51
|
Abstract
Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.
Collapse
|
52
|
Luo X, Jiang D, Xie J, Jia J, Duan J, Cheng J, Fu Y, Chen T, Yu X, Li B, Lin Y. Genome Characterization and Phylogenetic Analysis of a Novel Endornavirus That Infects Fungal Pathogen Sclerotinia sclerotiorum. Viruses 2022; 14:456. [PMID: 35336865 PMCID: PMC8953294 DOI: 10.3390/v14030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endornaviruses are capsidless linear (+) ssRNA viruses in the family Endornaviridae. In this study, Scelrotinia sclerotiorum endornavirus 11 (SsEV11), a novel endornavirus infecting hypovirulent Sclerotinia sclerotiorum strain XY79, was identified and cloned using virome sequencing analysis and rapid amplification of cDNA ends (RACE) techniques. The full-length genome of SsEV11 is 11906 nt in length with a large ORF, which encodes a large polyprotein of 3928 amino acid residues, containing a viral methyltransferase domain, a cysteine-rich region, a putative DEADc, a viral helicase domain, and an RNA-dependent RNA polymerase (RdRp) 2 domain. The 5' and 3' untranslated regions (UTR) are 31 nt and 90 nt, respectively. According to the BLAST result of the nucleotide sequence, SsEV11 shows the highest identity (45%) with Sclerotinia minor endornavirus 1 (SmEV1). Phylogenetic analysis based on amino acid sequence of RdRp demonstrated that SsEV11 clusters to endornavirus and has a close relationship with Betaendornavirus. Phylogenetic analysis based on the sequence of endornaviral RdRp domain indicated that there were three large clusters in the phylogenetic tree. Combining the results of alignment analysis, Cluster I at least has five subclusters including typical members of Alphaendornavirus and many unclassified endornaviruses that isolated from fungi, oomycetes, algae, and insects; Cluster II also has five subclusters including typical members of Betaendornavirus, SsEV11, and other unclassified viruses that infected fungi; Cluster III includes many endorna-like viruses that infect nematodes, mites, and insects. Viruses in Cluster I and Cluster II are close to each other and relatively distant to those in Cluster III. Our study characterized a novel betaendornavirus, SsEV11, infected fungal pathogen S. sclerotiorum, and suggested that notable phylogenetic diverse exists in endornaviruses. In addition, at least, one novel genus, Gammaendornavirus, should be established to accommodate those endorna-like viruses in Cluster III.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Xiao Yu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Bo Li
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| |
Collapse
|
53
|
Nuzzo F, Moine A, Nerva L, Pagliarani C, Perrone I, Boccacci P, Gribaudo I, Chitarra W, Gambino G. Grapevine virome and production of healthy plants by somatic embryogenesis. Microb Biotechnol 2022; 15:1357-1373. [PMID: 35182024 PMCID: PMC9049623 DOI: 10.1111/1751-7915.14011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Grapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus‐free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies. Using high‐throughput RNA sequencing, the viromes of seven mother plants grown in a germplasm collection vineyard were sequenced. In addition to the viruses and viroids already detected in grapevine, we identified 13 putative new mycoviruses. The different spread among grapevine tissues collected in vineyard, greenhouse and in vitro conditions suggested a clear distinction between viruses/viroids and mycoviruses that can successfully be exploited for their identification. Mycoviruses were absent in in vitro cultures, while plant viruses and viroids were particularly accumulated in these plantlets. Somatic embryogenesis applied to the seven mother plants was effective in the elimination of the complete virome, including mycoviruses. However, different sanitization efficiencies for viroids and grapevine pinot gris virus were observed among genotypes. The absence of mycoviruses in in vitro plantlets, associated with the absence of all viral entities in somaclones, suggested that this regeneration technique is also effective to eradicate endophytic/epiphytic fungi, resulting in gnotobiotic or pseudo‐gnotobiotic plants.
Collapse
Affiliation(s)
- Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy.,Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, Conegliano, 31015, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy.,Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, Conegliano, 31015, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| |
Collapse
|
54
|
Wang Q, Zou Q, Dai Z, Hong N, Wang G, Wang L. Four Novel Mycoviruses from the Hypovirulent Botrytis cinerea SZ-2-3y Isolate from Paris polyphylla: Molecular Characterisation and Mitoviral Sequence Transboundary Entry into Plants. Viruses 2022; 14:v14010151. [PMID: 35062353 PMCID: PMC8777694 DOI: 10.3390/v14010151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.
