51
|
Sui Y, Helsley RN, Park SH, Song X, Liu Z, Zhou C. Intestinal pregnane X receptor links xenobiotic exposure and hypercholesterolemia. Mol Endocrinol 2015; 29:765-76. [PMID: 25811240 DOI: 10.1210/me.2014-1355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies have associated endocrine-disrupting chemical (EDC) exposure with the increased risk of cardiovascular disease in humans, but the underlying mechanisms responsible for these associations remain elusive. Many EDCs have been implicated in activation of the nuclear receptor pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism in the liver and intestine. Here we report an important role of intestinal PXR in linking xenobiotic exposure and hyperlipidemia. We identified tributyl citrate (TBC), one of a large group of Food and Drug Administration-approved plasticizers for pharmaceutical or food applications, as a potent and selective PXR agonist. TBC efficiently activated PXR and induced PXR target gene expression in vitro and in vivo. Interestingly, TBC activated intestinal PXR but did not affect hepatic PXR activity. Exposure to TBC increased plasma total cholesterol and atherogenic low-density lipoprotein cholesterol levels in wild-type mice, but not in PXR-deficient mice. TBC-mediated PXR activation stimulated the expression of an essential cholesterol transporter, Niemann-Pick C1-like 1 (NPC1L1), in the intestine. Promoter analysis revealed a DR-4 type of PXR response element in the human NPC1L1 promoter, and TBC promoted PXR recruitment onto the NPC1L1 promoter. Consistently, TBC treatment significantly increased lipid uptake by human and murine intestinal cells and deficiency of PXR inhibited TBC-elicited lipid uptake. These findings provide critical mechanistic insight for understanding the impact of EDC-mediated PXR activation on lipid homeostasis and demonstrate a potential role of PXR in mediating the adverse effects of EDCs on cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences (Y.S., R.N.H., S.-H.P., X.S., Z.L., C.Z.) and Saha Cardiovascular Research Center (C.Z.), University of Kentucky, Lexington, Kentucky 40506
| | | | | | | | | | | |
Collapse
|
52
|
Families of nuclear receptors in vertebrate models: characteristic and comparative toxicological perspective. Sci Rep 2015; 5:8554. [PMID: 25711679 PMCID: PMC4339804 DOI: 10.1038/srep08554] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Various synthetic chemicals are ligands for nuclear receptors (NRs) and can cause adverse effects in vertebrates mediated by NRs. While several model vertebrates, such as mouse, chicken, western clawed frog and zebrafish, are widely used in toxicity testing, few NRs have been well described for most of these classes. In this report, NRs in genomes of 12 vertebrates are characterized via bioinformatics approaches. Although numbers of NRs varied among species, with 40-42 genes in birds to 66-74 genes in teleost fishes, all NRs had clear homologs in human and could be categorized into seven subfamilies defined as NR0B-NR6A. Phylogenetic analysis revealed conservative evolutionary relationships for most NRs, which were consistent with traditional morphology-based systematics, except for some exceptions in Dolphin (Tursiops truncatus). Evolution of PXR and CAR exhibited unexpected multiple patterns and the existence of CAR possibly being traced back to ancient lobe-finned fishes and tetrapods (Sarcopterygii). Compared to the more conservative DBD of NRs, sequences of LBD were less conserved: Sequences of THRs, RARs and RXRs were ≥90% similar to those of the human, ERs, AR, GR, ERRs and PPARs were more variable with similarities of 60%-100% and PXR, CAR, DAX1 and SHP were least conserved among species.
Collapse
|
53
|
Sharma D, Lau AJ, Sherman MA, Chang TKH. Differential activation of human constitutive androstane receptor and its SV23 and SV24 splice variants by rilpivirine and etravirine. Br J Pharmacol 2015; 172:1263-76. [PMID: 25363652 DOI: 10.1111/bph.12997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Rilpivirine and etravirine are second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs) indicated for the treatment of HIV/AIDS. The constitutive androstane receptor (CAR) regulates the expression of genes involved in various biological processes, including the transport and biotransformation of drugs. We investigated the effect of rilpivirine and etravirine on the activity of the wild-type human CAR (hCAR-WT) and its hCAR-SV23 and hCAR-SV24 splice variants, and compared it with first-generation NNRTIs (efavirenz, nevirapine, and delavirdine). EXPERIMENTAL APPROACH Receptor activation, ligand-binding domain (LBD) transactivation, and co-activator recruitment were investigated in transiently transfected, NNRTI-treated HepG2 cells. Nuclear translocation of green fluorescent protein-tagged hCAR-WT and CYP2B6 gene expression were assessed in NNRTI-treated human hepatocytes. KEY RESULTS Rilpivirine and etravirine activated hCAR-WT, but not hCAR-SV23 or hCAR-SV24, and without transactivating the LBD or recruiting steroid receptor coactivators SRC-1, SRC-2, or SRC-3. Among the first-generation NNRTIs investigated, only efavirenz activated hCAR-WT, hCAR-SV23, and hCAR-SV24, but none of them transactivated the LBD of these receptors or substantively recruited SRC-1, SRC-2, or SRC-3. Rilpivirine, etravirine, and efavirenz triggered nuclear translocation of hCAR-WT and increased hCAR target gene (CYP2B6) expression. CONCLUSION AND IMPLICATIONS NNRTIs activate hCAR-WT, hCAR-SV23, and hCAR-SV24 in a drug-specific and isoform-selective manner. The activation occurs by a mechanism that does not appear to involve binding to the LBD or recruitment of SRC-1, SRC-2, or SRC-3.
