51
|
Tiosano S, Adler Y, Azrielant S, Yavne Y, Gendelman O, Ben-Ami Shor D, Comaneshter D, Shalom G, Cohen AD, Amital H. Pericarditis among giant cell arteritis patients: From myth to reality. Clin Cardiol 2018; 41:623-627. [PMID: 29746000 DOI: 10.1002/clc.22927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Giant cell arteritis (GCA) is an inflammatory disease of unknown etiology affecting adults age > 50 years. GCA (also known as temporal arteritis) is a vasculitis of large and medium-size vessels that involves the extracranial branches of the carotid artery. Common manifestations include constitutional symptoms, headache, jaw claudication, scalp tenderness, and vision loss. Cardiac involvement in GCA is considered to be as low as 5%, and < 30 cases of pericarditis among GCA patients have been reported in the literature. The aim of this study was to evaluate the association between GCA and pericarditis by conducting a cross-sectional study utilizing the database of the largest healthcare provider in Israel. HYPOTHESIS GCA is associated with pericarditis. METHODS The proportion of past documentation of pericarditis among patients diagnosed with GCA was compared with that of their age- and sex-matched controls. Univariate analysis was performed using the χ2 and t tests; multivariate analysis was performed using logistic regression. RESULTS The study included 4329 GCA patients and 21 611 controls. GCA patients had higher rates of cardiovascular risk factors. Pericarditis was observed in 53 GCA patients and 72 controls (1.22% vs 0.33%, respectively; P < 0.001), significantly higher among GCA patients in comparison with controls. A significant interaction was found between GCA, pericarditis, and young age (<70 years). CONCLUSIONS The study showed an independent association between GCA and pericarditis, especially among young patients. Proper screening should be applied whenever a suspicion arises as to the existence of comorbidity in patients with either disease.
Collapse
Affiliation(s)
- Shmuel Tiosano
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Adler
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Management, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Shir Azrielant
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yarden Yavne
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Omer Gendelman
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dana Ben-Ami Shor
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Guy Shalom
- Department of Dermatology and Venereology, Soroka Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arnon D Cohen
- Chief Physician's Office, Clalit Health Services, Tel-Aviv, Israel.,Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Howard Amital
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
52
|
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6:15. [PMID: 29736302 PMCID: PMC5920070 DOI: 10.1038/s41413-018-0016-9] [Citation(s) in RCA: 988] [Impact Index Per Article: 141.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA. The preclinical stages of rheumatoid arthritis (RA) represent a golden window for the development of therapies which could someday prevent the onset of clinical disease. The autoimmune processes underpinning RA usually begin many years before symptoms such as joint pain and stiffness emerge. Recent studies have identified some of the key cellular players driving these processes and begun to unpick how genetic and environmental risk factors combine to trigger them; they also suggest the existence of several distinct subtypes of RA, which require further exploration. Jiake Xu at the University of Western Australia in Perth and colleagues review current treatment strategies for RA and how such insights could ultimately lead to the earlier diagnosis of RA - as well as providing new opportunities for drug treatment and prevention through behavioral changes in high-risk individuals.
Collapse
Affiliation(s)
- Qiang Guo
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, 410008 Changsha, China.,2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Yuxiang Wang
- 1Department of Spine Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, 410008 Changsha, China
| | - Dan Xu
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia.,Musculoskeletal Health Network, Department of Health WA, 189 Royal Street, East Perth, WA 6004 Australia
| | - Johannes Nossent
- Musculoskeletal Health Network, Department of Health WA, 189 Royal Street, East Perth, WA 6004 Australia.,4School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Nathan J Pavlos
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| | - Jiake Xu
- 2School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
| |
Collapse
|
53
|
Pacini G, Cavalli G, Tomelleri A, De Luca G, Pacini G, Ferrarini M, Doglioni C, Dagna L. The fibrogenic chemokine CCL18 is associated with disease severity in Erdheim-Chester disease. Oncoimmunology 2018; 7:e1440929. [PMID: 29900045 DOI: 10.1080/2162402x.2018.1440929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 01/18/2023] Open
Abstract
Erdheim-Chester disease (ECD) is a rare histiocytosis, characterized by xanthogranulomatous tissue infiltration by foamy histiocytes. Fibrosis, a histologic hallmark of ECD, is responsible for lesion growth and clinical manifestations. Unraveling molecular fibrotic pathway in ECD would allow the identification of new pharmacologic targets. In this study, we evaluated serum and tissue samples from a large cohort of ECD patients focusing on two major pro-fibrotic mediators, TGF-β1 and chemokine ligand 18 (CCL18). We found a marked increase in CCL18 but not TGF-β1 levels in serum and lesions of ECD patients (p < 0.001), independently of treatment status and consistently over time. Using a linear mathematical model, we also found that elevated CCL18 serum levels correlate with both number and severity of disease localizations. These findings suggest the involvement of CCL18-induced fibrosis in ECD pathogenesis, providing a rationale for exploring CCL18 inhibition as a treatment for progressive fibrosis in ECD.
