus approximately 3.8 x 10(-4) per haploid genome per generation. Furthermore, we find that the number of polymorphic elements is not significantly different from that predicted by a standard population genetic model that assumes constant activity of the family until the present. This suggests to us that the HERV-K(HML2) family may be active in present-day humans. Active (replication-competent) elements are likely to have inserted very recently and to be present at low allele frequencies, and they may be causing disease in the individuals carrying them. This view of the family from a population perspective rather than a genome perspective will inform the current debate about a possible role of HERV-K(HML2) in human disease.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Biological Sciences, Imperial College, Ascot, Berks, United Kingdom.
| | | | | | | | | | | |
Collapse
|
59
|
Hughes JF, Coffin JM. Human endogenous retroviral elements as indicators of ectopic recombination events in the primate genome. Genetics 2005; 171:1183-94. [PMID: 16157677 PMCID: PMC1456821 DOI: 10.1534/genetics.105.043976] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HERV elements make up a significant fraction of the human genome and, as interspersed repetitive elements, have the capacity to provide substrates for ectopic recombination and gene conversion events. To understand the extent to which these events occur and gain further insight into the complex evolutionary history of these elements in our genome, we undertook a phylogenetic study of the long terminal repeat sequences of 15 HERV-K(HML-2) elements in various primate species. This family of human endogenous retroviruses first entered the primate genome between 35 and 45 million years ago. Throughout primate evolution, these elements have undergone bursts of amplification. From this analysis, which is the largest-scale study of HERV sequence dynamics during primate evolution to date, we were able to detect intraelement gene conversion and recombination at five HERV-K loci. We also found evidence for replacement of an ancient element by another HERV-K provirus, apparently reflecting an occurrence of retroviral integration by homologous recombination. The high frequency of these events casts doubt on the accuracy of integration time estimates based only on divergence between retroelement LTRs.
Collapse
Affiliation(s)
- Jennifer F Hughes
- Department of Molecular Microbiology and Program in Genetics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
60
|
|
61
|
Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 2005; 22:814-7. [PMID: 15659556 DOI: 10.1093/molbev/msi088] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are at least 31 families of human endogenous retroviruses (HERVs), each derived from an independent infection by an exogenous virus. Using evidence of purifying selection on HERV genes, we have shown previously that reinfection by replication-competent elements was the predominant mechanism of copying in some families. Here we analyze the evolution of 17 HERV families using d(N)/d(S) ratios and find a positive relationship between copy number and the use of additional copying mechanisms. All families with more than 200 elements have also used one or more of the following mechanisms: (1) complementation in trans (elements copied by other elements of the same family; HERV-H and ERV-9), (2) retrotransposition in cis (elements copying themselves) within germ-line cells (HERV-K(HML3)), and (3) being copied by non-HERV machinery (HERV-W). We discuss why these other mechanisms are rare in most families and suggest why complementation in trans is significant only in the larger families.
Collapse
|
62
|
Abstract
SUMMARY HESAS (HERVs Expression and Structure Analysis System) database was developed to understand the human endogenous retroviruses (HERVs) that have an effect on the expression of human functional genes. The database products are generated by the exon-based expressed sequence tag clustering and reconstructing of partial HERV structures that result from various mutations during primate evolution. The expression types were classified according to the existence of splicing, transcriptional start and polyadenylation signal sites. The database currently contains HERV information on 26,981 human genes of exon-intron structure. The HERV elements were inserted into 17,317 of these genes and linked to expression with 898 genes. AVAILABILITY http://www.primate.or.kr/HESAS CONTACT: khs307@pusan.ac.kr.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- PBBRC, Interdisciplinary Research Program of Bioinformatics, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | | | | | | |
Collapse
|
63
|
Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology 2004; 1:32. [PMID: 15476554 PMCID: PMC524368 DOI: 10.1186/1742-4690-1-32] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/11/2004] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. RESULTS By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs) and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV) while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD). CONCLUSIONS This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.