Collapse
Affiliation(s)
- Devinder Sharma
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
54
|
Lau AJ, Chang TKH. Indirect activation of the SV23 and SV24 splice variants of human constitutive androstane receptor: analysis with 3-hydroxyflavone and its analogues. Br J Pharmacol 2014; 170:403-14. [PMID: 23809009 DOI: 10.1111/bph.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/17/2013] [Accepted: 06/20/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Naturally occurring splice variants of human CAR (hCAR), including hCAR-SV23 (insertion of amino acids SPTV) and hCAR-SV24 (APYLT), have been shown to be expressed in liver. However, little is known regarding how hCAR-SV23 and hCAR-SV24 are activated. Therefore, we investigated the mode of activation of these hCAR splice variants. EXPERIMENTAL APPROACH Cell-based reporter gene assays, including ligand-binding domain transactivation assays and coactivator recruitment assays, were conducted on cultured HepG2 cells transfected with various constructs and treated with 3-hydroxyflavone or a hydroxylated (galangin, datiscetin, kaempferol, morin, quercetin or myricetin) or methylated (isorhamnetin, tamarixetin, or syringetin) analogue. KEY RESULTS Among the flavonols investigated, only 3-hydroxyflavone increased hCAR-SV23 and hCAR-SV24 activities. 3-Hydroxyflavone did not transactivate the ligand-binding domain of these isoforms or recruit steroid receptor coactivators (SRC-1, SRC-2, or SRC-3). By comparison, 3-hydroxyflavone, galangin, datiscetin, kaempferol, quercetin, isorhamnetin and tamarixetin activated hCAR-WT, whereas none of the flavonols activated hCAR-SV25 (both SPTV and APYLT insertions). The flavonols 3-Hydroxyflavone, galangin, quercetin and tamarixetin transactivated the ligand-binding domain of hCAR-WT, but only 3-hydroxyflavone recruited SRC-1, SRC-2 and SRC-3 to the receptor. CONCLUSION AND IMPLICATIONS hCAR-SV23 and hCAR-SV24 can be activated by a mechanism that does not involve the ligand-binding domain of the receptor or recruitment of SRC-1, SRC-2, or SRC-3. 3-Hydroxyflavone and its structural analogues activated hCAR in an isoform-selective and chemical-specific manner. Overall, our study provides insight into a novel mode of ligand activation of hCAR-SV23 and hCAR-SV24.
Collapse
Affiliation(s)
- Aik Jiang Lau
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
55
|
Wahlang B, Falkner KC, Clair HB, Al-Eryani L, Prough RA, States JC, Coslo DM, Omiecinski CJ, Cave MC. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture. Toxicol Sci 2014; 140:283-97. [PMID: 24812009 DOI: 10.1093/toxsci/kfu083] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα.
Collapse
Affiliation(s)
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition
| | - Heather B Clair
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | | | - Russell A Prough
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | | | - Denise M Coslo
- Center for Molecular Toxicology, Penn State University, University Park, Pennsylvania 16802
| | - Curtis J Omiecinski
- Center for Molecular Toxicology, Penn State University, University Park, Pennsylvania 16802
| | - Matthew C Cave
- Department of Pharmacology and Toxicology Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition The Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky 40206
| |
Collapse
|
56
|
Peyre L, Rouimi P, de Sousa G, Héliès-Toussaint C, Carré B, Barcellini S, Chagnon MC, Rahmani R. Comparative study of bisphenol A and its analogue bisphenol S on human hepatic cells: a focus on their potential involvement in nonalcoholic fatty liver disease. Food Chem Toxicol 2014; 70:9-18. [PMID: 24793377 DOI: 10.1016/j.fct.2014.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
For several decades, people have been in contact with bisphenol A (BPA) primarily through their diet. Nowadays it is gradually replaced by an analogue, bisphenol S (BPS). In this study, we compared the effects of these two bisphenols in parallel with the positive control diethylstilbestrol (DES) on different hepatocyte cell lines. Using a cellular impedance system we have shown that BPS is less cytotoxic than BPA in acute and chronic conditions. We have also demonstrated that, contrary to BPA, BPS is not able to induce an increase in intracellular lipid and does not activate the PXR receptor which is known to be involved in part, in this process. In parallel, it failed to modulate the expression of CYP3A4 and CYP2B6, the drug transporter ABCB1 and other lipid metabolism genes (FASN, PLIN). However, it appears to have a weak effect on GSTA4 protein expression and on the Erk1/2 pathway. In conclusion, in contrast to BPA, BPS does not appear to induce the metabolic syndrome that may lead to non-alcoholic fatty liver disease (NAFLD), in vitro. Although we have to pay special attention to BPS, its use could be less dangerous concerning this toxicological endpoint for human health.