Collapse
Affiliation(s)
- Greta Pacini
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Guido Pacini
- Unit of Regulatory Networks in Stem Cells, Max Planck Institute for Molecular Genetic, Berlin, Germany
| | - Marina Ferrarini
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy.,Unit of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
54
|
Italiani P, Manca ML, Angelotti F, Melillo D, Pratesi F, Puxeddu I, Boraschi D, Migliorini P. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Res Ther 2018; 20:27. [PMID: 29422069 PMCID: PMC5806463 DOI: 10.1186/s13075-018-1525-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
Background Dysregulated production of cytokines has a critical role in systemic lupus. The aim of this work is to identify, by a comprehensive analysis of IL-1 family cytokines and receptors in serum, correlation between cytokines/receptors’ levels and the clinical and serological features of the disease. Methods A full clinical evaluation was performed in 74 patients with systemic lupus erythematosus (SLE). C3, C4, anti-dsDNA and anti-C1q antibodies were measured. Cytokines of the IL-1 family (IL-1α, IL-1β, IL-33, IL-18), soluble receptors (sIL-1R1, sIL-1R2, sIL-1R3, ST2/sIL-1R4) and antagonists (IL-1Ra, IL-18 binding protein (IL-18BP)) were measured in serum by multiarray ELISA. Free IL-18 was calculated as the amount of IL-18 not inhibited by IL-18BP. Data were analysed by non-parametric tests and by multivariate analysis, using partial least squares (PLS) models. Results Total IL-18, IL-18BP, sIL-1R4 and IL-1Ra levels were higher in SLE vs. controls. Total and free IL-18 and sIL-1R4 were higher in patients with active vs. inactive disease and correlated with ECLAM, anti-C1q and anti-dsDNA antibodies. sIL-1R2 was higher in patients with inactive disease, was negatively correlated with ECLAM and anti-C1q antibodies and was positively correlated with C3 levels. PLS identified sIL-1R4, sIL-1R2 and anti-dsDNA as variables distinguishing patients with active from those with inactive disease; sIL-1R4, IL-18BP and anti-dsDNA identified patients with active nephritis; sIL-1R4, C3, IL-18 and free IL-18 identified patients with haematological involvement. Conclusion The data support the use of IL-18, sIL-1R2 and sIL-1R4 as biomarkers of disease activity and organ involvement, and suggest that failure in the inhibition of IL-1 activation may be a critical event in the active stages of SLE.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Laura Manca
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Angelotti
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Melillo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
55
|
Ebosin: a potential therapeutic agent for rheumatoid arthritis and autoinflammatory syndromes. Cell Mol Immunol 2017; 15:12-14. [PMID: 28920583 DOI: 10.1038/cmi.2017.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
|
56
|
Chang JC, Hoel F, Liu KH, Wei YH, Cheng FC, Kuo SJ, Tronstad KJ, Liu CS. Peptide-mediated delivery of donor mitochondria improves mitochondrial function and cell viability in human cybrid cells with the MELAS A3243G mutation. Sci Rep 2017; 7:10710. [PMID: 28878349 PMCID: PMC5587702 DOI: 10.1038/s41598-017-10870-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
The cell penetrating peptide, Pep-1, has been shown to facilitate cellular uptake of foreign mitochondria but further research is required to evaluate the use of Pep-1-mediated mitochondrial delivery (PMD) in treating mitochondrial defects. Presently, we sought to determine whether mitochondrial transplantation rescue mitochondrial function in a cybrid cell model of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) disease. Following PMD, recipient cells had internalized donor mitochondria after 1 h, and expressed higher levels of normal mitochondrial DNA, particularly at the end of the treatment and 11 days later. After 4 days, mitochondrial respiratory function had recovered and biogenesis was evident in the Pep-1 and PMD groups, compared to the untreated MELAS group. However, only PMD was able to reverse the fusion-to-fission ratio of mitochondrial morphology, and mitochondria shaping proteins resembled the normal pattern seen in the control group. Cell survival following hydrogen peroxide-induced oxidative stress was also improved in the PMD group. Finally, we observed that PMD partially normalized cytokine expression, including that of interleukin (IL)-7, granulocyte macrophage–colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF), in the MELAS cells. Presently, our data further confirm the protective effects of PMD as well in MELAS disease.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ko-Hung Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Fu-Chou Cheng
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Changhua, Taiwan
| | - Shou-Jen Kuo
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan. .,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.
| |
Collapse
|
57
|
Shoda H, Nagafuchi Y, Tsuchida Y, Sakurai K, Sumitomo S, Fujio K, Yamamoto K. Increased serum concentrations of IL-1 beta, IL-21 and Th17 cells in overweight patients with rheumatoid arthritis. Arthritis Res Ther 2017; 19:111. [PMID: 28569167 PMCID: PMC5452609 DOI: 10.1186/s13075-017-1308-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
Backgrounds Obesity is associated with worse disease activity and drug responses in patients with rheumatoid arthritis (RA). However, the immunological mechanisms responsible for the relationship between RA and obesity have not yet been clarified in detail. This study aimed to elucidate the immunological mechanisms contributing to the pathogenesis of RA in overweight patients. Methods The frequencies of CD4+ T cell, B cell and monocyte subsets were analyzed in RA (n = 81) and healthy donors (n = 99) by flow cytometry, and were compared between three groups (body mass index (BMI) <20, ≥20 to 25, >25). Serum cytokines were measured using multiplex ELISA. Gene expression was analyzed by quantitative PCR. Clinical information was extracted from medical records. Results The frequencies of T helper (Th)17 (CD4+CD45RA-CXCR5-CXCR3-CCR6+) cells and plasmablasts (PB) were significantly increased in patients with RA with BMI >25. Significant correlation was observed between BMI and Th17 cells in patients with RA. No significant differences in cell frequencies between the three BMI groups were observed in the healthy donors. Serum interleukin (IL)-1β and IL-21 significantly correlated with BMI in RA patients. Gene expression patterns in Th17 cells from overweight patients with RA showed the characteristics of pathogenic Th17 cells. Conclusions Quantitative and qualitative changes in Th17 cells were characteristic in overweight patients with RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1308-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Keiichi Sakurai
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
58
|
Dayer JM, Oliviero F, Punzi L. A Brief History of IL-1 and IL-1 Ra in Rheumatology. Front Pharmacol 2017; 8:293. [PMID: 28588495 PMCID: PMC5440542 DOI: 10.3389/fphar.2017.00293] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
The history of what, in 1979, was called interleukin-1 (IL-1), orchestrator of leukocyte inter-communication, began many years before then, initially by the observation of fever induction via the endogenous pyrogen (EP) (1974) and then in rheumatology on the role in tissue destruction in rheumatoid diseases via the induction of collagenase and PGE2 in human synovial cells by a mononuclear cell factor (MCF) (1977). Since then, the family has exploded to presently 11 members as well as many membrane-bound and soluble receptor forms. The discovery of a natural Interleukin-1 receptor antagonist (IL-1Ra) in human biological fluids has highlighted the importance of IL-1 and IL-1Ra in human diseases. Evidence delineating its role in autoinflammatory syndromes and the elucidation of the macromolecular complex referred to as "inflammasome" have been instrumental to our understanding of the link with IL-1. At present, the IL-1blockade as therapeutic approach is crucial for many hereditary autoinflammatory diseases, as well as for adult-onset Still's disease, crystal-induced arthropathies, certain skin diseases including neutrophil-triggered skin diseases, Behçet's disease and deficiency of IL-1Ra and other rare fever syndromes. Its role is only marginally important in rheumatoid arthritis and is still under debate with regard to osteoarthritis, type 2 diabetes mellitus, cardiovascular diseases and cancer. This brief historical review focuses on some aspects of IL-1, mainly IL-1β and IL-Ra, in rheumatology. There are many excellent reviews focusing on the IL-1 family in general or with regard to specific diseases or biological discoveries.
