51
|
Miragliotta V, Lefebvre-Lavoie J, Lussier JG, Theoret CL. Equine ANXA2 and MMP1 expression analyses in an experimental model of normal and pathological wound repair. J Dermatol Sci 2008; 51:103-12. [DOI: 10.1016/j.jdermsci.2008.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 12/11/2022]
|
52
|
Sharov AA, Falco G, Piao Y, Poosala S, Becker KG, Zonderman AB, Longo DL, Schlessinger D, Ko MS. Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary. BMC Biol 2008; 6:24. [PMID: 18522719 PMCID: PMC2426674 DOI: 10.1186/1741-7007-6-24] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 06/03/2008] [Indexed: 12/15/2022] Open
Abstract
Background The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on ad libitum (AL) feeding with a group on lifespan-extending 40% calorie restriction (CR). Results We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months), whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis. Conclusion Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.
Collapse
Affiliation(s)
- Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod 2008; 23:1118-27. [PMID: 18310048 DOI: 10.1093/humrep/den048] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The development of an accurate method for selection of high-quality embryos is essential to achieve high pregnancy rates with single embryo transfer in human IVF. The developmental competence of the oocyte is acquired during follicle maturation and strong communication also exists between the follicular cells (FCs) and the oocytes; thus oocyte developmental competence may be determined by markers expressed in the surrounding FCs. METHODS From consenting patients (n = 40), FCs were recovered on a per follicle basis by individual follicle puncture. Hybridization analyses using a custom-made complementary DNA microarray containing granulosa/cumulus expressed sequence tags (ESTs) from subtracted libraries and an Affymetrix GeneChip were performed to identify specific genes expressed in follicles leading to a pregnancy. The selected candidate genes were validated by quantitative-PCR (Q-PCR). RESULTS Subtractive libraries prepared from pooled samples representing pregnant versus non-pregnant patients produced 1694 ESTs. Hybridization data analysis discriminated 115 genes associated with competent follicles. Selected candidates were confirmed by Q-PCR: 3-beta-hydroxysteroid dehydrogenase 1 (P = 0.0078), Ferredoxin 1 (P = 0.0203), Serine (or cysteine) proteinase inhibitor clade E member 2 (P = 0.0499), Cytochrome P450 aromatase (P = 0.0359) and Cell division cycle 42 (P = 0.0396). CONCLUSIONS Microarray technologies are useful to mine the transcriptome of FCs expressed in follicles associated with competent oocytes and could be used to improve embryo selection with the objective of successful single embryo transfer.
Collapse
Affiliation(s)
- Melanie Hamel
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
54
|
Bonnet A, Dalbiès-Tran R, Sirard MA. Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction 2008; 135:119-28. [DOI: 10.1530/rep-07-0331] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian oogenesis and folliculogenesis are complex and coordinated biological processes which require a series of events that induce morphological and functional changes within the follicle, leading to cell differentiation and oocyte development. In this context, the challenge of the researchers is to describe the dynamics of gene expression in the different compartments and their interactions during the follicular programme. In recent years, high-throughput arrays have become a powerful tool with which to compare the whole population of transcripts in a single experiment. Here, we review the challenges of applying genomics to this model in farm animal species. The first limitation lies in limited the availability of biological material, which makes the study of the follicle compartments (oocyte, granulosa cells and thecal cells) or early embryo much more difficult. The concept of observing all transcripts at once is very attractive but despite progress in sequencing, the genome annotation remains very incomplete in non-model species. Particularly, oogenesis and early embryo development relate to the high proportion of unknown expressed sequence tags. Then, it is important to consider post-transcriptional and translational regulation to understand the role of these genes. Ultimately, these new inferred insights will still have to be validated by functional approaches. In addition toin vitroorex vivofunctional approaches, both ‘natural mutant’ ewe models and RNA interference represent, at the moment, the best hope for functional genomics. Advances in our understanding of reproductive physiology should be facilitated by gene expression data exchange and translation into a better understanding of the underlying biological phenomena.
