51
|
Lin NY, Lin TY, Yang WH, Wang SC, Wang KT, Su YL, Jiang YW, Chang GD, Chang CJ. Differential expression and functional analysis of the tristetraprolin family during early differentiation of 3T3-L1 preadipocytes. Int J Biol Sci 2012; 8:761-77. [PMID: 22701344 PMCID: PMC3371571 DOI: 10.7150/ijbs.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/15/2012] [Indexed: 01/09/2023] Open
Abstract
The tristetraprolin (TTP) family comprises zinc finger-containing AU-rich element (ARE)-binding proteins consisting of three major members: TTP, ZFP36L1, and ZFP36L2. The present study generated specific antibodies against each TTP member to evaluate its expression during differentiation of 3T3-L1 preadipocytes. In contrast to the inducible expression of TTP, results indicated constitutive expression of ZFP36L1 and ZFP36L2 in 3T3-L1 preadipocytes and their phosphorylation in response to differentiation signals. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3' untranslated region (UTR) of MAPK phosphatase-1 (MKP-1) mRNA and downregulated Mkp-1 3'UTR-mediated luciferase activity. Mkp-1 is an immediate early gene for which the mRNA is transiently expressed in response to differentiation signals. The half-life of Mkp-1 mRNA was longer at 30 min of induction than at 1 h and 2 h of induction. Knockdown of TTP or ZFP36L2 increased the Mkp-1 mRNA half-life at 1 h of induction. Knockdown of ZFP36L1, but not ZFP36L2, increased Mkp-1 mRNA basal levels via mRNA stabilization and downregulated ERK activation. Differentiation induced phosphorylation of ZFP36L1 through ERK and AKT signals. Phosphorylated ZFP36L1 then interacted with 14-3-3, which might decrease its mRNA destabilizing activity. Inhibition of adipogenesis also occurred in ZFP36L1 and TTP knockdown cells. The findings indicate that the differential expression of TTP family members regulates immediate early gene expression and modulates adipogenesis.
Collapse
Affiliation(s)
- Nien-Yi Lin
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | - Tzi-Yang Lin
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Wen-Hsuan Yang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Shun-Chang Wang
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | - Kuan-Ting Wang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Yu-Lun Su
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Yu-Wun Jiang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Geen-Dong Chang
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| | - Ching-Jin Chang
- 1. Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec 2, Nankang, Taipei 115, Taiwan
- 2. Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, 1 Roosevelt Road Sec 4, Taipei 106, Taiwan
| |
Collapse
|
52
|
Yeh PA, Yang WH, Chiang PY, Wang SC, Chang MS, Chang CJ. Drosophila eyes absent is a novel mRNA target of the tristetraprolin (TTP) protein DTIS11. Int J Biol Sci 2012; 8:606-19. [PMID: 22553461 PMCID: PMC3341602 DOI: 10.7150/ijbs.3782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/12/2012] [Indexed: 11/05/2022] Open
Abstract
The Tristetraprolin (TTP) protein family includes four mammalian members (TTP, TIS11b, TIS11d, and ZFP36L3), but only one in Drosophila melanogaster (DTIS11). These proteins bind target mRNAs with AU-rich elements (AREs) via two C3H zinc finger domains and destabilize the mRNAs. We found that overexpression of mouse TIS11b or DTIS11 in the Drosophila retina dramatically reduced eye size, similar to the phenotype of eyes absent (eya) mutants. The eya transcript is one of many ARE-containing mRNAs in Drosophila. We showed that TIS11b reduced levels of eya mRNA in vivo. In addition, overexpression of Eya rescued the TIS11b overexpression phenotype. RNA pull-down and luciferase reporter analyses demonstrated that the DTIS11 RNA-binding domain is required for DTIS11 to bind the eya 3' UTR and reduce levels of eya mRNA. Moreover, ectopic expression of DTIS11 in Drosophila S2 cells decreased levels of eya mRNA and reduced cell viability. Consistent with these results, TTP proteins overexpressed in MCF7 human breast cancer cells were associated with eya homologue 2 (EYA2) mRNA, and caused a decrease in EYA2 mRNA stability and cell viability. Our results suggest that eya mRNA is a target of TTP proteins, and that downregulation of EYA by TTP may lead to reduced cell viability in Drosophila and human cells.