Collapse
Affiliation(s)
| | | | - Leonardo Punzi
- Department of Medicine, University of PadovaPadova, Italy
| |
Collapse
|
59
|
Banchereau R, Cepika AM, Banchereau J, Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol 2017; 35:337-370. [PMID: 28142321 PMCID: PMC5937945 DOI: 10.1146/annurev-immunol-051116-052225] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.
Collapse
Affiliation(s)
| | | | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030;
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, Texas 75204; , ,
| |
Collapse
|
60
|
Berti A, Cavalli G, Guglielmi B, Biavasco R, Campochiaro C, Tomelleri A, Nicoletti R, Panzacchi A, Ferrarini M, Dagna L. Tocilizumab in patients with multisystem Erdheim-Chester disease. Oncoimmunology 2017; 6:e1318237. [PMID: 28680751 DOI: 10.1080/2162402x.2017.1318237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
Treatment of Erdheim-Chester disease (ECD), a rare non-Langerhans histiocytosis, relies on interferon-α, chemotherapeutic agents such as purine analogs, cytokine-blocking agents and BRAF inhibitors. Since interleukin (IL)-6 levels are elevated in serum and lesions of ECD patients, we evaluated the therapeutic efficacy and safety of IL-6 blockade with tocilizumab. We conducted an open-label, single-arm, phase II, prospective study of tocilizumab in three patients with multisystem ECD and poor tolerance/contraindications to IFN-α. Modifications of symptoms attributed to ECD represented the criteria for evaluation of clinical response. Changes at positron emission tomography scan, computed tomography scan, and magnetic resonance imaging at month 6 represented the main criteria for the evaluation of radiological response. Sustained complete clinical response and partial radiological improvement were observed in two patients, paralleled by modulation of systemic pro-inflammatory mediators. In spite of disease stabilization or improvement at extra-neurological sites, a third patient experienced a radiologic and clinical progression of central nervous system involvement, mirrored by a dramatic increase of circulating IL-6 and related cytokines. These findings indicate that IL-6 inhibition can be effective in ECD, but caution is advisable in patients with neurologic involvement. IL-6 emerges as a central mediator in ECD pathogenesis.
Collapse
Affiliation(s)
- Alvise Berti
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Guglielmi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Nicoletti
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Panzacchi
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Ferrarini
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
61
|
Ross BX, Gao N, Cui X, Standiford TJ, Xu J, Yu FSX. IL-24 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. THE JOURNAL OF IMMUNOLOGY 2017; 198:3536-3547. [PMID: 28330899 DOI: 10.4049/jimmunol.1602087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 01/28/2023]
Abstract
The aim of this study was to elucidate the expression and functions of IL-24 in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. Among IL-20R cytokines, only IL-24 was induced at both mRNA and protein levels by infection at early time points. The upregulation of IL-24 was dampened by flagellin pretreatment, which protects the corneas from microbial infection. Time course studies revealed bimodal early and later peaks of IL-24 expression, a pattern shared with suppressor of cytokine signaling (SOCS)3 but not IL-1β or IL-6. Silencing of IL-24 enhanced S100A8/A9 expression and suppressed SOCS3, IL-1β, IL-1RN, and matrix metalloproteinase 13 expression at 6 h postinfection. Downregulation of the IL-24 signaling pathway significantly reduced the severity of keratitis, whereas rIL-24 exacerbated P. aeruginosa-mediated tissue destruction. In vitro, rIL-1β induced the expression of SOCS3, IL-24, IL-1β, and IL-6 in primary cultured human corneal epithelial cells. rIL-24, alternatively, stimulated the expression of SOCS3, but not the others. In conclusion, IL-24 promotes P. aeruginosa keratitis through the suppression of early protective mucosal immunity, culminating in increased severity of P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Bing X Ross
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Xinhan Cui
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201.,Eye and Ear, Nose, and Throat Hospital of Fudan University, Xuhui District, Shanghai 200031, China; and
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jianjiang Xu
- Eye and Ear, Nose, and Throat Hospital of Fudan University, Xuhui District, Shanghai 200031, China; and
| | - Fu-Shin X Yu
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
62
|
Interleukin 37 reverses the metabolic cost of inflammation, increases oxidative respiration, and improves exercise tolerance. Proc Natl Acad Sci U S A 2017; 114:2313-2318. [PMID: 28193888 DOI: 10.1073/pnas.1619011114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IL-1 family member interleukin 37 (IL-37) has broad antiinflammatory properties and functions as a natural suppressor of innate inflammation. In this study, we demonstrate that treatment with recombinant human IL-37 reverses the decrease in exercise performance observed during systemic inflammation. This effect was associated with a decrease in the levels of plasma and muscle cytokines, comparable in extent to that obtained upon IL-1 receptor blockade. Exogenous administration of IL-37 to healthy mice, not subjected to an inflammatory challenge, also improved exercise performance by 82% compared with vehicle-treated mice (P = 0.01). Treatment with eight daily doses of IL-37 resulted in a further 326% increase in endurance running time compared with the performance level of mice receiving vehicle (P = 0.001). These properties required the engagement of the IL-1 decoy receptor 8 (IL-1R8) and the activation of AMP-activated protein kinase (AMPK), because both inhibition of AMPK and IL-1R8 deficiency abrogated the positive effects of IL-37 on exercise performance. Mechanistically, treatment with IL-37 induced marked metabolic changes with higher levels of muscle AMPK, greater rates of oxygen consumption, and increased oxidative phosphorylation. Metabolomic analyses of plasma and muscles of mice treated with IL-37 revealed an increase in AMP/ATP ratio, reduced levels of proinflammatory mediator succinate and oxidative stress-related metabolites, as well as changes in amino acid and purine metabolism. These effects of IL-37 to limit the metabolic costs of chronic inflammation and to foster exercise tolerance provide a rationale for therapeutic use of IL-37 in the treatment of inflammation-mediated fatigue.