Collapse
|
55
|
Miragliotta V, Ipiña Z, Lefebvre-Lavoie J, Lussier JG, Theoret CL. Equine CTNNB1 and PECAM1 nucleotide structure and expression analyses in an experimental model of normal and pathological wound repair. BMC PHYSIOLOGY 2008; 8:1. [PMID: 18237399 PMCID: PMC2268708 DOI: 10.1186/1472-6793-8-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/31/2008] [Indexed: 12/03/2022]
Abstract
BACKGROUND Wound healing in horses is fraught with complications. Specifically, wounds on horse limbs often develop exuberant granulation tissue which behaves clinically like a benign tumor and resembles the human keloid in that the evolving scar is trapped in the proliferative phase of repair, leading to fibrosis. Clues gained from the study of over-scarring in horses should eventually lead to new insights into how to prevent unwanted scar formation in humans. cDNA fragments corresponding to CTNNB1 (coding for beta-catenin) and PECAM1, genes potentially contributing to the proliferative phase of repair, were previously identified in a mRNA expression study as being up-regulated in 7 day wound biopsies from horses. The aim of the present study was to clone full-length equine CTNNB1 and PECAM1 cDNAs and to study the spatio-temporal expression of mRNAs and corresponding proteins during repair of body and limb wounds in a horse model. RESULTS The temporal pattern of the two genes was similar; except for CTNNB1 in limb wounds, wounding caused up-regulation of mRNA which did not return to baseline by the end of the study. Relative over-expression of both CTNNB1 and PECAM1 mRNA was noted in body wounds compared to limb wounds. Immunostaining for both beta-catenin and PECAM1 was principally observed in endothelial cells and fibroblasts and was especially pronounced in wounds having developed exuberant granulation tissue. CONCLUSION This study is the first to characterize equine cDNA for CTNNB1 and PECAM1 and to document that these genes are expressed during wound repair in horses. It appears that beta-catenin may be regulated in a post-transcriptional manner while PECAM1 might help thoracic wounds mount an efficient inflammatory response in contrast to what is observed in limb wounds. Furthermore, data from this study suggest that beta-catenin and PECAM1 might interact to modulate endothelial cell and fibroblast proliferation during wound repair in the horse.
Collapse
Affiliation(s)
- Vincenzo Miragliotta
- Department of veterinary anatomy, biochemistry and physiology, University of Pisa, Viale delle Piagge 2 56100 Pisa, Italy
| | - Zoë Ipiña
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Josiane Lefebvre-Lavoie
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Jacques G Lussier
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| | - Christine L Theoret
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, J2S 7C6, Canada
| |
Collapse
|
56
|
Henderson HL, Hodson DJ, Gregory SJ, Townsend J, Tortonese DJ. Gonadotropin-releasing hormone stimulates prolactin release from lactotrophs in photoperiodic species through a gonadotropin-independent mechanism. Biol Reprod 2007; 78:370-7. [PMID: 18094358 DOI: 10.1095/biolreprod.107.064063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have provided evidence for a paracrine interaction between pituitary gonadotrophs and lactotrophs. Here, we show that GnRH is able to stimulate prolactin (PRL) release in ovine primary pituitary cultures. This effect was observed during the breeding season (BS), but not during the nonbreeding season (NBS), and was abolished by the application of bromocriptine, a specific dopamine agonist. Interestingly, GnRH gained the ability to stimulate PRL release in NBS cultures following treatment with bromocriptine. In contrast, thyrotropin-releasing hormone, a potent secretagogue of PRL, stimulated PRL release during both the BS and NBS and significantly enhanced the PRL response to GnRH during the BS. These results provide evidence for a photoperiodically modulated functional interaction between the GnRH/gonadotropic and prolactin axes in the pituitary gland of a short day breeder. Moreover, the stimulation of PRL release by GnRH was shown not to be mediated by the gonadotropins, since immunocytochemical, Western blotting, and PCR studies failed to detect pituitary LH or FSH receptor protein and mRNA expressions. Similarly, no gonadotropin receptor expression was observed in the pituitary gland of the horse, a long day breeder. In contrast, S100 protein, a marker of folliculostellate cells, which are known to participate in paracrine mechanisms within this tissue, was detected throughout the pituitaries of both these seasonal breeders. Therefore, an alternative gonadotroph secretory product, a direct effect of GnRH on the lactotroph, or another cell type, such as the folliculostellate cell, may be involved in the PRL response to GnRH in these species.