Collapse
Affiliation(s)
- Qiong Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Hainan University, Ministry of Education, Haikou 570100, China;
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2130; Fax: +86-27-8738-4670
| |
Collapse
|
55
|
Sato Y, Shahi S, Telengech P, Hisano S, Cornejo C, Rigling D, Kondo H, Suzuki N. A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe. Virus Res 2022; 307:198606. [PMID: 34688782 DOI: 10.1016/j.virusres.2021.198606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5'-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Paul Telengech
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sakae Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Carolina Cornejo
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
56
|
Sutela S, Piri T, Vainio EJ. Discovery and Community Dynamics of Novel ssRNA Mycoviruses in the Conifer Pathogen Heterobasidion parviporum. Front Microbiol 2021; 12:770787. [PMID: 34899655 PMCID: PMC8652122 DOI: 10.3389/fmicb.2021.770787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Heterobasidion species are highly destructive basidiomycetous conifer pathogens of the Boreal forest region. Earlier studies have revealed dsRNA virus infections of families Curvulaviridae and Partitiviridae in Heterobasidion strains, and small RNA deep sequencing has also identified infections of Mitoviridae members in these fungi. In this study, the virome of Heterobasidion parviporum was examined for the first time by RNA-Seq using total RNA depleted of rRNA. This method successfully revealed new viruses representing two established (+)ssRNA virus families not found earlier in Heterobasidion: Narnaviridae and Botourmiaviridae. In addition, we identified the presence of a recently described virus group tentatively named “ambiviruses” in H. parviporum. The H. parviporum isolates included in the study originated from experimental forest sites located within 0.7 km range from each other, and a population analysis including 43 isolates was conducted at one of the experimental plots to establish the prevalence of the newly identified viruses in clonally spreading H. parviporum individuals. Our results indicate that viral infections are considerably more diverse and common among Heterobasidion isolates than known earlier and include ssRNA viruses with high prevalence and interspecies variation.
Collapse
Affiliation(s)
- Suvi Sutela
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tuula Piri
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Eeva J Vainio
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
57
|
Khan HA, Shamsi W, Jamal A, Javaied M, Sadiq M, Fatma T, Ahmed A, Arshad M, Waseem M, Babar S, Dogar MM, Virk N, Janjua HA, Kondo H, Suzuki N, Bhatti MF. Assessment of mycoviral diversity in Pakistani fungal isolates revealed infection by 11 novel viruses of a single strain of Fusarium mangiferae isolate SP1. J Gen Virol 2021; 102. [PMID: 34850675 DOI: 10.1099/jgv.0.001690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extensive screening survey was conducted on Pakistani filamentous fungal isolates for the identification of viral infections. A total of 396 fungal samples were screened, of which 36 isolates were found double-stranded (ds) RNA positive with an overall frequency of 9% when analysed by a classical dsRNA isolation method. One of 36 dsRNA-positive strains, strain SP1 of a plant pathogenic fungus Fusarium mangiferae, was subjected to virome analysis. Next-generation sequencing and subsequent completion of the entire genome sequencing by a classical Sanger sequencing method showed the SP1 strain to be co-infected by 11 distinct viruses, at least seven of which should be described as new taxa at the species level according to the ICTV (International Committee on Taxonomy of Viruses) species demarcation criteria. The newly identified F. mangiferae viruses (FmVs) include two partitivirids, one betapartitivirus (FmPV1) and one gammapartitivirus (FmPV2); six mitovirids, three unuamitovirus (FmMV2, FmMV4, FmMV6), one duamitovirus (FmMV5), and two unclassified mitovirids (FmMV1, FmMV3); and three botourmiavirids, two magoulivirus (FmBOV1, FmBOV3) and one scleroulivirus (FmBOV2). The number of coinfecting viruses is among the largest ones of fungal coinfections. Their molecular features are thoroughly described here. This represents the first large virus survey in the Indian sub-continent.