Collapse
|
63
|
Cavalli G, Foppoli M, Cabrini L, Dinarello CA, Tresoldi M, Dagna L. Interleukin-1 Receptor Blockade Rescues Myocarditis-Associated End-Stage Heart Failure. Front Immunol 2017; 8:131. [PMID: 28232838 PMCID: PMC5298961 DOI: 10.3389/fimmu.2017.00131] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 11/13/2022] Open
Abstract
Support measures currently represent the mainstay of treatment for fulminant myocarditis, while effective and safe anti-inflammatory therapies remain an unmet clinical need. However, clinical and experimental evidence indicates that inhibition of the pro-inflammatory cytokine interleukin 1 (IL-1) is effective against both myocardial inflammation and contractile dysfunction. We thus evaluated treatment with the IL-1 receptor antagonist anakinra in a case of heart failure secondary to fulminant myocarditis. A 65-year-old man with T cell lymphoma developed fulminant myocarditis presenting with severe biventricular failure and cardiogenic shock requiring admittance to the intensive care unit and mechanical circulatory and respiratory support. Specifically, acute heart failure and cardiogenic shock were initially treated with non-invasive ventilation and mechanical circulatory support with an intra-aortic balloon pump. Nevertheless, cardiac function deteriorated further, and there were no signs of improvement. Treatment with anakinra, the recombinant form of the naturally occurring IL-1 receptor antagonist, was started at a standard subcutaneous dose of 100 mg/day. We observed a dramatic clinical improvement within 24 h of initiating anakinra. Prompt, progressive amelioration of cardiac function allowed weaning from mechanical circulatory and respiratory support within 72 h of anakinra administration. Recent studies point at inhibition of IL-1 activity as an attractive treatment option for both myocardial inflammation and contractile dysfunction. Furthermore, IL-1 receptor blockade with anakinra is characterized by an extremely rapid onset of action and remarkable safety and may thus be suitable for the treatment of patients critically ill with myocarditis.
Collapse
Affiliation(s)
- Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Medicine, University of Colorado Denver, Aurora, CO, USA; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Marco Foppoli
- Division of Oncology, IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Luca Cabrini
- Division of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Moreno Tresoldi
- Department of Internal Medicine and Advanced Therapies, IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
64
|
Assier E, Bessis N, Zagury JF, Boissier MC. IL-1 Vaccination Is Suitable for Treating Inflammatory Diseases. Front Pharmacol 2017; 8:6. [PMID: 28197099 PMCID: PMC5281538 DOI: 10.3389/fphar.2017.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Eric Assier
- UMR 1125 Institut National de la Santé et de la Recherche MédicaleBobigny, France; Sorbonne Paris Cité Université Paris 13Bobigny, France
| | - Natacha Bessis
- UMR 1125 Institut National de la Santé et de la Recherche MédicaleBobigny, France; Sorbonne Paris Cité Université Paris 13Bobigny, France
| | | | - Marie-Christophe Boissier
- UMR 1125 Institut National de la Santé et de la Recherche MédicaleBobigny, France; Sorbonne Paris Cité Université Paris 13Bobigny, France; Assistance Publique-Hôpitaux de Paris, HUPSSD, Service de RhumatologieBobigny, France
| |
Collapse
|
65
|
Phytomedicine in Joint Disorders. Nutrients 2017; 9:nu9010070. [PMID: 28275210 PMCID: PMC5295114 DOI: 10.3390/nu9010070] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera.
Collapse
|
66
|
Abstract
Caspase-1 is an integral regulator of the innate immune system. Its core functions are the processing and secretion of the proinflammatory cytokines interleukin 1β (IL-1 beta) and IL-18 and the initiation of proinflammatory cell death, which is referred to as pyroptosis. Activation of caspase-1 plays a pivotal role during immune defense mechanisms against infections by the innate immune system. Dysregulated activation of caspase-1 has been recognized to be involved in the pathophysiology of a constantly increasing number of inflammatory diseases. This article gives an overview of the regulation and function of caspase-1 and its involvement in monogenic, polygenic and/or polyetiological rheumatic diseases.
Collapse
Affiliation(s)
- S Winkler
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - C M Hedrich
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - A Rösen-Wolff
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
67
|
Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations. Int J Cell Biol 2016; 2016:9259646. [PMID: 28083070 PMCID: PMC5204077 DOI: 10.1155/2016/9259646] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically.
Collapse
|
68
|
Gurung P, Sharma BR, Kanneganti TD. Distinct role of IL-1β in instigating disease in Sharpin cpdm mice. Sci Rep 2016; 6:36634. [PMID: 27892465 PMCID: PMC5125001 DOI: 10.1038/srep36634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/17/2016] [Indexed: 12/25/2022] Open
Abstract
Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
69
|
Vitale A, Insalaco A, Sfriso P, Lopalco G, Emmi G, Cattalini M, Manna R, Cimaz R, Priori R, Talarico R, Gentileschi S, de Marchi G, Frassi M, Gallizzi R, Soriano A, Alessio M, Cammelli D, Maggio MC, Marcolongo R, La Torre F, Fabiani C, Colafrancesco S, Ricci F, Galozzi P, Viapiana O, Verrecchia E, Pardeo M, Cerrito L, Cavallaro E, Olivieri AN, Paolazzi G, Vitiello G, Maier A, Silvestri E, Stagnaro C, Valesini G, Mosca M, de Vita S, Tincani A, Lapadula G, Frediani B, De Benedetti F, Iannone F, Punzi L, Salvarani C, Galeazzi M, Rigante D, Cantarini L. A Snapshot on the On-Label and Off-Label Use of the Interleukin-1 Inhibitors in Italy among Rheumatologists and Pediatric Rheumatologists: A Nationwide Multi-Center Retrospective Observational Study. Front Pharmacol 2016; 7:380. [PMID: 27822185 PMCID: PMC5076463 DOI: 10.3389/fphar.2016.00380] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
Background: Interleukin (IL)-1 inhibitors have been suggested as possible therapeutic options in a large number of old and new clinical entities characterized by an IL-1 driven pathogenesis. Objectives: To perform a nationwide snapshot of the on-label and off-label use of anakinra (ANA) and canakinumab (CAN) for different conditions both in children and adults. Methods: We retrospectively collected demographic, clinical, and therapeutic data from both adult and pediatric patients treated with IL-1 inhibitors from January 2008 to July 2016. Results: Five hundred and twenty-six treatment courses given to 475 patients (195 males, 280 females; 111 children and 364 adults) were evaluated. ANA was administered in 421 (80.04%) courses, CAN in 105 (19.96%). Sixty-two (32.1%) patients had been treated with both agents. IL-1 inhibitors were employed in 38 different indications (37 with ANA, 16 with CAN). Off-label use was more frequent for ANA than CAN (p < 0.0001). ANA was employed as first-line biologic approach in 323 (76.7%) cases, while CAN in 37 cases (35.2%). IL-1 inhibitors were associated with corticosteroids in 285 (54.18%) courses and disease modifying anti-rheumatic drugs (DMARDs) in 156 (29.65%). ANA dosage ranged from 30 to 200 mg/day (or 1.0-2.0 mg/kg/day) among adults and 2-4 mg/kg/day among children; regarding CAN, the most frequently used posologies were 150mg every 8 weeks, 150mg every 4 weeks and 150mg every 6 weeks. The frequency of failure was higher among patients treated with ANA at a dosage of 100 mg/day than those treated with 2 mg/kg/day (p = 0.03). Seventy-six patients (14.4%) reported an adverse event (AE) and 10 (1.9%) a severe AE. AEs occurred more frequently after the age of 65 compared to both children and patients aged between 16 and 65 (p = 0.003 and p = 0.03, respectively). Conclusions: IL-1 inhibitors are mostly used off-label, especially ANA, during adulthood. The high frequency of good clinical responses suggests that IL-1 inhibitors are used with awareness of pathogenetic mechanisms; adult healthcare physicians generally employ standard dosages, while pediatricians are more prone in using a weight-based posology. Dose adjustments and switching between different agents showed to be effective treatment strategies. Our data confirm the good safety profile of IL-1 inhibitors.
