51
|
Kim CH, Park SM, Lee SJ, Kim YD, Jang SH, Woo SM, Kwon TK, Park ZY, Chung IJ, Kim HR, Jun CD. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res 2021; 49:5760-5778. [PMID: 34037780 PMCID: PMC8191771 DOI: 10.1093/nar/gkab389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Alternative pre-mRNA splicing is a critical step to generate multiple transcripts, thereby dramatically enlarging the proteomic diversity. Thus, a common feature of most alternative splicing factor knockout models is lethality. However, little is known about lineage-specific alternative splicing regulators in a physiological setting. Here, we report that NSrp70 is selectively expressed in developing thymocytes, highest at the double-positive (DP) stage. Global splicing and transcriptional profiling revealed that NSrp70 regulates the cell cycle and survival of thymocytes by controlling the alternative processing of various RNA splicing factors, including the oncogenic splicing factor SRSF1. A conditional-knockout of Nsrp1 (NSrp70-cKO) using CD4Cre developed severe defects in T cell maturation to single-positive thymocytes, due to insufficient T cell receptor (TCR) signaling and uncontrolled cell growth and death. Mice displayed severe peripheral lymphopenia and could not optimally control tumor growth. This study establishes a model to address the function of lymphoid-lineage-specific alternative splicing factor NSrp70 in a thymic T cell developmental pathway.
Collapse
Affiliation(s)
- Chang-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sang-Moo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sun-Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Young-Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Se-Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Seon-Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Taeg-Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ik-Joo Chung
- Department of Hematology-Oncology, Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
52
|
Li F, Hu Q, Chen F, Jiang JF. Transcriptome analysis reveals Vernalization is independent of cold acclimation in Arabidopsis. BMC Genomics 2021; 22:462. [PMID: 34154522 PMCID: PMC8218483 DOI: 10.1186/s12864-021-07763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
Background Through vernalization, plants achieve flowering competence by sensing prolonged cold exposure (constant exposure approximately 2-5 °C). During this process, plants initiate defense responses to endure cold conditions. Here, we conducted transcriptome analysis of Arabidopsis plants subjected to prolonged cold exposure (6 weeks) to explore the physiological dynamics of vernalization and uncover the relationship between vernalization and cold stress. Results Time-lag initiation of the two pathways and weighted gene co-expression network analysis (WGCNA) revealed that vernalization is independent of cold acclimation. Moreover, WGCNA revealed three major networks involving ethylene and jasmonic acid response, cold acclimation, and chromatin modification in response to prolonged cold exposure. Finally, throughout vernalization, the cold stress response is regulated via an alternative splicing-mediated mechanism. Conclusion These findings illustrate a comprehensive picture of cold stress- and vernalization-mediated global changes in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07763-3.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Fu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
53
|
Dumbović G, Braunschweig U, Langner HK, Smallegan M, Biayna J, Hass EP, Jastrzebska K, Blencowe B, Cech TR, Caruthers MH, Rinn JL. Nuclear compartmentalization of TERT mRNA and TUG1 lncRNA is driven by intron retention. Nat Commun 2021; 12:3308. [PMID: 34083519 PMCID: PMC8175569 DOI: 10.1038/s41467-021-23221-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The spatial partitioning of the transcriptome in the cell is an important form of gene-expression regulation. Here, we address how intron retention influences the spatio-temporal dynamics of transcripts from two clinically relevant genes: TERT (Telomerase Reverse Transcriptase) pre-mRNA and TUG1 (Taurine-Upregulated Gene 1) lncRNA. Single molecule RNA FISH reveals that nuclear TERT transcripts uniformly and robustly retain specific introns. Our data suggest that the splicing of TERT retained introns occurs during mitosis. In contrast, TUG1 has a bimodal distribution of fully spliced cytoplasmic and intron-retained nuclear transcripts. We further test the functionality of intron-retention events using RNA-targeting thiomorpholino antisense oligonucleotides to block intron excision. We show that intron retention is the driving force for the nuclear compartmentalization of these RNAs. For both RNAs, altering this splicing-driven subcellular distribution has significant effects on cell viability. Together, these findings show that stable retention of specific introns can orchestrate spatial compartmentalization of these RNAs within the cell. This process reveals that modulating RNA localization via targeted intron retention can be utilized for RNA-based therapies.