Collapse
Affiliation(s)
- Palle Villesen
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Lars Aagaard
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Carsten Wiuf
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus, Denmark
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus, Denmark
| |
Collapse
|
64
|
Jern P, Sperber GO, Blomberg J. Definition and variation of human endogenous retrovirus H. Virology 2004; 327:93-110. [PMID: 15327901 DOI: 10.1016/j.virol.2004.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/02/2004] [Accepted: 06/16/2004] [Indexed: 10/26/2022]
Abstract
We defined the abundant human endogenous retrovirus group HERV-H based on pol similarity. Among 3661 pol-containing elements, 1124 integrations were similar to HERV-H RGH2 pol using translated pol sequences. A clustering procedure lessened these to 234 representatives, amenable to detailed study. Among the 1124, 926 clustered into HERV-H and 106 into adjacent HERV-H-like, the remainder being more distant to HERV-H. The HERV-H group was divided into RTVLH2-like (705 elements) and RGH2-like (77 elements) subgroups. Among 926 HERV-H, LTR differences were 1-33%, 10% had env, 78% had gag, 66% had a histidine primer binding site (PBS), and 3% (both subgroups) had a phenylalanine PBS. Allelic differences in env were studied using a convenient temperature gradient gel electrophoresis (TGGE) method and a genomic single nucleotide polymorphism (SNP) search. A pattern of abundant defective elements and less abundant less defective ones led us to formulate a "midwife" master model where more complete elements help the others in trans to transpose.
Collapse
Affiliation(s)
- Patric Jern
- Section of Virology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden.
| | | | | |
Collapse
|
65
|
Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M. Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A 2004; 101:4894-9. [PMID: 15044706 PMCID: PMC387345 DOI: 10.1073/pnas.0307800101] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous retrovirus (ERV) families are derived from their exogenous counterparts by means of a process of germ-line infection and proliferation within the host genome. Several families in the human and mouse genomes now consist of many hundreds of elements and, although several candidates have been proposed, the mechanism behind this proliferation has remained uncertain. To investigate this mechanism, we reconstructed the ratio of nonsynonymous to synonymous changes and the acquisition of stop codons during the evolution of the human ERV family HERV-K(HML2). We show that all genes, including the env gene, which is necessary only for movement between cells, have been under continuous purifying selection. This finding strongly suggests that the proliferation of this family has been almost entirely due to germ-line reinfection, rather than retrotransposition in cis or complementation in trans, and that an infectious pool of endogenous retroviruses has persisted within the primate lineage throughout the past 30 million years. Because many elements within this pool would have been unfixed, it is possible that the HERV-K(HML2) family still contains infectious elements at present, despite their apparent absence in the human genome sequence. Analysis of the env gene of eight other HERV families indicated that reinfection is likely to be the most common mechanism by which endogenous retroviruses proliferate in their hosts.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berks SL5 7PY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
66
|
Borisenko LG, Rynditch AV, Bernardi G. Distribution and expression of chicken endogenous retroviruses in the host genome. ACTA ACUST UNITED AC 2004. [DOI: 10.7124/bc.000690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- L. G. Borisenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. V. Rynditch
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - G. Bernardi
- Laboratorio di Evoluzione Molecolare, Stazione Zoologica Anton Dohrn
| |
Collapse
|
67
|
Paces J, Pavlícek A, Zika R, Kapitonov VV, Jurka J, Paces V. HERVd: the Human Endogenous RetroViruses Database: update. Nucleic Acids Res 2004; 32:D50. [PMID: 14681356 PMCID: PMC308809 DOI: 10.1093/nar/gkh075] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An elaboration of HERVd (http://herv.img.cas.cz) is being carried out in two directions. One of them is the integration and better classification of families that diverge considerably from typical retroviral genomes. This leads to a more precise identification of members with individual families. The second improvement is better accessibility of the database and connection with human genome annotation.