Collapse
Affiliation(s)
- Helen L Henderson
- Department of Anatomy, University of Bristol, Bristol BS2 8EJ, United Kingdom
| | | | | | | | | |
Collapse
|
57
|
Pfeffer PL, Sisco B, Donnison M, Somers J, Smith C. Isolation of genes associated with developmental competency of bovine oocytes. Theriogenology 2007; 68 Suppl 1:S84-90. [PMID: 17467046 DOI: 10.1016/j.theriogenology.2007.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eggs differ widely in their ability to develop into an embryo. To address this characteristic, the concept of developmental competency has been coined, defined as the ability or potential of an oocyte to undergo maturation, fertilization and development to blastocyst stages or live offspring. Developmental competency is acquired progressively during folliculogenesis and is linked to follicular size. In an effort to understand the molecular changes underlying differences in competency we compared oocytes derived from large follicles (>or=5mm) to those from small follicles (<or=2mm). We used an approach combining suppressive subtraction hybridization with a linear amplification step to identify genes upregulated in the more competent oocytes. Real-time RT-PCR quantification indicated highly significant upregulation for 10 genes. However, the observed changes did not exceed three-fold suggesting that the molecular causes for poor developmental capacity may be reliant on many small changes. In monovulatory species oocyte developmental competency is further modulated in a process termed follicular dominancy, whereby only one of a cohort of developing ovarian follicles continues to grow. In our second approach, we aimed to identify genes that may be involved in the choice of one follicle as becoming dominant and thus restricting the developmental competency to a single oocyte. This approach, focusing on granulosa cells, yielded a small set of five genes that could be verified to be reliable markers for dominant follicles. We have further analyzed one of these involving the activin/inhibin pathway. Lastly, in a third approach we are investigating the feasibility of using nuclear transfer (NT) to interrogate oocyte developmental competency.
Collapse
Affiliation(s)
- P L Pfeffer
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | | | |
Collapse
|
58
|
Ginther OJ, Utt MD, Beg MA, Gastal EL, Gastal MO. Negative Effect of Estradiol on Luteinizing Hormone Throughout the Ovulatory Luteinizing Hormone Surge in Mares1. Biol Reprod 2007; 77:543-50. [PMID: 17554078 DOI: 10.1095/biolreprod.107.061705] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, Wisconsin 53528, USA.
| | | | | | | | | |
Collapse
|
59
|
Fayad T, Lefebvre R, Nimpf J, Silversides DW, Lussier JG. Low-Density Lipoprotein Receptor-Related Protein 8 (LRP8) Is Upregulated in Granulosa Cells of Bovine Dominant Follicle: Molecular Characterization and Spatio-Temporal Expression Studies1. Biol Reprod 2007; 76:466-75. [PMID: 17108332 DOI: 10.1095/biolreprod.106.057216] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a member of the LDL receptor family that participates in endocytosis and signal transduction. We cloned the full-length bovine LRP8 cDNA in granulosa cells (GC) of the dominant follicle (DF) as well as several LRP8 mRNA splicing variants, including a variant that contains a proline-rich cytoplasmic insert (A759-K817) that is involved in intracellular signaling. Expression of the A759-K817 variant was analyzed in the GC of follicles at different developmental stages: the small follicle (SF; 2-4 mm), the DF at Day 5 (D5) of the estrus cycle, ovulatory follicles (OF) 24 h after hCG injection, and corpora lutea (CL) at D5. RT-PCR analysis showed that expression was predominant in the GC of DF compared to other follicles and CL (P<0.0001), whereas the expression of other related receptors, such as LDLR and VLDLR, did not show differences. Temporal analyses of follicular walls from the OF following hCG treatment revealed a decrease in LRP8 mRNA expression starting 12 h post-hCG treatment (P<0.0001). LRP8 protein was exclusively localized to the GC, with higher levels in the DF than in the SF (P<0.05). RELN mRNA, which encodes an LRP8 ligand, was highly expressed in the theca of the DF as compared to the OF (P<0.004), whereas MAPK8IP1 mRNA, which encodes an LRP8 intracellular interacting partner, is expressed in the GC of the DF. These results demonstrate the differential expression patterns of LRP8, RELN, and MAPK8IP1 mRNAs during final follicular growth and ovulation, and suggest that a RELN/LRP8/MAPK8IP1 paracrine interaction regulates follicular growth.