Collapse
Affiliation(s)
- Po-An Yeh
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec 2, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
53
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
54
|
Ramos SBV. Characterization of DeltaN-Zfp36l2 mutant associated with arrest of early embryonic development and female infertility. J Biol Chem 2012; 287:13116-27. [PMID: 22367205 DOI: 10.1074/jbc.m111.330837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The zinc finger protein 36-like 2, Zfp36l2, has been implicated in female mouse infertility, because an amino-terminal truncation mutation (ΔN-Zfp36l2) leads to two-cell stage arrest of embryos derived from the homozygous mutant female gamete. Zfp36l2 is a member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins that can bind to transcripts containing AU-rich elements (ARE), resulting in deadenylation and destabilization of these transcripts. I show here that the mouse Zfp36l2 is composed of two exons and a single intron, encoding a polypeptide of 484 amino acids. I observed that ΔN-Zfp36l2 protein is similar to both wild-type Zfp36l2 and TTP (Zfp36) in that it shuttles between the cytoplasm and nucleus, binds to RNAs containing AREs, and promotes deadenylation of a model ARE transcript in a cell-based co-transfection assay. Surprisingly, in contrast to TTP, Zfp36l2 mRNA and protein were rapidly down-regulated upon LPS exposure in bone marrow-derived macrophages. The ΔN-Zfp36l2 protein was substantially more resistant to stimulus-induced down-regulation than the WT. I postulate that the embryonic arrest linked to the ΔN-Zfp36l2 truncation might be related to its resistance to stimulus-induced down-regulation.
Collapse
Affiliation(s)
- Silvia B V Ramos
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
55
|
Cao H, Anderson RA. Cinnamon polyphenol extract regulates tristetraprolin and related gene expression in mouse adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2739-2744. [PMID: 21329350 DOI: 10.1021/jf103527x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cinnamon (Cinnamomum verum) has been widely used in spices, flavoring agents, and preservatives. Cinnamon polyphenol extract (CPE) may be important in the alleviation of chronic diseases, but the molecular evidence is not substantial. Tristetraprolin (TTP) family proteins have anti-inflammatory effects through the destabilization of pro-inflammatory mRNAs. TTP expression is reduced in fats of obese people with metabolic syndrome and brains of suicide victims. This study used quantitative real-time PCR to explore the effects of CPE on the regulation of TTP, VEGF, and related gene expression in mouse 3T3-L1 adipocytes. CPE (100 μg/mL) increased TTP mRNA levels by up to 10-fold, and this stimulation was sustained over 16 h. The levels of VEGF mRNA, a putative target of TTP, were decreased 40-50% by CPE. It also affected the expression of other genes coding for ZFP36L1 and ZFP36L3 (TTP homologues), GM-CSF, COX2, IL6, APP, G-CSF, and PAI1. This study demonstrated that CPE rapidly induces TTP mRNA and reduces VEGF mRNA and affects the expression of a number of other genes in the cultured adipocytes.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States.
| | | |
Collapse
|
56
|
Hacker C, Valchanova R, Adams S, Munz B. ZFP36L1 is regulated by growth factors and cytokines in keratinocytes and influences their VEGF production. Growth Factors 2010; 28:178-90. [PMID: 20166898 DOI: 10.3109/08977190903578660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Keratinocyte-derived growth factors and cytokines play an important role in epidermal homeostasis and particularly in cutaneous wound repair. Thus, we analyzed a potential role of the ZFP36/tristetraprolin family of zinc finger proteins, which are targets of these factors, but also regulate their production, in keratinocytes. We show that expression of ZFP36, ZFP36L1, and ZFP36L2 is induced by a broad variety of growth factors and cytokines, and by scratch wounding. Since ZFP36L1 is a modulator of vascular endothelium growth factor (VEGF) mRNA stability, we subsequently used siRNA technology to inhibit ZFP36L1 gene expression. Notably, this treatment resulted in prolonged maintenance of elevated VEGF levels in HaCaT keratinocytes upon epidermal growth factor stimulation of these cells. Taken together, our results suggest an important role of ZFP36L1 in wound healing.
Collapse
Affiliation(s)
- Christine Hacker
- Institute of Physiology, Charité - University Medicine Berlin, Arnimallee 22, D-14195, Berlin, Germany
| | | | | | | |
Collapse
|
57
|
Stumpo DJ, Lai WS, Blackshear PJ. Inflammation: cytokines and RNA-based regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:60-80. [PMID: 21956907 DOI: 10.1002/wrna.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outcome of an inflammatory response depends upon the coordinated regulation of a variety of both pro-inflammatory and anti-inflammatory cytokines and other proteins. Regulation of these inflammation mediators can occur at multiple levels, including transcription, mRNA translation, post-translational modifications, and mRNA degradation. Post-transcriptional regulation has been shown to play an important role in controlling the expression of these mediators, allowing for normal initiation and resolution of the inflammatory response. Many inflammatory mediators have unstable mRNAs due, in part, to the presence of AU-rich elements in their 3'-untranslated regions. Increasing numbers of RNA-binding proteins have been identified that can bind to these AU-rich elements and then regulate the stability and/or translation of the mRNA. This review summarizes current knowledge about the role of several RNA-binding proteins that act through AU-rich elements to post-transcriptionally regulate the biosynthesis of proteins involved in inflammation.