Collapse
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo 2, CZ-16637 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
68
|
Babcock M, Pavlicek A, Spiteri E, Kashork CD, Ioshikhes I, Shaffer LG, Jurka J, Morrow BE. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. Genome Res 2004; 13:2519-32. [PMID: 14656960 PMCID: PMC403794 DOI: 10.1101/gr.1549503] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Low-copy repeats, or segmental duplications, are highly dynamic regions in the genome. The low-copy repeats on chromosome 22q11.2 (LCR22) are a complex mosaic of genes and pseudogenes formed by duplication processes; they mediate chromosome rearrangements associated with velo-cardio-facial syndrome/DiGeorge syndrome, der(22) syndrome, and cat-eye syndrome. The ability to trace the substrates and products of recombination events provides a unique opportunity to identify the mechanisms responsible for shaping LCR22s. We examined the genomic sequence of known LCR22 genes and their duplicated derivatives. We found Alu (SINE) elements at the breakpoints in the substrates and at the junctions in the truncated products of recombination for USP18, GGT, and GGTLA, consistent with Alu-mediated unequal crossing-over events. In addition, we were able to trace a likely interchromosomal Alu-mediated fusion between IGSF3 on 1p13.1 and GGT on 22q11.2. Breakpoints occurred inside Alu elements as well as in the 5' or 3' ends of them. A possible stimulus for the 5' or 3' terminal rearrangements may be the high sequence similarities between different Alu elements, combined with a potential recombinogenic role of retrotransposon target-site duplications flanking the Alu element, containing potentially kinkable DNA sites. Such sites may represent focal points for recombination. Thus, genome shuffling by Alu-mediated rearrangements has contributed to genome architecture during primate evolution.
Collapse
Affiliation(s)
- Melanie Babcock
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve. ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes. As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution. Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced. This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated. The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera. Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed.
Collapse
Affiliation(s)
- Robert Gifford
- Department of Biological Sciences, Imperial College, Silwood Park, Buckhurst Road, Ascot Berkshire, SL5 7PY, UK
| | | |
Collapse
|
70
|
Brosius J. The contribution of RNAs and retroposition to evolutionary novelties. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
71
|
Pavlícek A, Paces J, Zíka R, Hejnar J. Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene 2002; 300:189-94. [PMID: 12468100 DOI: 10.1016/s0378-1119(02)01047-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deciphering the human genome includes reliable identification and structural characterization of individual retrotransposon elements. The most active group of autonomous transposable elements, the long interspersed nuclear elements (LINE), transpose themselves as well as other RNAs, including those of human endogenous retroviruses (HERV). During this transposition, however, the LINE-encoded reverse transcriptase (RT) often abortively dissociates from the RNA template, leaving a prematurely terminated, 5' truncated copy. We have analyzed the length distributions of LINEs and of processed pseudogenes derived from HERV-W. As expected, we have found that the majority of 5' truncated LINEs and HERV-W processed pseudogenes show a prevalence of very short elements terminated close to the 3' end. On the other hand, the number of complete elements is far above the expectation. The characteristic distribution in both cases indicates two important conclusions: (i) dissociation of LINE RT from the template cannot be fully explained by low processivity of RT modelled as a stochastic, Poisson-type process. (ii) Currently cited numbers of pseudogenes within the human genome are underestimated, since a large percentage of pseudogenes are terminated in the 3' untranslated region and remain undetectable in translated homology searches of protein databases against the human genome.
Collapse
Affiliation(s)
- Adam Pavlícek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, CZ-16637, Czech Republic
| | | | | | | |
Collapse
|
72
|
Pavlícek A, Paces J, Elleder D, Hejnar J. Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res 2002; 12:391-9. [PMID: 11875026 PMCID: PMC155283 DOI: 10.1101/gr.216902] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report here the presence of numerous processed pseudogenes derived from the W family of endogenous retroviruses in the human genome. These pseudogenes are structurally colinear with the retroviral mRNA followed by a poly(A) tail. Our analysis of insertion sites of HERV-W processed pseudogenes shows a strong preference for the insertion motif of long interspersed nuclear element (LINE) retrotransposons. The genomic distribution, stability during evolution, and frequent truncations at the 5' end resemble those of the pseudogenes generated by LINEs. We therefore suggest that HERV-W processed pseudogenes arose by multiple and independent LINE-mediated retrotransposition of retroviral mRNA. These data document that the majority of HERV-W copies are actually nontranscribed promoterless pseudogenes. The current search for HERV-Ws associated with several human diseases should concentrate on a small subset of transcriptionally competent elements.
Collapse
Affiliation(s)
- Adam Pavlícek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 6, CZ-16637, Czech Republic
| | | | | | | |
Collapse
|