Collapse
Affiliation(s)
- Gabrijela Dumbović
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | | | - Heera K Langner
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Josep Biayna
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain
| | - Evan P Hass
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Katarzyna Jastrzebska
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Marvin H Caruthers
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
54
|
Diaz F, Allan CW, Markow TA, Bono JM, Matzkin LM. Gene expression and alternative splicing dynamics are perturbed in female head transcriptomes following heterospecific copulation. BMC Genomics 2021; 22:359. [PMID: 34006224 PMCID: PMC8132402 DOI: 10.1186/s12864-021-07669-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the growing interest in the female side of copulatory interactions, the roles played by differential expression and alternative splicing mechanisms of pre-RNA on tissues outside of the reproductive tract have remained largely unknown. Here we addressed these questions in the context of con- vs heterospecific matings between Drosophila mojavensis and its sister species, D. arizonae. We analyzed transcriptional responses in female heads using an integrated investigation of genome-wide patterns of gene expression, including differential expression (DE), alternative splicing (AS) and intron retention (IR). RESULTS Our results indicated that early transcriptional responses were largely congruent between con- and heterospecific matings but are substantially perturbed over time. Conspecific matings induced functional pathways related to amino acid balance previously associated with the brain's physiology and female postmating behavior. Heterospecific matings often failed to activate regulation of some of these genes and induced expression of additional genes when compared with those of conspecifically-mated females. These mechanisms showed functional specializations with DE genes mostly linked to pathways of proteolysis and nutrient homeostasis, while AS genes were more related to photoreception and muscle assembly pathways. IR seems to play a more general role in DE regulation during the female postmating response. CONCLUSIONS We provide evidence showing that AS genes substantially perturbed by heterospecific matings in female heads evolve at slower evolutionary rates than the genome background. However, DE genes evolve at evolutionary rates similar, or even higher, than those of male reproductive genes, which highlights their potential role in sexual selection and the evolution of reproductive barriers.
Collapse
Affiliation(s)
- Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Therese Ann Markow
- Cinvestav UGA-Langebio, Irapuato, Guanajuato, Mexico
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, USA
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, USA.
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
55
|
The RNA binding protein FgRbp1 regulates specific pre-mRNA splicing via interacting with U2AF23 in Fusarium. Nat Commun 2021; 12:2661. [PMID: 33976182 PMCID: PMC8113354 DOI: 10.1038/s41467-021-22917-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is an essential and tightly regulated process in eukaryotic cells; however, the regulatory mechanisms for the splicing are not well understood. Here, we characterize a RNA binding protein named FgRbp1 in Fusarium graminearum, a fungal pathogen of cereal crops worldwide. Deletion of FgRbp1 leads to reduced splicing efficiency in 47% of the F. graminearum intron-containing gene transcripts that are involved in various cellular processes including vegetative growth, development, and virulence. The human ortholog RBM42 is able to fully rescue the growth defects of ΔFgRbp1. FgRbp1 binds to the motif CAAGR in its target mRNAs, and interacts with the splicing factor FgU2AF23, a highly conserved protein involved in 3' splice site recognition, leading to enhanced recruitment of FgU2AF23 to the target mRNAs. This study demonstrates that FgRbp1 is a splicing regulator and regulates the pre-mRNA splicing in a sequence-dependent manner in F. graminearum.