Collapse
Affiliation(s)
- Antonio Vitale
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of SienaSiena, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Department of Pediatric Medicine, IRCCS, Bambino Gesù Children's HospitalRome, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine, University of PaduaPadua, Italy
| | - Giuseppe Lopalco
- Rheumatology Unit, Interdisciplinary Department of Medicine, University of BariBari, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| | - Marco Cattalini
- Pediatric Clinic, University of Brescia and Spedali Civili di BresciaBrescia, Italy
| | - Raffaele Manna
- Periodic Fever Research Center, Institute of Internal Medicine, Università Cattolica Sacro Cuore, Fondazione Policlinico A. GemelliRome, Italy
| | - Rolando Cimaz
- Pediatric Rheumatology Unit, AOU MeyerFlorence, Italy
| | - Roberta Priori
- Department of Internal Medicine and Medical Specialities, Rheumatology Unit, Sapienza University of RomeRome, Italy
| | - Rosaria Talarico
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Stefano Gentileschi
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of SienaSiena, Italy
| | - Ginevra de Marchi
- Department of Medical and Biological Sciences, Rheumatology Clinic, University of UdineUdine, Italy
| | - Micol Frassi
- Rheumatology and Clinical Immunology, Spedali Civili, and Department of Clinical and Experimental Sciences, University of BresciaBrescia, Italy
| | - Romina Gallizzi
- Department of Pediatrics, Azienda G. Martino, University of MessinaMessina, Italy
| | - Alessandra Soriano
- Rheumatology Unit, Department of Internal Medicine, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere ScientificoReggio Emilia, Italy
| | - Maria Alessio
- Department of Pediatrics, University Federico II of NaplesNaples, Italy
| | - Daniele Cammelli
- Rheumatology Section, Immunoallergology Unit, AOU CareggiFlorence, Italy
| | - Maria C. Maggio
- Universitary Department “Pro.S.A.M.I.”, University of PalermoPalermo, Italy
| | - Renzo Marcolongo
- Clinical Immunology, Department of Medicine, University of PaduaPadua, Italy
| | | | - Claudia Fabiani
- Department of Ophthalmology, Humanitas Research HospitalMilan, Italy
| | - Serena Colafrancesco
- Department of Internal Medicine and Medical Specialities, Rheumatology Unit, Sapienza University of RomeRome, Italy
| | - Francesca Ricci
- Pediatric Clinic, University of Brescia and Spedali Civili di BresciaBrescia, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine, University of PaduaPadua, Italy
| | - Ombretta Viapiana
- Rheumatology Section, Department of Medicine, University of VeronaVerona, Italy
| | - Elena Verrecchia
- Periodic Fever Research Center, Institute of Internal Medicine, Università Cattolica Sacro Cuore, Fondazione Policlinico A. GemelliRome, Italy
| | - Manuela Pardeo
- Division of Rheumatology, Department of Pediatric Medicine, IRCCS, Bambino Gesù Children's HospitalRome, Italy
| | - Lucia Cerrito
- Periodic Fever Research Center, Institute of Internal Medicine, Università Cattolica Sacro Cuore, Fondazione Policlinico A. GemelliRome, Italy
| | - Elena Cavallaro
- Department of Medical and Biological Sciences, Rheumatology Clinic, University of UdineUdine, Italy
| | - Alma N. Olivieri
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Seconda Università degli Studi of NaplesNaples, Italy
| | | | - Gianfranco Vitiello
- Experimental and Clinical Medicine Department, University of FlorenceFlorence, Italy
| | - Armin Maier
- Struttura Semplice di Reumatologia, Ospedale di BolzanoBolzano, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| | - Chiara Stagnaro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialities, Rheumatology Unit, Sapienza University of RomeRome, Italy
| | - Marta Mosca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Salvatore de Vita
- Department of Medical and Biological Sciences, Rheumatology Clinic, University of UdineUdine, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology, Spedali Civili, and Department of Clinical and Experimental Sciences, University of BresciaBrescia, Italy
| | - Giovanni Lapadula
- Rheumatology Unit, Interdisciplinary Department of Medicine, University of BariBari, Italy
| | - Bruno Frediani
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of SienaSiena, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology, Department of Pediatric Medicine, IRCCS, Bambino Gesù Children's HospitalRome, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Interdisciplinary Department of Medicine, University of BariBari, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine, University of PaduaPadua, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Department of Internal Medicine, Azienda Ospedaliera ASMN, Istituto di Ricovero e Cura a Carattere ScientificoReggio Emilia, Italy
| | - Mauro Galeazzi
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of SienaSiena, Italy
| | - Donato Rigante
- Periodic Fever Research Center, Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico A. GemelliRome, Italy
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of SienaSiena, Italy
| |
Collapse
|
70
|
van Greevenbroek MMJ, Schalkwijk CG, Stehouwer CDA. Dysfunctional adipose tissue and low-grade inflammation in the management of the metabolic syndrome: current practices and future advances. F1000Res 2016; 5. [PMID: 27803798 PMCID: PMC5070595 DOI: 10.12688/f1000research.8971.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
The ongoing worldwide obesity epidemic makes the metabolic syndrome an increasingly important entity. In this review, we provide a short background on the metabolic syndrome, we discuss recent developments in the three main options that have been identified for intervention in the metabolic syndrome, i.e. lifestyle and surgical and pharmacological interventions, and we focus on different views in the literature and also include our own viewpoints on the metabolic syndrome. In addition, we discuss some emerging treatment targets for adipose tissue dysfunction and low-grade inflammation, i.e. activation of the inflammasome and the complement system, and consider some selected opportunities for intervention in these processes.