Collapse
Affiliation(s)
- Haris Ahmed Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan.,Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Wajeeha Shamsi
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan.,Present address: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Atif Jamal
- Crop Diseases Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Memoona Javaied
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Mashal Sadiq
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Tehsin Fatma
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Aqeel Ahmed
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Maleeha Arshad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Mubashra Waseem
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Samra Babar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Midhat Mustafa Dogar
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan.,Present address: EBS Universität für Wirtschaft und Recht, EBS Business School, Rheingaustrasse 1, 65375, Oestrich-Winkel, Germany
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, 44000, Islamabad, Pakistan
| |
Collapse
|
58
|
Jia J, Mu F, Fu Y, Cheng J, Lin Y, Jiang D, Xie J. Characterization of a newly identified RNA segment derived from the genome of Sclerotinia sclerotiorum reovirus 1. Arch Virol 2021; 167:603-606. [PMID: 34855005 DOI: 10.1007/s00705-021-05319-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Sclerotinia sclerotiorum reovirus 1 (SsReV1) was previously reported to infect hypovirulent strain SCH941 of the phytopathogenic fungus Sclerotinia sclerotiorum and to contain 11 double-stranded RNA (dsRNA) segments (S1-S11). Here, we report that SsReV1 is actually composed of 12 dsRNA segments instead of 11. The full-length nucleotide sequence of the twelfth segment (S12) was determined using a combination of RACE and high-throughput sequencing methods. S12 is 1217 nucleotides in length and has highly conserved terminal sequences that resemble those of the other 11 segments of SsReV1. S12 contains a single open reading frame encoding a protein (VP12) of 311 amino acids. Although regular BLAST analysis did not reveal any similarity of VP12 to known sequences, it was found to be homologous to the VP11 of Colorado tick fever virus of the genus Coltivirus when a hidden-Markov-model-based HHpred analysis was performed. A single-protoplast regeneration experiment suggested that S12 and S2 were maintained or lost in parallel. In summary, the SsReV1 genome consists of 12 dsRNA segments.
Collapse
Affiliation(s)
- Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China. .,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
59
|
Liang W, Lu Z, Duan J, Jiang D, Xie J, Cheng J, Fu Y, Chen T, Li B, Yu X, Chen W, Lin Y. A novel alphahypovirus that infects the fungal plant pathogen Sclerotinia sclerotiorum. Arch Virol 2021; 167:213-217. [PMID: 34826002 DOI: 10.1007/s00705-021-05315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
A novel positive single-stranded RNA virus, Sclerotinia sclerotiorum hypovirus 9 (SsHV9), was identified in the plant-pathogenic Sclerotinia sclerotiorum strain GB375, which was associated with a garden bean plant in the United States. The complete genome of SsHV9 is 14,067 nucleotides in length, excluding the poly(A) tail. It has a single large open reading frame encoding a putative polyprotein (4,196 amino acids), which is predicted to contain a papain-like protease, a protein of unknown function, an RNA-dependent RNA polymerase, and an RNA helicase. Phylogenetic analysis based on a multiple alignment of amino acid sequences of polyproteins that suggested SsHV9 belongs to the proposed genus "Alphahypovirus" in the family Hypoviridae.
Collapse
Affiliation(s)
- Weibo Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zhongbo Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jiasen Cheng
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weidong Chen
- US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, 99164, USA
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
60
|
Characterization of the Mycovirome from the Plant-Pathogenic Fungus Cercospora beticola. Viruses 2021; 13:v13101915. [PMID: 34696345 PMCID: PMC8537984 DOI: 10.3390/v13101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Cercospora leaf spot (CLS) caused by Cercospora beticola is a devastating foliar disease of sugar beet (Beta vulgaris), resulting in high yield losses worldwide. Mycoviruses are widespread fungi viruses and can be used as a potential biocontrol agent for fugal disease management. To determine the presence of mycoviruses in C. beticola, high-throughput sequencing analysis was used to determine the diversity of mycoviruses in 139 C. beticola isolates collected from major sugar beet production areas in China. The high-throughput sequencing reads were assembled and searched against the NCBI database using BLASTn and BLASTx. The results showed that the obtained 93 contigs were derived from eight novel mycoviruses, which were grouped into 3 distinct lineages, belonging to the families Hypoviridae, Narnaviridae and Botourmiaviridae, as well as some unclassified (−)ssRNA viruses in the order Bunyavirales and Mononegavirales. To the best of our knowledge, this is the first identification of highly diverse mycoviruses in C. beticola. The novel mycoviruses explored in this study will provide new viral materials to biocontrol Cercospora diseases. Future studies of these mycoviruses will aim to assess the roles of each mycovirus in biological function of C. beticola in the future.
