51
|
Gitaitis R, Walcott R. The epidemiology and management of seedborne bacterial diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:371-97. [PMID: 17474875 DOI: 10.1146/annurev.phyto.45.062806.094321] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although seed production has been moved to semiarid regions to escape seedborne pathogens, seedborne bacterial diseases continue to be problematic and cause significant economic losses worldwide. Infested seeds are responsible for the re-emergence of diseases of the past, movement of pathogens across international borders, or the introduction of diseases into new areas. Considerable attention has been paid to improving the sensitivity and selectivity of seed health assays by using techniques such as flow cytometry and the polymerase chain reaction. There has also been progress in understanding infection thresholds and how they influence seed sample size determination and ultimately the reliability of seed health testing. Disease development and dissemination of pathogens from contaminated seedlots can be predicted using formulas that take into account inoculum density and environmental pressures. In general, seeds infested with bacterial pathogens are distributed within a Poisson distribution. In a subset of contaminated seeds, bacteria are distributed in non-Gaussian distributions, e.g., a lognormal distribution.
Collapse
Affiliation(s)
- Ronald Gitaitis
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, Georgia 31793, USA.
| | | |
Collapse
|
52
|
Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter FJ, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 2005; 187:7254-66. [PMID: 16237009 PMCID: PMC1272972 DOI: 10.1128/jb.187.21.7254-7266.2005] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causative agent of bacterial spot disease in pepper and tomato plants, which leads to economically important yield losses. This pathosystem has become a well-established model for studying bacterial infection strategies. Here, we present the whole-genome sequence of the pepper-pathogenic Xanthomonas campestris pv. vesicatoria strain 85-10, which comprises a 5.17-Mb circular chromosome and four plasmids. The genome has a high G+C content (64.75%) and signatures of extensive genome plasticity. Whole-genome comparisons revealed a gene order similar to both Xanthomonas axonopodis pv. citri and Xanthomonas campestris pv. campestris and a structure completely different from Xanthomonas oryzae pv. oryzae. A total of 548 coding sequences (12.2%) are unique to X. campestris pv. vesicatoria. In addition to a type III secretion system, which is essential for pathogenicity, the genome of strain 85-10 encodes all other types of protein secretion systems described so far in gram-negative bacteria. Remarkably, one of the putative type IV secretion systems encoded on the largest plasmid is similar to the Icm/Dot systems of the human pathogens Legionella pneumophila and Coxiella burnetii. Comparisons with other completely sequenced plant pathogens predicted six novel type III effector proteins and several other virulence factors, including adhesins, cell wall-degrading enzymes, and extracellular polysaccharides.
Collapse
Affiliation(s)
- Frank Thieme
- Martin-Luther-Universität, Institut für Genetik, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Burger A, Gräfen I, Engemann J, Niermann E, Pieper M, Kirchner O, Gartemann KH, Eichenlaub R. Identification of homologues to the pathogenicity factor Pat-1, a putative serine protease of Clavibacter michiganensis subsp. michiganensis. Microbiol Res 2005; 160:417-27. [PMID: 16255147 DOI: 10.1016/j.micres.2005.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybridization of Clavibacter michiganensis subsp. michiganensis total DNA against the pathogenicity gene pat-1 indicated the presence of pat-1 homologous nucleotide sequences on the chromosome and on plasmid pCM2. Isolation of the corresponding DNA fragments and nucleotide sequence determination showed that there are three pat-1 homologous genes: chpA (chromosome) and phpA and phpB (plasmid pCM2). The gene products share common characteristics, i.e. a signal sequence for Sec-dependent secretion, a serine protease motif, and six cysteine residues at conserved positions. Gene chpA located on the chromosome is a pseudogene since it contains a translational stop codon after 97 of 280 amino acids. In contrast to pat-1, cloning of the plasmid encoded homologs phpA and phpB into the avirulent plasmid free Cmm strain CMM100 did not result in a virulent phenotype. So far, no proteolytic activity could be demonstrated for Pat-1, however, site specific mutagenesis of pat-1 showed that the serine residue in the motif GDSGG is required for the virulent phenotype of pat-1 and thus Pat-1 could be a functional protease.
Collapse
Affiliation(s)
- Annette Burger
- Biology, Microbiology/Genetechnology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Gartemann KH, Kirchner O, Engemann J, Gräfen I, Eichenlaub R, Burger A. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 2004; 106:179-91. [PMID: 14651860 DOI: 10.1016/j.jbiotec.2003.07.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete. It infects tomato, spreads through the xylem and causes bacterial wilt and canker. The wild-type strain NCPPB382 carries two plasmids, pCM1 and pCM2. The cured plasmid-free derivative CMM100 is still able to colonize tomato, but no disease symptoms develop indicating that all genes required for successful infection, establishment and growth in the plant reside on the chromosome. Both plasmids carry one virulence factor, a gene encoding a cellulase, CelA in case of pCM1 and a putative serine protease Pat-1 on pCM2. These genes can independently convert the non-virulent strain CMM100 into a pathogen causing wilt on tomatoes. Currently, genome projects for Cmm and the closely related potato-pathogen C. michiganensis subsp. sepedonicus have been initiated. The data from the genome project shall give clues on further genes involved in plant-microbe interaction that can be tested experimentally. Especially, identification of genes related to host-specificity through genome comparison of the two subspecies might be possible.