Collapse
Affiliation(s)
- Marleen M J van Greevenbroek
- Maastricht University Medical Center, Maastricht, 6229 ER, Netherlands; CARIM School for Cardiovascular Diseases, Maastricht, 6229 ER, Netherlands
| | - Casper G Schalkwijk
- Maastricht University Medical Center, Maastricht, 6229 ER, Netherlands; CARIM School for Cardiovascular Diseases, Maastricht, 6229 ER, Netherlands
| | - Coen D A Stehouwer
- Maastricht University Medical Center, Maastricht, 6229 ER, Netherlands; CARIM School for Cardiovascular Diseases, Maastricht, 6229 ER, Netherlands; Academic Hospital Maastricht, Maastricht, 6229 HX, Netherlands
| |
Collapse
|
71
|
Pilla SJ, Quan AQ, Germain-Lee EL, Hellmann DB, Mathioudakis NN. Immune-Modulating Therapy for Rheumatologic Disease: Implications for Patients with Diabetes. Curr Diab Rep 2016; 16:91. [PMID: 27525682 PMCID: PMC6031126 DOI: 10.1007/s11892-016-0792-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune modulators used to treat rheumatologic disease have diverse endocrine effects in patients with diabetes. Providers should be aware of these effects given that diabetes and rheumatologic disease overlap in prevalence and cardiovascular morbidity. In patients with type 1 diabetes, clinical trials have demonstrated that immune modulators used early in the disease can improve pancreatic function, though their efficacy in adults with longstanding autoimmune diabetes is unknown. In patients with type 2 diabetes, hydroxychloroquine is an effective antihyperglycemic and may be preferred for rheumatologic use in patients with difficult glycemic control. In patients without diabetes, hydroxychloroquine and tumor necrosis factor (TNF) inhibitors have been found to decrease diabetes incidence in observational studies. Additionally, dapsone and sulfasalazine alter erythrocyte survival resulting in inaccurate HbA1c values. These multifaceted effects of immune modulators create a need for coordinated care between providers treating patients with diabetes to individualize medication selection and prevent hypoglycemic events. More research is needed to determine the long-term outcomes of immune modulators in patients with diabetes.
Collapse
Affiliation(s)
- Scott J Pilla
- General Internal Medicine, Johns Hopkins University, 2024 E. Monument St, Room 2-604A, Baltimore, MD, 21205, USA
| | - Amy Q Quan
- Johns Hopkins School of Medicine, 2202 E Fairmount Ave, Baltimore, MD, 21231, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, Division of Pediatric Endocrinology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Broadway, Room 583, Baltimore, MD, 801 N, USA
| | - David B Hellmann
- Department of Medicine, Johns Hopkins University School of Medicine and Johns Hopkins, Bayview, Johns Hopkins Bayview Medical Center, Mason F. Lord Building, Center Tower, Room 322, 5200 Eastern Avenue, Baltimore, MD, 21224, USA
| | - Nestoras N Mathioudakis
- Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, 1830 E. Monument Street, Suite 333, Baltimore, MD, 21287, USA.
| |
Collapse
|
72
|
HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol 2016; 14:43-64. [PMID: 27569562 PMCID: PMC5214941 DOI: 10.1038/cmi.2016.34] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
Our immune system is based on the close collaboration of the innate and adaptive immune systems for the rapid detection of any threats to the host. Recognition of pathogen-derived molecules is entrusted to specific germline-encoded signaling receptors. The same receptors have now also emerged as efficient detectors of misplaced or altered self-molecules that signal tissue damage and cell death following, for example, disruption of the blood supply and subsequent hypoxia. Many types of endogenous molecules have been shown to provoke such sterile inflammatory states when released from dying cells. However, a group of proteins referred to as alarmins have both intracellular and extracellular functions which have been the subject of intense research. Indeed, alarmins can either exert beneficial cell housekeeping functions, leading to tissue repair, or provoke deleterious uncontrolled inflammation. This group of proteins includes the high-mobility group box 1 protein (HMGB1), interleukin (IL)-1α, IL-33 and the Ca2+-binding S100 proteins. These dual-function proteins share conserved regulatory mechanisms, such as secretory routes, post-translational modifications and enzymatic processing, that govern their extracellular functions in time and space. Release of alarmins from mesenchymal cells is a highly relevant mechanism by which immune cells can be alerted of tissue damage, and alarmins play a key role in the development of acute or chronic inflammatory diseases and in cancer development.