Collapse
|
56
|
Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V, Alfazema N, Wills JC, Marques-Torrejon MA, Morrison GM, Ashmore J, Robertson F, Williams CAC, Bradley L, von Kriegsheim A, Anderson RA, Tomlinson SR, Pollard SM. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell 2021; 28:877-893.e9. [PMID: 33631116 PMCID: PMC8110245 DOI: 10.1016/j.stem.2021.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Point mutations within the histone H3.3 are frequent in aggressive childhood brain tumors known as pediatric high-grade gliomas (pHGGs). Intriguingly, distinct mutations arise in discrete anatomical regions: H3.3-G34R within the forebrain and H3.3-K27M preferentially within the hindbrain. The reasons for this contrasting etiology are unknown. By engineering human fetal neural stem cell cultures from distinct brain regions, we demonstrate here that cell-intrinsic regional identity provides differential responsiveness to each mutant that mirrors the origins of pHGGs. Focusing on H3.3-G34R, we find that the oncohistone supports proliferation of forebrain cells while inducing a cytostatic response in the hindbrain. Mechanistically, H3.3-G34R does not impose widespread transcriptional or epigenetic changes but instead impairs recruitment of ZMYND11, a transcriptional repressor of highly expressed genes. We therefore propose that H3.3-G34R promotes tumorigenesis by focally stabilizing the expression of key progenitor genes, thereby locking initiating forebrain cells into their pre-existing immature state.
Collapse
Affiliation(s)
- Raul Bardini Bressan
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
| | - Benjamin Southgate
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Carla Blin
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Vivien Grant
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - James Ashmore
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Faye Robertson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Charles A C Williams
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Leanne Bradley
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Tomlinson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
57
|
Patro CPK, Nousome D, Lai RK. Meta-Analyses of Splicing and Expression Quantitative Trait Loci Identified Susceptibility Genes of Glioma. Front Genet 2021; 12:609657. [PMID: 33936159 PMCID: PMC8081720 DOI: 10.3389/fgene.2021.609657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The functions of most glioma risk alleles are unknown. Very few studies had evaluated expression quantitative trait loci (eQTL), and insights of susceptibility genes were limited due to scarcity of available brain tissues. Moreover, no prior study had examined the effect of glioma risk alleles on alternative RNA splicing. OBJECTIVE This study explored splicing quantitative trait loci (sQTL) as molecular QTL and improved the power of QTL mapping through meta-analyses of both cis eQTL and sQTL. METHODS We first evaluated eQTLs and sQTLs of the CommonMind Consortium (CMC) and Genotype-Tissue Expression Project (GTEx) using genotyping, or whole-genome sequencing and RNA-seq data. Alternative splicing events were characterized using an annotation-free method that detected intron excision events. Then, we conducted meta-analyses by pooling the eQTL and sQTL results of CMC and GTEx using the inverse variance-weighted model. Afterward, we integrated QTL meta-analysis results (Q < 0.05) with the Glioma International Case Control Study (GICC) GWAS meta-analysis (case:12,496, control:18,190), using a summary statistics-based mendelian randomization (SMR) method. RESULTS Between CMC and GTEx, we combined the QTL data of 354 unique individuals of European ancestry. SMR analyses revealed 15 eQTLs in 11 loci and 32 sQTLs in 9 loci relevant to glioma risk. Two loci only harbored sQTLs (1q44 and 16p13.3). In seven loci, both eQTL and sQTL coexisted (2q33.3, 7p11.2, 11q23.3 15q24.2, 16p12.1, 20q13.33, and 22q13.1), but the target genes were different for five of these seven loci. Three eQTL loci (9p21.3, 20q13.33, and 22q13.1) and 4 sQTL loci (11q23.3, 16p13.3, 16q12.1, and 20q13.33) harbored multiple target genes. Eight target genes of sQTLs (C2orf80, SEC61G, TMEM25, PHLDB1, RP11-161M6.2, HEATR3, RTEL1-TNFRSF6B, and LIME1) had multiple alternatively spliced transcripts. CONCLUSION Our study revealed that the regulation of transcriptome by glioma risk alleles is complex, with the potential for eQTL and sQTL jointly affecting gliomagenesis in risk loci. QTLs of many loci involved multiple target genes, some of which were specific to alternative splicing. Therefore, quantitative trait loci that evaluate only total gene expression will miss many important target genes.