Collapse
Affiliation(s)
- Tania Fayad
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | |
Collapse
|
60
|
Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: A family of kinase-like proteins with potent signalling regulatory function. Cell Signal 2007; 19:238-50. [PMID: 16963228 DOI: 10.1016/j.cellsig.2006.06.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/29/2006] [Indexed: 11/22/2022]
Abstract
The recent identification of tribbles as regulators of signal processing systems and physiological processes, including development, together with their potential involvement in diabetes and cancer, has generated considerable interest in these proteins. Tribbles have been reported to regulate activation of a number of intracellular signalling pathways with roles extending from mitosis and cell activation to apoptosis and modulation of gene expression. The current review summarises our current understanding of interactions between tribbles and various other proteins. Since our understanding on the molecular basis of tribbles function is far from complete, we also describe a bioinformatic analysis of various segments of tribbles proteins, which has revealed a number of highly conserved peptide motifs with potentially important functional roles.
Collapse
Affiliation(s)
- Z Hegedus
- Bioinformatics Group, Biological Research Center, Szeged, Hungary
| | | | | |
Collapse
|
61
|
Agca C, Ries JE, Kolath SJ, Kim JH, Forrester LJ, Antoniou E, Whitworth KM, Mathialagan N, Springer GK, Prather RS, Lucy MC. Luteinization of porcine preovulatory follicles leads to systematic changes in follicular gene expression. Reproduction 2006; 132:133-45. [PMID: 16816339 DOI: 10.1530/rep.1.01163] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The LH surge initiates the luteinization of preovulatory follicles and causes hormonal and structural changes that ultimately lead to ovulation and the formation of corpora lutea. The objective of the study was to examine gene expression in ovarian follicles (n= 11) collected from pigs (Sus scrofa domestica) approaching estrus (estrogenic preovulatory follicle;n= 6 follicles from two sows) and in ovarian follicles collected from pigs on the second day of estrus (preovulatory follicles that were luteinized but had not ovulated;n= 5 follicles from two sows). The follicular status within each follicle was confirmed by follicular fluid analyses of estradiol and progesterone ratios. Microarrays were made from expressed sequence tags that were isolated from cDNA libraries of porcine ovary. Gene expression was measured by hybridization of fluorescently labeled cDNA (preovulatory estrogenic or -luteinized) to the microarray. Microarray analyses detected 107 and 43 genes whose expression was decreased or increased (respectively) during the transition from preovulatory estrogenic to -luteinized (P<0.01). Cells within preovulatory estrogenic follicles had a gene-expression profile of proliferative and metabolically active cells that were responding to oxidative stress. Cells within preovulatory luteinized follicles had a gene-expression profile of nonproliferative and migratory cells with angiogenic properties. Approximately, 40% of the discovered genes had unknown function.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Gastal EL, Gastal MO, Ginther OJ. Relationships of changes in B-mode echotexture and colour-Doppler signals in the wall of the preovulatory follicle to changes in systemic oestradiol concentrations and the effects of human chorionic gonadotrophin in mares. Reproduction 2006; 131:699-709. [PMID: 16595721 DOI: 10.1530/rep.1.01011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A duplex grey-scale and colour-Doppler ultrasound instrument was used to study the changes in the wall of the preovulatory follicle in mares. When the follicle reached ≥35 mm (hour 0), mares were randomized into control (n= 16) and human chorionic gonadotropin (hCG)-treated (n= 16) groups. The hCG treatment was given at hour 0. Scanning was done every 12 h until hour 36, every hour between hours 36 and 48, and every 12 h thereafter until ovulation. Blood was sampled every 12 h for oestradiol assay. During the period 0–24 h post-treatment, oestradiol concentrations decreased in the hCG group and increased in the controls (significant interaction). During the period 0–36 h post-treatment, thickness and echogenicity of the granulosa increased in the hCG group but not in the controls. During the period 36 to 12 h before ovulation, granulosa and colour-Doppler end-points increased in the control and hCG groups (hour effects), while oestradiol was decreasing in both groups. The prominence and percentage of follicle circumference with an anechoic band peripheral to the granulosa and colour-Doppler signals in the follicle wall, indicating arterial blood flow, decreased during the period 4 to 1 h before ovulation (hour effects). Results indicated that the ultrasonographic changes of the wall of the preovulatory follicle were not associated temporally with changes in oestradiol concentrations and prominence of an anechoic band, and colour-Doppler signals decreased during the few hours before ovulation. The hypothesis that the latter portion of the ovulatory LH surge has a negative effect on systemic oestradiol was supported by the immediate decrease in oestradiol concentrations when hCG was injected.