Collapse
|
73
|
Cavalli G, Koenders M, Kalabokis V, Kim J, Tan AC, Garlanda C, Mantovani A, Dagna L, Joosten LAB, Dinarello CA. Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology (Oxford) 2016; 55:2220-2229. [PMID: 27567100 DOI: 10.1093/rheumatology/kew325] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/29/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The IL-1 family member IL-37 was recently characterized as a fundamental inhibitor of innate inflammation. We investigated the effects of recombinant IL-37 in joint inflammation and joint pathology in a mouse model of arthritis. In addition, we explored the potential for therapeutic use in human joint inflammation. METHODS Wild-type mice were treated systemically with a recombinant form of the naturally occurring human IL-37, and then the knee joints were injected with streptococcal cell wall fragments; joint inflammation, synovial cytokine concentrations and histology were evaluated after 24 h. Mice deficient in the IL-1 family decoy receptor IL-1R8 were treated in a similar manner. The effects of IL-37 treatment were also assessed in a model of streptococcal cell wall-induced systemic inflammation. Changes in IL37 and IL1R8 gene expression were evaluated in the synovia of patients with rheumatoid arthritis. RESULTS In wild-type mice, low doses (40 µg/kg) of IL-37 suppressed joint inflammation by 51.7% (P < 0.001) and significantly decreased synovial IL-1β by 84%, IL-6 by 73%, TNF-α by 33%, chemokine (C-X-C motif) ligand 1 by 58%, Chemokine (C-C motif) ligand 3 or macrophage inflammatory protein 1-alpha by 64%, IL-1α by 40% and MPO by 60%. These reductions were associated with a lower recruitment of neutrophils into the joint. The anti-inflammatory properties of IL-37 were dependent on the presence of IL-1R8, also in streptococcal cell wall-induced peritonitis. We found that gene expression of IL1R8, but not IL37, is markedly increased in the synovia of patients with rheumatoid arthritis. CONCLUSION IL-37 emerges as a key suppressor of joint and systemic inflammation. These findings indicate a rationale for using recombinant IL-37 in the treatment of arthritis.
Collapse
Affiliation(s)
- Giulio Cavalli
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA .,Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy.,Department of Internal Medicine
| | - Marije Koenders
- Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Jihye Kim
- Translational Bioinformatics, Division of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Aik Choon Tan
- Translational Bioinformatics, Division of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Cecilia Garlanda
- Research Institute Humanitas, Experimental Immunopathology Lab, Rozzano, Italy
| | - Alberto Mantovani
- Research Institute Humanitas, Experimental Immunopathology Lab, Rozzano, Italy
| | - Lorenzo Dagna
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA.,Department of Internal Medicine
| |
Collapse
|
74
|
Co-morbidity of PTSD and immune system dysfunction: opportunities for treatment. Curr Opin Pharmacol 2016; 29:104-10. [PMID: 27479489 DOI: 10.1016/j.coph.2016.07.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022]
Abstract
Posttraumatic stress disorder (PTSD) is defined as a psychiatric disorder; however, PTSD co-occurs with multiple somatic manifestations. People living with PTSD commonly manifest dysregulations in the systems that regulate the stress response, including the hypothalamic-pituitary-adrenal (HPA) axis, and development of a pro-inflammatory state. Additionally, somatic autoimmune and inflammatory diseases and disorders have a high rate of co-morbidity with PTSD. Recognition and understanding of the compounding effect that these disease states can have on each other, evidenced from poorer treatment outcomes and accelerated disease progression in patients suffering from co-morbid PTSD and/or other autoimmune and inflammatory diseases, has the potential to lead to additional treatment opportunities.
Collapse
|
75
|
King J, Henriet SSV, Warris A. Aspergillosis in Chronic Granulomatous Disease. J Fungi (Basel) 2016; 2:jof2020015. [PMID: 29376932 PMCID: PMC5753077 DOI: 10.3390/jof2020015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with chronic granulomatous disease (CGD) have the highest life-time incidence of invasive aspergillosis and despite the availability of antifungal prophylaxis, infections by Aspergillus species remain the single most common infectious cause of death in CGD. Recent developments in curative treatment options, such as haematopoietic stem cell transplantation, will change the prevalence of infectious complications including invasive aspergillosis in CGD patients. However, invasive aspergillosis in a previously healthy host is often the first presenting feature of this primary immunodeficiency. Recognizing the characteristic clinical presentation and understanding how to diagnose and treat invasive aspergillosis in CGD is of utmost relevance to improve clinical outcomes. Significant differences exist in fungal epidemiology, clinical signs and symptoms, and the usefulness of non-culture based diagnostic tools between the CGD host and neutropenic patients, reflecting underlying differences in the pathogenesis of invasive aspergillosis shaped by the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase deficiency.
Collapse
Affiliation(s)
- Jill King
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Stefanie S V Henriet
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen 6500 HB, The Netherlands.
| | - Adilia Warris
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
76
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
77
|
Abstract
A leucine-to-proline missense mutation at residue 98 in the proline-serine-threonine phosphatase interacting protein 2 (Pstpip2) gene leads to autoinflammatory disease that is characterized by splenomegaly, necrosis, and spontaneous development of osteomyelitis in mice (Pstpip2cmo). Disease progression in these mice resembles that of chronic recurrent multifocal osteomyelitis in humans. Our group and others have shown that disease progression in Pstpip2cmo mice is mediated by the cytokine IL-1β, independently of inflammasomes or IL-1α. Our recent publication highlighted herein establishes that diet-induced changes in intestinal microbiota provide protection against the development of osteomyelitis in Pstpip2cmo mice. Moreover, the proteases caspase-1 and caspase-8 have redundant roles in cleaving IL-1β and promoting disease. This addendum reviews the current literature on the Pstpip2cmo murine disease model and the clinical significance of the role of PSTPIP2 in regulating autoinflammatory osteomyelitis, which is mediated by innate components of immune cells.
Collapse
Affiliation(s)
- Farrah C. Phillips
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
78
|
Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, Fan X, Yu FS. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1466-80. [PMID: 27109611 DOI: 10.1016/j.ajpath.2016.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
Abstract
Patients with diabetes mellitus often develop corneal complications and delayed wound healing. How diabetes might alter acute inflammatory responses to tissue injury, leading to delayed wound healing, remains mostly elusive. Using a streptozotocin-induced type I diabetes mellitus mice and corneal epithelium-debridement wound model, we discovered that although wounding induced marked expression of IL-1β and the secreted form of IL-1 receptor antagonist (sIL-1Ra), diabetes suppressed the expressions of sIL-1Ra but not IL-1β in healing epithelia and both in whole cornea. In normoglycemic mice, IL-1β or sIL-1Ra blockade delayed wound healing and influenced each other's expression. In diabetic mice, in addition to delayed reepithelization, diabetes weakened phosphatidylinositol 3-kinase-Akt signaling, caused cell apoptosis, diminished cell proliferation, suppressed neutrophil and natural killer cell infiltrations, and impaired sensory nerve reinnervation in healing mouse corneas. Local administration of recombinant IL-1Ra partially, but significantly, reversed these pathological changes in the diabetic corneas. CXCL10 was a downstream chemokine of IL-1β-IL-1Ra, and exogenous CXCL10 alleviated delayed wound healing in the diabetic, but attenuated it in the normal corneas. In conclusion, the suppressed early innate/inflammatory responses instigated by the imbalance between IL-1β and IL-1Ra is an underlying cause for delayed wound healing in the diabetic corneas. Local application of IL-1Ra accelerates reepithelialization and may be used to treat chronic corneal and potential skin wounds of diabetic patients.