Collapse
|
61
|
Wang Z, Neupane A, Feng J, Pedersen C, Lee Marzano SY. Direct Metatranscriptomic Survey of the Sunflower Microbiome and Virome. Viruses 2021; 13:v13091867. [PMID: 34578448 PMCID: PMC8473204 DOI: 10.3390/v13091867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust infections. To identify the viruses potentially associated with the disease diagnosed, symptomatic leaves were obtained from diseased plants. Total RNA was extracted corresponding to each disease diagnosed to generate libraries for paired-end high throughput sequencing. Short sequencing reads were assembled de novo and the contigs with similarities to viruses were identified by aligning against a custom protein database. We report the discovery of two novel mitoviruses, four novel partitiviruses, one novel victorivirus, and nine novel totiviruses based on similarities to RNA-dependent RNA polymerases and capsid proteins. Contigs similar to bean yellow mosaic virus and Sclerotinia sclerotiorum hypovirulence-associated DNA virus were also detected. To the best of our knowledge, this is the first report of direct metatranscriptomics discovery of viruses associated with fungal infections of sunflowers bypassing culturing. These newly discovered viruses represent a natural genetic resource from which we can further develop potential biopesticide to control sunflower diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
| | - Jiuhuan Feng
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA;
| | - Connor Pedersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
- United States Department of Agriculture-Agricultural Research Service, Toledo, OH 43606, USA
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA;
- United States Department of Agriculture-Agricultural Research Service, Toledo, OH 43606, USA
- Correspondence: ; Tel.: +1-419-530-5053
| |
Collapse
|
62
|
Mu F, Li B, Cheng S, Jia J, Jiang D, Fu Y, Cheng J, Lin Y, Chen T, Xie J. Nine viruses from eight lineages exhibiting new evolutionary modes that co-infect a hypovirulent phytopathogenic fungus. PLoS Pathog 2021; 17:e1009823. [PMID: 34428260 PMCID: PMC8415603 DOI: 10.1371/journal.ppat.1009823] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/03/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoviruses are an important component of the virosphere, but our current knowledge of their genome organization diversity and evolution remains rudimentary. In this study, the mycovirus composition in a hypovirulent strain of Sclerotinia sclerotiorum was molecularly characterized. Nine mycoviruses were identified and assigned into eight potential families. Of them, six were close relatives of known mycoviruses, while the other three had unique genome organizations and evolutionary positions. A deltaflexivirus with a tripartite genome has evolved via arrangement and horizontal gene transfer events, which could be an evolutionary connection from unsegmented to segmented RNA viruses. Two mycoviruses had acquired a second helicase gene by two different evolutionary mechanisms. A rhabdovirus representing an independent viral evolutionary branch was the first to be confirmed to occur naturally in fungi. The major hypovirulence-associated factor, an endornavirus, was finally corroborated. Our study expands the diversity of mycoviruses and potential virocontrol agents, and also provides new insights into virus evolutionary modes including virus genome segmentation. Identification of mycoviruses in phytopathogenic fungi is necessary for understanding the origin of viruses and developing virocontrol strategies to protect plants. Nine mycoviruses with RNA genomes were identified in a hypovirulent strain of Sclerotinia sclerotiorum and were classified into eight potential viral families, suggesting that the composition of mycoviral communities was complex in this single fungal strain. They included four previously characterized mycoviruses and three distant relatives of known mycoviruses, as well as the first reports of a deltaflexivirus with a tripartite genome, and a fungal rhabdovirus. In addition, we found an endornavirus associated with hypovirulence in a phytopathogenic fungus. Our study makes a significant contribution because it not only expands the diversity-related knowledge of mycoviruses and potential virocontrol agents, but also provides new insights into mycovirus evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
63
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
64
|
Mu F, Jia J, Xue Y, Jiang D, Fu Y, Cheng J, Lin Y, Xie J. Characterization of a novel botoulivirus isolated from the phytopathogenic fungus Sclerotinia sclerotiorum. Arch Virol 2021; 166:2859-2863. [PMID: 34291341 DOI: 10.1007/s00705-021-05168-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
Sclerotinia sclerotiorum ourmiavirus 17 (SsOV17) was isolated from the hypovirulent strain GF3 of Sclerotinia sclerotiorum. The genome of SsOV17 is 2,802 nt in length and contains a single long open reading frame (ORF) flanked by a short structured 5'-untranslated region (5'-UTR) (28 nt) and a long 3'-UTR (788 nt), respectively. The ORF encodes a protein with 663 amino acids and a predicted molecular mass of 75.0 kDa. A BLASTp search indicated that the protein encoded by SsOV17 is closely related to the putative RNA-dependent RNA polymerase (RdRp) of Sclerotinia sclerotiorum ourmiavirus 13 (71% identity). A multiple sequence alignment indicated that eight conserved amino acid motifs were present in the RdRp conserved region of SsOV17. Phylogenetic analysis demonstrated that SsOV17 clustered with members of the genus Botoulivirus.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunxiang Xue
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|