Collapse
Affiliation(s)
- Karl-Heinz Gartemann
- Lehrstuhl Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse 25, D-33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Monteiro-Vitorello CB, Camargo LEA, Van Sluys MA, Kitajima JP, Truffi D, do Amaral AM, Harakava R, de Oliveira JCF, Wood D, de Oliveira MC, Miyaki C, Takita MA, da Silva ACR, Furlan LR, Carraro DM, Camarotte G, Almeida NF, Carrer H, Coutinho LL, El-Dorry HA, Ferro MIT, Gagliardi PR, Giglioti E, Goldman MHS, Goldman GH, Kimura ET, Ferro ES, Kuramae EE, Lemos EGM, Lemos MVF, Mauro SMZ, Machado MA, Marino CL, Menck CF, Nunes LR, Oliveira RC, Pereira GG, Siqueira W, de Souza AA, Tsai SM, Zanca AS, Simpson AJG, Brumbley SM, Setúbal JC. The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:827-836. [PMID: 15305603 DOI: 10.1094/mpmi.2004.17.8.827] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.
Collapse
Affiliation(s)
- Claudia B Monteiro-Vitorello
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Kirchner O, Gartemann KH, Zellermann EM, Eichenlaub R, Burger A. A highly efficient transposon mutagenesis system for the tomato pathogen Clavibacter michiganensis subsp. michiganensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1312-1318. [PMID: 11763129 DOI: 10.1094/mpmi.2001.14.11.1312] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A transposon mutagenesis system for Clavibacter michiganensis subsp. michiganensis was developed based on antibiotic resistance transposons that were derived from the insertion element IS1409 from Arthrobacter sp. strain TM1 NCIB12013. As a prerequisite, the electroporation efficiency was optimized by using unmethylated DNA and treatment of the cells with glycine such that about 5 x 10(6) transformants per microg of DNA were generally obtained. Electroporation of C. michiganensis subsp. michiganensis with a suicide vector carrying transposon Tn1409C resulted in approximately 1 x 10(3) transposon mutants per pg of DNA and thus is suitable for saturation mutagenesis. Analysis of Tn1409C insertion sites suggests a random mode of transposition. Transposition of Tn1409C was also demonstrated for other subspecies of C. michiganensis.
Collapse
Affiliation(s)
- O Kirchner
- Fakultät für Biologie, Lehrstuhl für Mikrobiologie/Gentechnologie, Universität Bielefeld, Germany
| | | | | | | | | |
Collapse
|
58
|
Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R. The endo-beta-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:703-714. [PMID: 10875331 DOI: 10.1094/mpmi.2000.13.7.703] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382, which causes bacterial wilt and canker of tomato, harbors two plasmids, pCM1 (27.35 kb) and pCM2 (72 kb), encoding genes involved in virulence (D. Meletzus, A. Bermpohl, J. Dreier, and R. Eichenlaub, 1993, J. Bacteriol. 175:2131-2136; J. Dreier, D. Meletzus, and R. Eichenlaub, 1997, Mol. Plant-Microbe Interact. 10:195-206). The region of pCM1 carrying the endoglucanase gene celA was mapped by deletion analysis and complementation. RNA hybridization identified a 2.4-knt (kilonucleotide) transcript of the celA structural gene and the transcriptional initiation site was mapped. The celA gene encodes CelA, a protein of 78 kDa (746 amino acids) with similarity to endo-beta-1,4-glucanases of family A1 cellulases. CelA has a three-domain structure with a catalytic domain, a type IIa-like cellulose-binding domain, and a C-terminal domain. We present evidence that CelA plays a major role in pathogenicity, since wilt induction capability is obtained by endoglucanase expression in plasmid-free, nonvirulent strains and by complementation of the CelA- gene-replacement mutant CMM-H4 with the wild-type celA gene.
Collapse
Affiliation(s)
- H Jahr
- Universität Bielefeld, Fakultät für Biologie, Gentechnologie/Mikrobiologie, Germany
| | | | | | | | | |
Collapse
|
59
|
Jahr H, Bahro R, Burger A, Ahlemeyer J, Eichenlaub R. Interactions between Clavibacter michiganensis and its host plants. Environ Microbiol 1999; 1:113-8. [PMID: 11207726 DOI: 10.1046/j.1462-2920.1999.00011.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- H Jahr
- Universität Bielefeld, Fakultät für Biologie, Gentechnologie/Mikrobiologie, Germany
| | | | | | | | | |
Collapse
|
60
|
|