Collapse
Affiliation(s)
- Chenxi Yan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nan Gao
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Haijing Sun
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jia Yin
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Patrick Lee
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Zhou
- Department of Dermatology, Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan
| | - Xianqun Fan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fu-Shin Yu
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
79
|
MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo. Proc Natl Acad Sci U S A 2016; 113:1363-8. [PMID: 26787888 DOI: 10.1073/pnas.1523482113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic risk for autoimmunity in HLA genes is most often attributed to structural specificity resulting in presentation of self-antigens. Autoimmune vitiligo is strongly associated with the MHC class II region. Here, we fine-map vitiligo MHC class II genetic risk to three SNPs only 47 bp apart, located within a predicted super-enhancer in an intergenic region between HLA-DRB1 and HLA-DQA1, localized by a genome-wide association study of 2,853 Caucasian vitiligo patients. The super-enhancer corresponds to an expression quantitative trait locus for expression of HLA-DR and HLA-DQ RNA; we observed elevated surface expression of HLA-DR (P = 0.008) and HLA-DQ (P = 0.02) on monocytes from healthy subjects homozygous for the high-risk SNP haplotype. Unexpectedly, pathogen-stimulated peripheral blood mononuclear cells from subjects homozygous for the high-risk super-enhancer haplotype exhibited greater increase in production of IFN-γ and IL-1β than cells from subjects homozygous for the low-risk haplotype. Specifically, production of IFN-γ on stimulation of dectin-1, mannose, and Toll-like receptors with Candida albicans and Staphylococcus epidermidis was 2.5- and 2.9-fold higher in high-risk subjects than in low-risk subjects, respectively (P = 0.007 and P = 0.01). Similarly, production of IL-1β was fivefold higher in high-risk subjects than in low-risk subjects (P = 0.02). Increased production of immunostimulatory cytokines in subjects carrying the high-risk haplotype may act as an "adjuvant" during the presentation of autoantigens, tying together genetic variation in the MHC with the development of autoimmunity. This study demonstrates that for risk of autoimmune vitiligo, expression level of HLA class II molecules is as or more important than antigen specificity.
Collapse
|
80
|
Shah JA, Berrington WR, Vary JC, Wells RD, Peterson GJ, Kunwar CB, Khadge S, Hagge DA, Hawn TR. Genetic Variation in Toll-Interacting Protein Is Associated With Leprosy Susceptibility and Cutaneous Expression of Interleukin 1 Receptor Antagonist. J Infect Dis 2015; 213:1189-97. [PMID: 26610735 DOI: 10.1093/infdis/jiv570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/19/2015] [Indexed: 01/03/2023] Open
Abstract
Leprosy is a chronic disease characterized by skin and peripheral nerve pathology and immune responses that fail to control Mycobacterium leprae. Toll-interacting protein (TOLLIP) regulates Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) signaling against mycobacteria. We analyzed messenger RNA (mRNA) expression of candidate immune genes in skin biopsy specimens from 85 individuals with leprosy. TOLLIP mRNA was highly and specifically correlated with IL-1R antagonist (IL-1Ra). In a case-control gene-association study with 477 cases and 1021 controls in Nepal, TOLLIP single-nucleotide polymorphism rs3793964 TT genotype was associated with increased susceptibility to leprosy (recessive, P = 1.4 × 10(-3)) and with increased skin expression of TOLLIP and IL-1Ra. Stimulation of TOLLIP-deficient monocytes with M. leprae produced significantly less IL-1Ra (P < .001), compared with control. These data suggest that M. leprae upregulates IL-1Ra by a TOLLIP-dependent mechanism. Inhibition of TOLLIP may decrease an individual's susceptibility to leprosy and offer a novel therapeutic target for IL-1-dependent diseases.
Collapse
Affiliation(s)
- Javeed A Shah
- University of Washington School of Medicine, Seattle, Washington
| | | | - James C Vary
- University of Washington School of Medicine, Seattle, Washington Puget Sound VA Health Care System, Seattle, Washington
| | - Richard D Wells
- University of Washington School of Medicine, Seattle, Washington
| | | | - Chhatra B Kunwar
- Mycobacterial Research Laboratories, Anandaban Hospital, Kathmandu, Nepal
| | - Saraswoti Khadge
- Mycobacterial Research Laboratories, Anandaban Hospital, Kathmandu, Nepal
| | - Deanna A Hagge
- Mycobacterial Research Laboratories, Anandaban Hospital, Kathmandu, Nepal
| | - Thomas R Hawn
- University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
81
|
New discovery rarely runs smooth: an update on progranulin/TNFR interactions. Protein Cell 2015; 6:792-803. [PMID: 26408020 PMCID: PMC4624682 DOI: 10.1007/s13238-015-0213-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
Progranulin (PGRN) is a growth factor implicated in various pathophysiological processes, including wound healing, inflammation, tumorigenesis, and neurodegeneration. It was previously reported that PGRN binds to tumor necrosis factor receptors (TNFR) and has therapeutic effects in inflammatory arthritis (Tang et. al, in Science 332:478-484, 2011); however, Chen et al. reported their inability to demonstrate the PGRN-TNFR interactions under their own conditions (Chen et. al, in J Neurosci 33:9202-9213, 2013). A letter-to-editor was then published by the original group in response to the Chen et al. paper that discussed the reasons for the latter's inability to recapitulate the interactions. In addition, the group published follow-up studies that further reinforced and dissected the interactions of PGRN-TNFR. Recently, the dispute about the legitimacy of PGRN-TNFR interactions appears to be finally settled with independent confirmations of these interactions in various conditions by numerous laboratories. This review presents a chronological update on the story of PGRN-TNFR interactions, highlighting the independent confirmations of these interactions in various diseases and conditions.
Collapse
|