Collapse
Affiliation(s)
- Ludovic Peyre
- UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), Laboratory of Xenobiotic's Cellular and Molecular Toxicology, 400 route des Chappes, BP167, 06903 Sophia-Antipolis Cedex, France.
| | - Patrick Rouimi
- UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), 180 chemin de Tournefeuille, 31027 Toulouse, France
| | - Georges de Sousa
- UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), Laboratory of Xenobiotic's Cellular and Molecular Toxicology, 400 route des Chappes, BP167, 06903 Sophia-Antipolis Cedex, France
| | - Cécile Héliès-Toussaint
- UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), 180 chemin de Tournefeuille, 31027 Toulouse, France
| | - Benjamin Carré
- UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), 180 chemin de Tournefeuille, 31027 Toulouse, France
| | - Sylvie Barcellini
- Neomah, Research in Toxicology, INRA-Agrobiotech, 06903 Sophia-Antipolis, France
| | - Marie-Christine Chagnon
- Nutox Laboratory, Derttech "Packtox", INSERM UMR866, AgroSupDijon, bâtiment Epicure, 1 esplanade Erasme, 21000 Dijon, France
| | - Roger Rahmani
- UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), Laboratory of Xenobiotic's Cellular and Molecular Toxicology, 400 route des Chappes, BP167, 06903 Sophia-Antipolis Cedex, France; UMR 1331 TOXALIM (Research Centre in Food Toxicology), Institut National de la Recherche Agronomique (INRA), 180 chemin de Tournefeuille, 31027 Toulouse, France.
| |
Collapse
|
57
|
Lau AJ, Chang TKH. Fetal bovine serum and human constitutive androstane receptor: evidence for activation of the SV23 splice variant by artemisinin, artemether, and arteether in a serum-free cell culture system. Toxicol Appl Pharmacol 2014; 277:221-30. [PMID: 24721719 DOI: 10.1016/j.taap.2014.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
The naturally occurring SV23 splice variant of human constitutive androstane receptor (hCAR-SV23) is activated by di-(2-ethylhexyl)phthalate (DEHP), which is detected as a contaminant in fetal bovine serum (FBS). In our initial experiment, we compared the effect of dialyzed FBS, charcoal-stripped, dextran-treated FBS (CS-FBS), and regular FBS on the basal activity and ligand-activation of hCAR-SV23 in a cell-based reporter gene assay. In transfected HepG2 cells cultured in medium supplemented with 10% FBS, basal hCAR-SV23 activity varied with the type of FBS (regular>dialyzed>CS). DEHP increased hCAR-SV23 activity when 10% CS-FBS, but not regular FBS or dialyzed FBS, was used. With increasing concentrations (1-10%) of regular FBS or CS-FBS, hCAR-SV23 basal activity increased, whereas in DEHP-treated cells, hCAR-SV23 activity remained similar (regular FBS) or slightly increased (CS-FBS). Subsequent experiments identified a serum-free culture condition to detect DEHP activation of hCAR-SV23. Under this condition, artemisinin, artemether, and arteether increased hCAR-SV23 activity, whereas they decreased it in cells cultured in medium supplemented with 10% regular FBS. By comparison, FBS increased the basal activity of the wild-type isoform of hCAR (hCAR-WT), whereas it did not affect the basal activity of the SV24 splice variant (hCAR-SV24) or ligand activation of hCAR-SV24 and hCAR-WT by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). The use of serum-free culture condition was suitable for detecting CITCO activation of hCAR-WT and hCAR-SV24. In conclusion, FBS leads to erroneous classification of pharmacological ligands of hCAR-SV23 in cell-based assays, but investigations on functional ligands of hCAR isoforms can be conducted in serum-free culture condition.
Collapse
Affiliation(s)
- Aik Jiang Lau
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
58
|
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in other individuals. A major source of this variability in drug response is drug metabolism, where differences in pre-systemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, C max, and/or C min) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is well recognized that both intrinsic (such as genetics, age, sex, and disease states) and extrinsic (such as diet, chemical exposures from the environment, and even sunlight) factors play a significant role. For the family of cytochrome P450 enzymes, the most critical of the drug metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, up- and down-regulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less reliably predictable and time-dependent manner. Understanding the mechanistic basis for drug disposition and response variability is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that brings with it true improvements in health outcomes in the therapeutic treatment of disease.