Collapse
Affiliation(s)
- C. Pawan K. Patro
- Department of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Darryl Nousome
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Rockville, MD, United States
| | - Rose K. Lai
- Department of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
58
|
Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev 2021; 67:67-76. [PMID: 33291060 PMCID: PMC8084925 DOI: 10.1016/j.gde.2020.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
59
|
Panfili E, Mondanelli G, Orabona C, Belladonna ML, Gargaro M, Fallarino F, Orecchini E, Prontera P, Proietti E, Frontino G, Tirelli E, Iacono A, Vacca C, Puccetti P, Grohmann U, Esposito S, Pallotta MT. Novel mutations in the WFS1 gene are associated with Wolfram syndrome and systemic inflammation. Hum Mol Genet 2021; 30:265-276. [PMID: 33693650 PMCID: PMC8091036 DOI: 10.1093/hmg/ddab040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband’s PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA interference also induced a pronounced proinflammatory cytokine profile. The same cytokines were also significantly higher in sera from the WS patient as compared to matched healthy controls. Moreover, the chronic inflammatory state was associated with a dominance of proinflammatory T helper 17 (Th17)-type cells over regulatory T (Treg) lymphocytes in the WS PBMCs. The identification of a state of systemic chronic inflammation associated with WFS1 deficiency may pave the way to innovative and personalized therapeutic interventions in WS.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Maria L Belladonna
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University-Hospital "Santa Maria della Misericordia", Perugia, 06132, Italy
| | - Elisa Proietti
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Giulio Frontino
- Department of Pediatrics, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, 20132, Italy
| | - Eva Tirelli
- Department of Pediatrics, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, 20132, Italy
| | - Alberta Iacono
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Carmine Vacca
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Ursula Grohmann
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy.,Visiting Professor, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susanna Esposito
- Pediatric Clinic Pietro Barilla Children's Hospital, Department of Medicine and Surgery, Università di Parma, Parma, 43126, Italy
| | - Maria T Pallotta
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| |
Collapse
|
60
|
Hernandez VA, Carvajal-Moreno J, Papa JL, Shkolnikov N, Li J, Ozer HG, Yalowich JC, Elton TS. CRISPR/Cas9 Genome Editing of the Human Topoisomerase II α Intron 19 5' Splice Site Circumvents Etoposide Resistance in Human Leukemia K562 Cells. Mol Pharmacol 2021; 99:226-241. [PMID: 33446509 PMCID: PMC7919865 DOI: 10.1124/molpharm.120.000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
An essential function of DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is to resolve DNA topologic entanglements during chromosome disjunction by introducing transient DNA double-stranded breaks. TOP2α/170 is an important target for DNA damage-stabilizing anticancer drugs, whose clinical efficacy is compromised by drug resistance often associated with decreased TOP2α/170 expression. We recently demonstrated that an etoposide-resistant K562 clonal subline, K/VP.5, with reduced levels of TOP2α/170, expresses high levels of a novel C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90). TOP2α/90, the translation product of a TOP2α mRNA that retains a processed intron 19 (I19), heterodimerizes with TOP2α/170 and is a resistance determinant through a dominant-negative effect on drug activity. We hypothesized that genome editing to enhance I19 removal would provide a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. To enhance I19 removal in K/VP.5 cells, CRISPR/Cas9 was used to make changes (GAG//GTAA AC →GAG//GTAA GT ) in the TOP2α gene's suboptimal exon 19/intron 19 5' splice site (E19/I19 5' SS). Gene-edited clones were identified by quantitative polymerase chain reaction and verified by sequencing. Characterization of a clone with all TOP2α alleles edited revealed improved I19 removal, decreased TOP2α/90 mRNA/protein, and increased TOP2α/170 mRNA/protein. Sensitivity to etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition was restored to levels comparable to those in parental K562 cells. Together, the results indicate that our gene-editing strategy for optimizing the TOP2α E19/I19 5' SS in K/VP.5 cells circumvents resistance to etoposide and other TOP2α-targeted drugs. SIGNIFICANCE STATEMENT: Results presented here indicate that CRISPR/Cas9 gene editing of a suboptimal exon 19/intron 19 5' splice site in the DNA topoisomerase IIα (TOP2α) gene results in circumvention of acquired drug resistance to etoposide and other TOP2α-targeted drugs in a clonal K562 cell line by enhancing removal of intron 19 and thereby decreasing formation of a truncated TOP2α 90 kDa isoform and increasing expression of full-length TOP2α 170 kDa in these resistant cells. Results demonstrate the importance of RNA processing in acquired drug resistance to TOP2α-targeted drugs.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Cell Survival