Collapse
Affiliation(s)
- E L Gastal
- Eutheria Foundation, Cross Plains, Wisconsin 53528, USA
| | | | | |
Collapse
|
63
|
Diouf MN, Sayasith K, Lefebvre R, Silversides DW, Sirois J, Lussier JG. Expression of phospholipase A2 group IVA (PLA2G4A) is upregulated by human chorionic gonadotropin in bovine granulosa cells of ovulatory follicles. Biol Reprod 2006; 74:1096-103. [PMID: 16510840 DOI: 10.1095/biolreprod.105.048579] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostaglandins are required for the ovulatory process, and their biosynthesis depends on the initial release of arachidonic acid from membrane phospholipids. We hypothesized that phospholipase A2 group IVA (PLA2G4A) expression is upregulated in granulosa cells (GC) at ovulation. We have characterized bovine PLA2G4A cDNA, and investigated its spatiotemporal regulation at the mRNA and protein levels in hCG-induced ovulatory follicles and in vitro, using forskolin-stimulated GC. Regulation of PLA2G4A mRNA expression was studied in GC obtained from bovine follicles collected at different developmental stages: small follicles (2-4 mm), dominant follicles at Day 5 (D5) of the estrous cycle, ovulatory follicles 24 h following injection of hCG, and corpus luteum at D5. PLA2G4A mRNA increased by 14-fold in GC of hCG-stimulated versus dominant follicles (P < 0.0001). Follicular walls obtained from ovulatory follicles recovered at 0, 6, 12, 18, and 24 h post-hCG injection showed an initial 16-fold increase in PLA2G4A transcript at 12 h that reached a 45-fold increase at 24 h, as compared to 0 h (P < 0.0001). Immunoblots of GC extracts showed an initial induction of the PLA2G4A protein at 18 h post-hCG, reaching a maximum at 24 h. Immunohistochemistry observations showed that PLA2G4A signal was mainly observed in mural GC compared to antral GC in hCG-stimulated follicles. Stimulation of cultured bovine GC with 10 microM of forskolin caused an increase in PLA2G4A mRNA and protein. Ovulation is associated with an LH/hCG-dependent induction of PLA2G4A in GC via the adenylyl cyclase/cAMP pathway.
Collapse
Affiliation(s)
- Mame Nahé Diouf
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6
| | | | | | | | | | | |
Collapse
|
64
|
Cao M, Buratini J, Lussier JG, Carrière PD, Price CA. Expression of protease nexin-1 and plasminogen activators during follicular growth and the periovulatory period in cattle. Reproduction 2006; 131:125-37. [PMID: 16388016 DOI: 10.1530/rep.1.00849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular matrix remodeling occurs during ovarian follicular development, mediated by plasminogen activators (PAs) and PA inhibitors including protease nexin-1 (PN-1). In the present study we measured expression/activity of the PA system in bovine follicles at different stages of development by timed collection of ovaries during the first follicular wave and during the periovulatory period, and in follicles collected from an abattoir. The abundance of mRNA encoding PN-1, tissue-type PA (tPA), urokinase (uPA) and PA inhibitor-1 (PAI-1) were initially upregulated by human chorionic gonadotropin (hCG) in bovine preovulatory follicular wall homogenates. PN-1, PAI-1 and tPA mRNA expression then decreased near the expected time of ovulation, whereas uPA mRNA levels remained high. PN-1 concentration in follicular fluid (FF) decreased and reached the lowest level at the time of ovulation, whereas plasmin activity in FF increased significantly after hCG. Follicles collected from the abattoir were classified as non-atretic, early-atretic or atretic based on FF estradiol and progesterone content: PN-1 protein levels in FF were significantly higher in non-atretic than in atretic follicles, and plasmin activity was correspondingly higher in the atretic follicles. No changes in PN-1 levels in FF were observed during the growth of pre-deviation follicles early in a follicular wave. These results indicate that PN-1 may be involved in the process of atresia in non-ovulatory dominant follicles and the prevention of precocious proteolysis in periovulatory follicles.