Collapse
Affiliation(s)
- Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
59
|
Sueyoshi T, Li L, Wang H, Moore R, Kodavanti PRS, Lehmler HJ, Negishi M, Birnbaum LS. Flame retardant BDE-47 effectively activates nuclear receptor CAR in human primary hepatocytes. Toxicol Sci 2013; 137:292-302. [PMID: 24218150 DOI: 10.1093/toxsci/kft243] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Polybrominated diphenyl ether BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is a thyroid hormone disruptor in mice; hepatic induction of various metabolic enzymes and transporters has been suggested as the mechanism for this disruption. Utilizing Car (-/-) and Pxr (-/-) mice as well as human primary hepatocytes, here we have demonstrated that BDE-47 activated both mouse and human nuclear receptor constitutive activated/androstane receptor (CAR). In mouse livers, CAR, not PXR, was responsible for Cyp2b10 mRNA induction by BDE-47. In human primary hepatocytes, BDE-47 was able to induce translocation of YFP-tagged human CAR from the cytoplasm to the nucleus andCYP2B6 and CYP3A4 mRNAs expressions. BDE-47 activated human CAR in a manner akin to the human CAR ligand CITCO (6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) in luciferase-reporter assays using Huh-7 cells. In contrast, mouse CAR was not potently activated by BDE-47 in the same reporter assays. Furthermore, human pregnane X receptor (PXR) was effectively activated by BDE-47 while mouse PXR was weakly activated in luciferase-reporter assays. Our results indicate that BDE-47 induces CYP genes through activation of human CAR in addition to the previously identified pathway through human PXR.
Collapse
Affiliation(s)
- Tatsuya Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology and
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Kocbach Bølling A, Holme JA, Bornehag CG, Nygaard UC, Bertelsen RJ, Nånberg E, Bodin J, Sakhi AK, Thomsen C, Becher R. Pulmonary phthalate exposure and asthma - is PPAR a plausible mechanistic link? EXCLI JOURNAL 2013; 12:733-59. [PMID: 26622216 PMCID: PMC4662182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 11/01/2022]
Abstract
Due to their extensive use as plasticisers in numerous consumer products, phthalates have become ubiquitous environmental contaminants. An increasing number of epidemiological studies suggest that exposure to phthalates may be associated with worsening or development of airway diseases. Peroxisome Proliferation Activated Receptors (PPAR)s, identified as important targets for phthalates in early studies in rodent liver, have been suggested as a possible mechanistic link. In this review we discuss the likelihood of an involvement of PPARs in asthma development and exacerbation due to pulmonary phthalate exposure. First, we go through the literature on indoor air levels of phthalates and pulmonary phthalate kinetics. These data are then used to estimate the pulmonary phthalate levels due to inhalation exposure. Secondly, the literature on phthalate-induced activation or modulation of PPARs is summarized. Based on these data, we discuss whether pulmonary phthalate exposure is likely to cause PPAR activation, and if this is a plausible mechanism for adverse effects of phthalates in the lung. It is concluded that the pulmonary concentrations of some phthalates may be sufficient to cause a direct activation of PPARs. Since PPARs mainly mediate anti-inflammatory effects in the lungs, a direct activation is not a likely molecular mechanism for adverse effects of phthalates. However, possible modulatory effects of phthalates on PPARs deserve further investigation, including partial antagonist effects and/or cross talk with other signalling pathways. Moreover other mechanisms, including interactions between phthalates and other receptors, could also contribute to possible adverse pulmonary effects of phthalates.
Collapse
Affiliation(s)
- Anette Kocbach Bølling
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway,*To whom correspondence should be addressed: Anette Kocbach Bølling, Division of Environmental Medicine, Norwegian Institute of Public Health, Geitemyrsveien 75, 0462 Oslo, Norway, Phone: +47 21077000, Fax: +47 21076686, E-mail: ;
| | - Jørn A Holme
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | | | - Unni C Nygaard
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Randi J Bertelsen
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Eewa Nånberg
- University of Karlstad, 651-88, Karlstad, Sweden
| | - Johanna Bodin
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Amrit Kaur Sakhi
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Cathrine Thomsen
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| | - Rune Becher
- Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo, Norway
| |
Collapse
|
61
|
Roberts JK, Moore CD, Romero EG, Ward RM, Yost GS, Reilly CA. Regulation of CYP3A genes by glucocorticoids in human lung cells. F1000Res 2013; 2:173. [PMID: 24555085 PMCID: PMC3869485 DOI: 10.12688/f1000research.2-173.v2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