- DNA Topoisomerases, Type II/genetics
- Down-Regulation
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Gene Editing/methods
- Humans
- Introns
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Poly-ADP-Ribose Binding Proteins/genetics
- RNA Splice Sites
Collapse
Affiliation(s)
- Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| |
Collapse
|
61
|
Molecular characterization and functional analysis of Eimeria tenella citrate synthase. Parasitol Res 2021; 120:1025-1035. [PMID: 33501586 DOI: 10.1007/s00436-020-07014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Chicken coccidiosis, caused by an obligate intracellular protozoan parasite of the genus Eimeria, is a major parasitic disease in the intensively reared poultry industry. Due to the widespread use of anticoccidial drugs, resistance has become an inevitable problem. In our previous study, Eimeria tenella citrate synthase (EtCS) was found to be up-expressed in two drug-resistant strains (diclazuril-resistant and maduramycin-resistant strains) compared to drug-sensitive strain by RNA sequence. In this study, we cloned and expressed EtCS and obtain its polyclonal antibodies. Quantitative real-time polymerase chain (qPCR) reactions and Western blots were used to analyze the transcription and translation levels of EtCS in sensitive and three drug-resistant strains. Compared with the sensitive strain, the transcription of EtCS was both significantly upregulated in diclazuril-resistant and maduramycin-resistant strains, but was not significantly different in salinomycin-resistant strain. No significant difference was seen in translation level in the three drug-resistant strains. Indirect immunofluorescence indicated that EtCS was mainly located in the cytoplasm of sporozoites except for posterior refractile bodies and in the cytoplasm and surface of merozoites. Anti-rEtCS antibody has inhibitory effects on E. tenella sporozoite invasion of DF-1 cells and the inhibition rate is more than 83%. Binding of the protein to chicken macrophage (HD11) cells was confirmed by immunofluorescence assays. When macrophages were treated with rEtCS, secretion of nitric oxide and cell proliferation of the macrophages were substantially reduced. These results showed that EtCS may be related to host cell invasion of E. tenella and involve in the development of E.tenella resistance to some drugs.
Collapse
|
62
|
Possible role played by the SINE2 element in gene regulation, as demonstrated by differential processing and polyadenylation in avirulent strains of E. histolytica. Antonie van Leeuwenhoek 2021; 114:209-221. [PMID: 33394209 DOI: 10.1007/s10482-020-01504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.
Collapse
|
63
|
Velandia-Piedrahita CA, Morel A, Fonseca-Mendoza DJ, Huertas-Quiñones VM, Castillo D, Bonilla JD, Hernandez-Toro CJ, Miranda-Fernández MC, Restrepo CM, Cabrera R. A Novel Splice-Site Mutation in the ELN Gene Suggests an Alternative Mechanism for Vascular Elastinopathies. APPLICATION OF CLINICAL GENETICS 2020; 13:233-240. [PMID: 33364810 PMCID: PMC7751611 DOI: 10.2147/tacg.s282240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
The ELN gene encodes elastin, a fundamental protein of the extracellular matrix that confers elasticity to different tissues including blood vessels. The formation of elastin fibers is a complex process involving monomer coacervation and subsequent crosslinking. Mutations in exons 1-29 of the ELN gene have been linked to supravalvular aortic stenosis (SVAS) whereas mutations in exons 30-33 are associated with autosomal dominant cutis laxa (ADCL). This striking segregation has led to the hypothesis that distinct molecular mechanisms underlie both diseases. SVAS is believed to arise through haploinsufficiency while ADCL is hypothesized to be caused by a dominant negative effect. Here, we describe a patient with SVAS harboring a novel splice-site mutation in the last exon of ELN. The location of this mutation is not consistent with current knowledge of SVAS, since all mutations reported in the C-terminus have been found in ADCL patients, and a thorough evaluation did not reveal significant skin involvement in this case. RT-PCR analysis of skin tissue showed that C-terminal mutations in the region can lead to the production of aberrant transcripts through intron retention and activation of cryptic splice sites and suggest that disruption of the very last exon can lead to functional haploinsufficiency potentially related to SVAS.