Collapse
Affiliation(s)
- Mingju Cao
- Centre de Recherche en Reproduction Animale, CRRA, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000 St-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|
65
|
Diouf MN, Lefebvre R, Silversides DW, Sirois J, Lussier JG. Induction of alpha-caveolin-1 (αCAV1) expression in bovine granulosa cells in response to an ovulatory dose of human chorionic gonadotropin. Mol Reprod Dev 2006; 73:1353-60. [PMID: 16894547 DOI: 10.1002/mrd.20513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Caveolins are implicated in endocytosis, cholesterol trafficking and signal transduction. A cDNA fragment corresponding to caveolin-1 (CAV1) was identified in a mRNA profiling expression study in bovine granulosa cells (GC) following human chorionic gonadotropin (hCG)-induced ovulation. Thus, we have characterized CAV1 cDNA and studied its spatio-temporal expression pattern in bovine ovarian follicles. The full-length bovine alphaCAV1 cDNA was cloned and encodes a putative 22 kDa protein. Expression of alphaCAV1 was studied in bovine GC obtained from follicles at different developmental stages: small follicles (SF: 2-4 mm), dominant follicles (DF), ovulatory follicles (OF: 24 hr post-hCG), and corpus luteum (CL). Semiquantitative RT-PCR analysis showed a 6.5-fold increase in alphaCAV1 mRNA in GC of OF versus DF (P < 0.0001), whereas CAV2 mRNA was increased by only twofold (P < 0.0007). Temporal expression of alphaCAV1 mRNA from OF recovered at 0, 6, 12, 18, and 24 hr after hCG injection showed an 8.5-fold increase of alphaCAV1 mRNA after 24 hr compared to 0 hr (P < 0.0018) whereas no significant variation was detected for CAV2. Immunoblot demonstrated an initial increase in alphaCAV1 protein level 12 hr post-hCG, reaching a maximum at 24 hr. Immunohistochemical localization of CAV1 was observed in GC of OF isolated 18 and 24 hr after hCG injection, whereas no signal was detected in GC of DF and SF. The induction of alphaCAV1 in GC of OF suggests that alphaCAV1 likely contributes to control the increase in membrane signaling that occurs at the time of ovulation and luteinization.
Collapse
Affiliation(s)
- Mame Nahé Diouf
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|
66
|
Ginther OJ, Utt MD, Bergfelt DR, Beg MA. Controlling interrelationships of progesterone/LH and estradiol/LH in mares. Anim Reprod Sci 2005; 95:144-50. [PMID: 16310986 DOI: 10.1016/j.anireprosci.2005.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 10/21/2005] [Accepted: 10/21/2005] [Indexed: 11/25/2022]
Abstract
The interrelationships of progesterone, estradiol, and LH were studied in mares (n=9), beginning at the first ovulation (Day 0) of an interovulatory interval. An increase in mean progesterone concentrations began on Day 0 and reached maximum on Day 6, with luteolysis beginning on Day 14. A common progesterone threshold concentration of about 2 ng/ml for a negative effect on LH occurred at the beginning and end of the luteal phase. Progesterone and LH concentrations decreased at a similar rate from Day 6 until the onset of luteolysis on Day 14, consistent with a decreasing positive effect of LH on progesterone. Concentrations of LH during the increase in the ovulatory surge consisted of two linear regression segments involving a rate of 0.4 ng/ml/day for Days 14-22 and 1.8 ng/ml/day for Day 22 to 1 day after the second ovulation. The end of the first segment and beginning of the second segment was 2 days before ovulation and was the day the ovulatory estradiol surge was at a peak.
Collapse
Affiliation(s)
- O J Ginther
- Eutheria Foundation, Cross Plains, WI 53528, USA.
| | | | | | | |
Collapse
|