Inhaled glucocorticoids are the first-line treatment for patients with persistent asthma. However, approximately thirty percent of patients exhibit glucocorticoid insensitivity, which may involve excess metabolic clearance of the glucocorticoids by CYP3A enzymes in the lung. CYP3A4, 3A5, and 3A7 enzymes metabolize glucocorticoids, which in turn induce CYP3A genes. However, the mechanism of CYP3A5 mRNA regulation by glucocorticoids in lung cells has not been determined. In hepatocytes, glucocorticoids bind to the glucocorticoid receptor (GR), which induces the expression of the constitutive androstane receptor or pregnane X receptor; both of which bind to the retinoid X receptor alpha, leading to the induction of CYP3A4, 3A5, and 3A7. There is also evidence to suggest a direct induction of CYP3A5 by GR activation in liver cells. In this study, these pathways were evaluated as the mechanism for CYP3A5 mRNA induction by glucocorticoids in freshly isolated primary tracheal epithelial, adenocarcinomic human alveolar basal epithelial (A549), immortalized bronchial epithelial (BEAS-2B), primary normal human bronchial/tracheal epithelial (NHBE), primary small airway epithelial (SAEC), and primary lobar epithelial lung cells. In A549 cells, beclomethasone 17-monopropionate ([M1]) induced CYP3A5 mRNA through the glucocorticoid receptor. CYP3A5 mRNA induction by five different glucocorticoids was attenuated by inhibiting the glucocorticoid receptor using ketoconazole, and for beclomethasone dipropionate, using siRNA-mediated knock-down of the glucocorticoid receptor. The constitutive androstane receptor was not expressed in lung cells. SAEC cells, a primary lung cell line, expressed CYP3A5, but CYP3A5 mRNA was not induced by glucocorticoid treatment despite evaluating a multitude of cell culture conditions. None of the other lung cells expressed CYP3A4, 3A5 or 3A7 mRNA. These studies demonstrate that CYP3A5 mRNA is induced by glucocorticoids in A549 cells via the glucocorticoid receptor, but that additional undefined regulatory processes exist in primary lung cells.
Collapse
Affiliation(s)
- Jessica K Roberts
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City UT, 84112, USA
| | - Chad D Moore
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City UT, 84112, USA
| | - Erin G Romero
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City UT, 84112, USA
| | - Robert M Ward
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City UT, 84108, USA
| | - Garold S Yost
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City UT, 84112, USA
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City UT, 84112, USA
| |
Collapse
|
62
|
Molina-Molina JM, Amaya E, Grimaldi M, Sáenz JM, Real M, Fernández MF, Balaguer P, Olea N. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 2013; 272:127-36. [PMID: 23714657 DOI: 10.1016/j.taap.2013.05.015] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 01/02/2023]
Abstract
Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA>BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA>TBBPA>BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes.
Collapse
Affiliation(s)
- José-Manuel Molina-Molina
- Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Choi EJ, Jang YJ, Cha EY, Shin JG, Lee SS. Identification and characterization of novel alternative splice variants of human constitutive androstane receptor in liver samples of Koreans and Caucasians. Drug Metab Dispos 2013; 41:888-96. [PMID: 23378627 DOI: 10.1124/dmd.112.049791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human constitutive androstane receptor (hCAR, NR1I3) is a member of the orphan nuclear receptor family and regulates the transcription of many drug-metabolizing enzymes and drug transporters. Previous studies have shown that the hCAR gene produces a number of different kinds of mRNA splicing variants (SVs) in non-Asian ethnicities. In the present study, we identified 18 hCAR SVs (SV1-SV18), including four novel SVs in Korean human livers. Among the four novel SVs, SV2 showed enhanced transactivation activity when cotransfected with CYP2B6 reporter gene, whereas other SVs were nonfunctional. When profiles of major hCAR SVs were compared among 30 livers from Korean patients and 20 livers from Caucasian patients, the relative composition of each SV showed interethnic variation as well as interindividual variation. The most predominant form of hCAR SV was not wild type, but either SV4 or SV7. The summed relative amounts of SV4 and SV7 ranged from 34.5 to 57.6% in the 30 Korean livers and from 47.2 to 82.6% in the 20 Caucasian livers, suggesting large interindividual variation. The mean relative amount of nonfunctional SV9 was significantly higher in Koreans (29.8%) than in Caucasians (12.8%). The mean relative amount of novel SV2 was 9.7% in Korean livers and 3.5% in Caucasian livers. Expression profiling of hCAR proteins in human livers also supported large interindividual variation in the expressional ratio of wild-type and SVs. Our results describe for the first time the direct comparison of hCAR SV profiles between Koreans and Caucasians. The functional relevance of these interindividual and interethnic variations of hCAR mRNA expression needs to be further characterized.