Collapse
Affiliation(s)
- Camilo Andres Velandia-Piedrahita
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Adrien Morel
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Dora Janeth Fonseca-Mendoza
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Victor Manuel Huertas-Quiñones
- Instituto de Cardiopatías Congénitas, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia.,Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.,Facultad de Medicina, Universidad del Rosario, Bogotá, Colombia
| | - David Castillo
- Servicio de Dermatología, Fundación Para la Investigación en Dermatología FUNINDERMA, Bogotá, Colombia
| | | | - Camilo José Hernandez-Toro
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Marta Catalina Miranda-Fernández
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | - Carlos Martin Restrepo
- Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Rodrigo Cabrera
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia.,Center for Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
64
|
Tan DJ, Mitra M, Chiu AM, Coller HA. Intron retention is a robust marker of intertumoral heterogeneity in pancreatic ductal adenocarcinoma. NPJ Genom Med 2020; 5:55. [PMID: 33311498 PMCID: PMC7733475 DOI: 10.1038/s41525-020-00159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a 5-year survival rate of <8%. Unsupervised clustering of 76 PDAC patients based on intron retention (IR) events resulted in two clusters of tumors (IR-1 and IR-2). While gene expression-based clusters are not predictive of patient outcome in this cohort, the clusters we developed based on intron retention were associated with differences in progression-free interval. IR levels are lower and clinical outcome is worse in IR-1 compared with IR-2. Oncogenes were significantly enriched in the set of 262 differentially retained introns between the two IR clusters. Higher IR levels in IR-2 correlate with higher gene expression, consistent with detention of intron-containing transcripts in the nucleus in IR-2. Out of 258 genes encoding RNA-binding proteins (RBP) that were differentially expressed between IR-1 and IR-2, the motifs for seven RBPs were significantly enriched in the 262-intron set, and the expression of 25 RBPs were highly correlated with retention levels of 139 introns. Network analysis suggested that retention of introns in IR-2 could result from disruption of an RBP protein-protein interaction network previously linked to efficient intron removal. Finally, IR-based clusters developed for the majority of the 20 cancer types surveyed had two clusters with asymmetrical distributions of IR events like PDAC, with one cluster containing mostly intron loss events. Taken together, our findings suggest IR may be an important biomarker for subclassifying tumors.