Collapse
Affiliation(s)
- Eun-Jung Choi
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Paik Hospital, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
64
|
Laurenzana EM, Chen T, Kannuswamy M, Sell BE, Strom SC, Li Y, Omiecinski CJ. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3). Mol Pharmacol 2012; 82:918-28. [PMID: 22896671 PMCID: PMC3477224 DOI: 10.1124/mol.112.080721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/15/2012] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene transcription is controlled in part by nuclear receptors that function coordinately with coregulator proteins. The human constitutive androstane receptor (CAR; NR1I3) is expressed primarily in liver and regulates the expression of genes involved in xenobiotic metabolism as well as hormone, energy, and lipid homeostasis. In this report, DAX-1, a nuclear receptor family member with corepressor properties, was identified as a potent CAR regulator. Results of transaction and mutational studies demonstrated that both DAX-1's downstream LXXLL and its PCFQVLP motifs were critical contributors to DAX-1's corepression activities, although two other LXXM/LL motifs located nearer the N terminus had no impact on the CAR functional interaction. Deletion of DAX-1's C-terminal transcription silencing domain restored CAR1 transactivation activity in reporter assays to approximately 90% of control, demonstrating its critical function in mediating the CAR repression activities. Furthermore, results obtained from mammalian two-hybrid experiments assessing various domain configurations of the respective receptors showed that full-length DAX-1 inhibited the CAR-SRC1 interaction by approximately 50%, whereas the same interaction was restored to 90% of control when the DAX-1 transcription silencing domain was deleted. Direct interaction between CAR and DAX-1 was demonstrated with both alpha-screen and coimmunoprecipitation experiments, and this interaction was enhanced in the presence of the CAR activator 6-(4-chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Results obtained in primary human hepatocytes further demonstrated DAX-1 inhibition of CAR-mediated CITCO induction of the CYP2B6 target gene. The results of this investigation identify DAX-1 as a novel and potent CAR corepressor and suggest that DAX-1 functions as a coordinate hepatic regulator of CAR's biological function.
Collapse
Affiliation(s)
- Elizabeth M Laurenzana
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Dau PT, Sakai H, Hirano M, Ishibashi H, Tanaka Y, Kameda K, Fujino T, Kim EY, Iwata H. Quantitative Analysis of the Interaction of Constitutive Androstane Receptor with Chemicals and Steroid Receptor Coactivator 1 Using Surface Plasmon Resonance Biosensor Systems: A Case Study of the Baikal Seal (Pusa sibirica) and the Mouse. Toxicol Sci 2012; 131:116-27. [DOI: 10.1093/toxsci/kfs288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
66
|
Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response. Cancer Lett 2012; 328:1-9. [PMID: 22939994 DOI: 10.1016/j.canlet.2012.08.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 01/24/2023]
Abstract
Pregnane xenobiotic receptor (PXR) is an orphan nuclear receptor that regulates the metabolism of endobiotics and xenobiotics. PXR is promiscuous and unique in that it is activated by a diverse group of xenochemicals, including therapeutic anticancer drugs and naturally-occurring endocrine disruptors. PXR has been predominantly studied to understand its regulatory role in xenobiotic clearance in liver and intestine via induction of drug metabolizing enzymes and drug transporters. PXR, however, is widely expressed and has functional implications in other normal and malignant tissues, including breast, prostate, ovary, endometrium and bone. The differential expression of PXR and its target genes in cancer tissues has been suggested to determine the prognosis of chemotherapeutic outcome. In addition, the emerging evidence points to the implications of PXR in regulating apoptotic and antiapoptotic as well as growth factor signaling that promote tumor proliferation and metastasis. In this review, we highlight the recent progress made in understanding the role of PXR in cancer, discuss the future directions to further understand the mechanistic role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators.
Collapse
|
67
|
Alternative splicing interference by xenobiotics. Toxicology 2012; 296:1-12. [DOI: 10.1016/j.tox.2012.01.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 12/21/2022]
|
68
|
Barrie ES, Smith RM, Sanford JC, Sadee W. mRNA transcript diversity creates new opportunities for pharmacological intervention. Mol Pharmacol 2012; 81:620-630. [PMID: 22319206 PMCID: PMC3336806 DOI: 10.1124/mol.111.076604] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/07/2012] [Indexed: 12/13/2022] Open
Abstract
Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3' and 5'UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and context-dependent, creating opportunities for more effective and targeted therapies with reduced adverse effects. Moreover, genetic variation can tilt the balance of alternative versus constitutive transcripts or generate aberrant transcripts that contribute to disease risk. In addition, environmental factors and drugs modulate RNA splicing, affording new opportunities for the treatment of splicing disorders. For example, therapies targeting specific mRNA transcripts with splice-site-directed oligonucleotides that correct aberrant splicing are already in clinical trials for genetic disorders such as Duchenne muscular dystrophy. High-throughput sequencing technologies facilitate discovery of novel RNA transcripts and protein isoforms, applications ranging from neuromuscular disorders to cancer. Consideration of a gene's transcript diversity should become an integral part of drug design, development, and therapy.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- Program in Pharmacogenomics, Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
69
|
Wang D, Wang H. Oxazaphosphorine bioactivation and detoxification The role of xenobiotic receptors. Acta Pharm Sin B 2012; 2. [PMID: 24349963 DOI: 10.1016/j.apsb.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oxazaphosphorines, with the most representative members including cyclophosphamide, ifosfamide, and trofosfamide, constitute a class of alkylating agents that have a broad spectrum of anticancer activity against many malignant ailments including both solid tumors such as breast cancer and hematological malignancies such as leukemia and lymphoma. Most oxazaphosphorines are prodrugs that require hepatic cytochrome P450 enzymes to generate active alkylating moieties before manifesting their chemotherapeutic effects. Meanwhile, oxazaphosphorines can also be transformed into non-therapeutic byproducts by various drug-metabolizing enzymes. Clinically, oxazaphosphorines are often administered in combination with other chemotherapeutics in adjuvant treatments. As such, the therapeutic efficacy, off-target toxicity, and unintentional drug-drug interactions of oxazaphosphorines have been long-lasting clinical concerns and heightened focuses of scientific literatures. Recent evidence suggests that xenobiotic receptors may play important roles in regulating the metabolism and clearance of oxazaphosphorines. Drugs as modulators of xenobiotic receptors can affect the therapeutic efficacy, cytotoxicity, and pharmacokinetics of coadministered oxazaphosphorines, providing a new molecular mechanism of drug-drug interactions. Here, we review current advances regarding the influence of xenobiotic receptors, particularly, the constitutive androstane receptor, the pregnane X receptor and the aryl hydrocarbon receptor, on the bioactivation and detoxification of oxazaphosphorines, with a focus on cyclophosphamide and ifosfamide.
Collapse
|
70
|
Berthier A, Oger F, Gheeraert C, Boulahtouf A, Le Guével R, Balaguer P, Staels B, Salbert G, Lefebvre P. The novel antibacterial compound walrycin A induces human PXR transcriptional activity. Toxicol Sci 2012; 127:225-35. [PMID: 22314385 DOI: 10.1093/toxsci/kfs073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human pregnane X receptor (PXR) is a ligand-regulated transcription factor belonging to the nuclear receptor superfamily. PXR is activated by a large, structurally diverse, set of endogenous and xenobiotic compounds and coordinates the expression of genes central to metabolism and excretion of potentially harmful chemicals and therapeutic drugs in humans. Walrycin A is a novel antibacterial compound targeting the WalK/WalR two-component signal transduction system of Gram (+) bacteria. Here, we report that, in hepatoma cells, walrycin A potently activates a gene set known to be regulated by the xenobiotic sensor PXR. Walrycin A was as efficient as the reference PXR agonist rifampicin to activate PXR in a transactivation assay at noncytotoxic concentrations. Using a limited proteolysis assay, we show that walrycin A induces conformational changes at a concentration which correlates with walrycin A ability to enhance the expression of prototypic target genes, suggesting that walrycin A interacts with PXR. The activation of the canonical human PXR target gene CYP3A4 by walrycin A is dose and PXR dependent. Finally, in silico docking experiments suggest that the walrycin A oxidation product Russig's blue is the actual ligand for PXR. Taken together, these results identify walrycin A as a novel human PXR activator.
Collapse
|
71
|
Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res 2011; 750:141-158. [PMID: 22198209 DOI: 10.1016/j.mrrev.2011.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B).
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
72
|
Küblbeck J, Laitinen T, Jyrkkärinne J, Rousu T, Tolonen A, Abel T, Kortelainen T, Uusitalo J, Korjamo T, Honkakoski P, Molnár F. Use of comprehensive screening methods to detect selective human CAR activators. Biochem Pharmacol 2011; 82:1994-2007. [DOI: 10.1016/j.bcp.2011.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/20/2023]
|
73
|
Lau AJ, Yang G, Chang TKH. Isoform-selective activation of human constitutive androstane receptor by Ginkgo biloba extract: functional analysis of the SV23, SV24, and SV25 splice variants. J Pharmacol Exp Ther 2011; 339:704-15. [PMID: 21862659 DOI: 10.1124/jpet.111.186130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Naturally occurring splice variants of human constitutive androstane receptor (hCAR) exist, including hCAR-SV23 (insertion of amino acids SPTV), hCAR-SV24 (APYLT), and hCAR-SV25 (SPTV and APYLT). An extract of Ginkgo biloba was reported to activate hCAR-SV24 and the wild type (hCAR-WT). However, it is not known whether it selectively affects hCAR splice variants, how it activates hCAR isoforms, and which chemical is responsible for the effects of the extract. Therefore, we evaluated the impact of G. biloba extract on the functionality of hCAR-SV23, hCAR-SV24, hCAR-SV25, and hCAR-WT and compared it with that of phenobarbital, di-(2-ethylhexyl)phthalate (DEHP), 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO), and 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) in cell-based reporter gene assays. Among the hCAR splice variants investigated, only hCAR-SV23 was activated by G. biloba extract, and this required cotransfection of a retinoid X receptor α (RXRα) expression plasmid. The extract activated hCAR-SV23 to a lesser extent than hCAR-WT, but ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, and bilobalide were not responsible for the effects of the extract. CITCO activated hCAR-SV23, hCAR-SV24, and hCAR-WT. By comparison, phenobarbital activated hCAR-WT, whereas DEHP activated hCAR-SV23, hCAR-SV24 (with exogenous RXRα supplementation), and hCAR-WT. TCPOBOP did not affect the activity of any of the isoforms. G. biloba extract and phenobarbital did not bind or recruit coactivators to the ligand-binding domains of hCAR-WT and hCAR-SV23, whereas positive results were obtained with the controls (CITCO for hCAR-WT and DEHP for hCAR-SV23). In conclusion, G. biloba extract activates hCAR in an isoform-selective manner, and hCAR-SV23, hCAR-SV24, and hCAR-WT have overlapping, but distinct, sets of ligands.