Collapse
Affiliation(s)
- Daniel J Tan
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alec M Chiu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
65
|
Alharbi AB, Schmitz U, Marshall AD, Vanichkina D, Nagarajah R, Vellozzi M, Wong JJ, Bailey CG, Rasko JE. Ctcf haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biol 2020; 18:93-103. [PMID: 32816606 PMCID: PMC7834090 DOI: 10.1080/15476286.2020.1796052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - Amy D Marshall
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Darya Vanichkina
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Sydney Informatics Hub, University of Sydney , Darlington, Australia
| | - Rajini Nagarajah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Melissa Vellozzi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Justin Jl Wong
- Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - John Ej Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital , Camperdown, Australia
| |
Collapse
|
66
|
Zheng JT, Lin CX, Fang ZY, Li HD. Intron Retention as a Mode for RNA-Seq Data Analysis. Front Genet 2020; 11:586. [PMID: 32733531 PMCID: PMC7358572 DOI: 10.3389/fgene.2020.00586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Intron retention (IR) is an alternative splicing mode whereby introns, rather than being spliced out as usual, are retained in mature mRNAs. It was previously considered a consequence of mis-splicing and received very limited attention. Only recently has IR become of interest for transcriptomic data analysis owing to its recognized roles in gene expression regulation and associations with complex diseases. In this article, we first review the function of IR in regulating gene expression in a number of biological processes, such as neuron differentiation and activation of CD4+ T cells. Next, we briefly review its association with diseases, such as Alzheimer's disease and cancers. Then, we describe state-of-the-art methods for IR detection, including RNA-seq analysis tools IRFinder and iREAD, highlighting their underlying principles and discussing their advantages and limitations. Finally, we discuss the challenges for IR detection and potential ways in which IR detection methods could be improved.
Collapse
Affiliation(s)
- Jian-Tao Zheng
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Cui-Xiang Lin
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhao-Yu Fang
- School of Mathematics and Statistics, Central South University, Changsha, China
| | - Hong-Dong Li
- Hunan Provincial Key Lab on Bioinformatics, Center for Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
67
|
Furlan M, Tanaka I, Leonardi T, de Pretis S, Pelizzola M. Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts. Front Genet 2020; 11:394. [PMID: 32425981 PMCID: PMC7212349 DOI: 10.3389/fgene.2020.00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
It has been known for a few decades that transcripts can be marked by dozens of different modifications. Yet, we are just at the beginning of charting these marks and understanding their functional impact. High-quality methods were developed for the profiling of some of these marks, and approaches to finely study their impact on specific phases of the RNA life-cycle are available, including RNA metabolic labeling. Thanks to these improvements, the most abundant marks, including N6-methyladenosine, are emerging as important determinants of the fate of marked RNAs. However, we still lack approaches to directly study how the set of marks for a given RNA molecule shape its fate. In this perspective, we first review current leading approaches in the field. Then, we propose an experimental and computational setup, based on direct RNA sequencing and mathematical modeling, to decipher the functional consequences of RNA modifications on the fate of individual RNA molecules and isoforms.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Physics, National Institute of Nuclear Physics, University of Turin, Turin, Italy
| | - Iris Tanaka
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
68
|
Systematic Analysis of the DNA Methylase and Demethylase Gene Families in Rapeseed ( Brassica napus L.) and Their Expression Variations After Salt and Heat stresses. Int J Mol Sci 2020; 21:ijms21030953. [PMID: 32023925 PMCID: PMC7036824 DOI: 10.3390/ijms21030953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/31/2023] Open
Abstract
DNA methylation is a process through which methyl groups are added to the DNA molecule, thereby modifying the activity of a DNA segment without changing the sequence. Increasing evidence has shown that DNA methylation is involved in various aspects of plant growth and development via a number of key processes including genomic imprinting and repression of transposable elements. DNA methylase and demethylase are two crucial enzymes that play significant roles in dynamically maintaining genome DNA methylation status in plants. In this work, 22 DNA methylase genes and six DNA demethylase genes were identified in rapeseed (Brassica napus L.) genome. These DNA methylase and DNA demethylase genes can be classified into four (BnaCMTs, BnaMET1s, BnaDRMs and BnaDNMT2s) and three (BnaDMEs, BnaDML3s and BnaROS1s) subfamilies, respectively. Further analysis of gene structure and conserved domains showed that each sub-class is highly conserved between rapeseed and Arabidopsis. Expression analysis conducted by RNA-seq as well as qRT-PCR suggested that these DNA methylation/demethylation-related genes may be involved in the heat/salt stress responses in rapeseed. Taken together, our findings may provide valuable information for future functional characterization of these two types of epigenetic regulatory enzymes in polyploid species such as rapeseed, as well as for analyzing their evolutionary relationships within the plant kingdom.
Collapse
|