Collapse
Affiliation(s)
- Aik Jiang Lau
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | | | |
Collapse
|
74
|
Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2011; 17:44-55. [PMID: 22056716 DOI: 10.1016/j.drudis.2011.10.023] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/07/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Quantitative structure-activity relationship (QSAR) methods and related approaches have been used to investigate the molecular features that influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. As the three-dimensional structures of several major ADMET proteins become available, structure-based (docking-scoring) computations can be carried out to complement or to go beyond QSAR studies. Applying docking-scoring methods to ADMET proteins is a challenging process because they usually have a large and flexible binding cavity; however, promising results relating to metabolizing enzymes have been reported. After reviewing current trends in the field we applied structure-based methods in the context of receptor flexibility in a case study involving the phase II metabolizing sulfotransferases. Overall, the explored concepts and results suggested that structure-based ADMET profiling will probably join the mainstream during the coming years.
Collapse
Affiliation(s)
- Gautier Moroy
- Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, 35 Rue Helene Brion, 75013 Paris, France
| | | | | | | | | |
Collapse
|
75
|
Tian J, Huang H, Hoffman B, Liebermann DA, Ledda-Columbano GM, Columbano A, Locker J. Gadd45β is an inducible coactivator of transcription that facilitates rapid liver growth in mice. J Clin Invest 2011; 121:4491-502. [PMID: 21965327 DOI: 10.1172/jci38760] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/24/2011] [Indexed: 12/16/2022] Open
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins act in many cellular processes. In the liver, Gadd45b (encoding Gadd45β) is the gene most strongly induced early during both compensatory regeneration and drug-induced hyperplasia. The latter response is associated with the dramatic and rapid hepatocyte growth that follows administration of the xenobiotic TCPOBOP (1,4-bis[2-(3,5)-dichoropyridyloxy] benzene), a ligand of the nuclear receptor constitutive androstane receptor (CAR). Here, we have shown that Gadd45b-/- mice have intact proliferative responses following administration of a single dose of TCPOBOP, but marked growth delays. Moreover, early transcriptional stimulation of CAR target genes was weaker in Gadd45b-/- mice than in wild-type animals, and more genes were downregulated. Gadd45β was then found to have a direct role in transcription by physically binding to CAR, and TCPOBOP treatment caused both proteins to localize to a regulatory element for the CAR target gene cytochrome P450 2b10 (Cyp2b10). Further analysis defined separate Gadd45β domains that mediated binding to CAR and transcriptional activation. Although baseline hepatic expression of Gadd45b was broadly comparable to that of other coactivators, its 140-fold stimulation by TCPOBOP was striking and unique. The induction of Gadd45β is therefore a response that facilitates increased transcription, allowing rapid expansion of liver mass for protection against xenobiotic insults.
Collapse
Affiliation(s)
- Jianmin Tian
- Department of Pathology and Marion Bessin Liver Center, Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Omiecinski CJ, Coslo DM, Chen T, Laurenzana EM, Peffer RC. Multi-species analyses of direct activators of the constitutive androstane receptor. Toxicol Sci 2011; 123:550-62. [PMID: 21778469 DOI: 10.1093/toxsci/kfr191] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily and functions as an important xenochemical sensor and transcriptional modulator in mammalian cells. Upon chemical activation, CAR undergoes nuclear translocation and heterodimerization with the retinoid X receptor subsequent to its DNA target interaction. CAR is unusual among nuclear receptors in that it possesses a high level of constitutive activity in cell-based assays, obscuring the detection of ligand activators. However, a human splice variant of CAR, termed CAR3, exhibits negligible constitutive activity. In addition, CAR3 is activated by ligands with similar specificity as the reference form of the receptor. In this study, we hypothesized that similar CAR3 receptors could be constructed across various mammalian species' forms of CAR that would preserve species-specific ligand responses, thus enabling a more sensitive and differential screening assessment of CAR response among animal models. A battery of CAR3 receptors was produced in mouse, rat, and dog and comparatively evaluated with selected ligands together with human CAR1 and CAR3 in mammalian cell reporter assays. The results demonstrate that the 5-amino acid insertion that typifies human CAR3 also imparts ligand-activated receptor function in other species' CAR while maintaining signature responses in each species to select CAR ligands. These variant constructs permit in vitro evaluation of differential chemical effector responses across species and coupled with in vivo assays, the species-selective contributions of CAR in normal physiology and in disease processes such as hepatocarcinogenesis.
Collapse
Affiliation(s)
- Curtis J Omiecinski
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Penn State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|