Collapse
Affiliation(s)
- Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
58
|
Kedar VP, Darby MK, Williams JG, Blackshear PJ. Phosphorylation of human tristetraprolin in response to its interaction with the Cbl interacting protein CIN85. PLoS One 2010; 5:e9588. [PMID: 20221403 PMCID: PMC2833206 DOI: 10.1371/journal.pone.0009588] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Background Tristetraprolin (TTP) is the prototype member of a family of CCCH tandem zinc finger proteins and is considered to be an anti-inflammatory protein in mammals. TTP plays a critical role in the decay of tumor necrosis factor alpha (TNF) mRNA, among others, by binding AU-rich RNA elements in the 3′-untranslated regions of this transcript and promoting its deadenylation and degradation. Methodology/Principal Findings We used yeast two-hybrid analysis to identify potential protein binding partners for human TTP (hTTP). Various regions of hTTP recovered 31 proteins that fell into 12 categories based on sequence similarities. Among these, the interactions between hTTP and CIN85, cytoplasmic poly (A) binding protein (PABP), nucleolin and heat shock protein 70 were confirmed by co-immunoprecipitation experiments. CIN85 and hTTP co-localized in the cytoplasm of cells as determined by confocal microscopy. CIN85 contains three SH3 domains that specifically bind a unique proline-arginine motif (PXXXPR) found in several CIN85 effectors. We found that the SH3 domains of CIN85 bound to a PXXXPR motif located near the C-terminus of hTTP. Co-expression of CIN85 with hTTP resulted in the increased phosphorylation of hTTP at serine residues in positions 66 and 93, possibly due in part to the demonstrated association of mitogen-activated protein kinase kinase kinase 4 (MEKK4) to both proteins. The presence of CIN85 did not appear to alter hTTP's binding to RNA probes or its stimulated breakdown of TNF mRNA. Conclusions/Significance These studies describe interactions between hTTP and nucleolin, cytoplasmic PABP, heat shock protein 70 and CIN85; these interactions were initially discovered by two-hybrid analysis, and confirmed by co-immunoprecipitation. We found that CIN85 binding to a C-terminal motif within hTTP led to the increased phosphorylation of hTTP, possibly through enhanced association with MEKK4. The functional consequences to each of the members of this putative complex remain to be determined.
Collapse
Affiliation(s)
- Vishram P. Kedar
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Martyn K. Darby
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Jason G. Williams
- Protein Microcharacterization Core Facility, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
59
|
TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009; 2009:634520. [PMID: 19672455 PMCID: PMC2722025 DOI: 10.1155/2009/634520] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 12/20/2022] Open
Abstract
Posttranscriptional regulation of gene expression of mRNAs containing adenine-uridine rich elements (AREs) in their 3′ untranslated regions is mediated by a number of different proteins that interact with these elements to either stabilise or destabilise them. The present review concerns the TPA-inducible sequence 11 (TIS11) protein family, a small family of proteins, that appears to interact with ARE-containing mRNAs and promote their degradation. This family of proteins has been extensively studied in the past decade. Studies have focussed on determining their biochemical functions, identifying their target mRNAs, and determining their roles in cell functions and diseases.
Collapse
|
60
|
Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 2009; 114:2401-10. [PMID: 19633199 DOI: 10.1182/blood-2009-04-214619] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the tristetraprolin family of tandem CCCH finger proteins can bind to AU-rich elements in the 3'-untranslated region of mRNAs, leading to their deadenylation and subsequent degradation. Partial deficiency of 1 of the 4 mouse tristetraprolin family members, Zfp36l2, resulted in complete female infertility because of early embryo death. We have now generated mice completely deficient in the ZFP36L2 protein. Homozygous Zfp36l2 knockout (KO) mice died within approximately 2 weeks of birth, apparently from intestinal or other hemorrhage. Analysis of peripheral blood from KO mice showed a decrease in red and white cells, hemoglobin, hematocrit, and platelets. Yolk sacs from embryonic day 11.5 (E11.5) Zfp36l2 KO mice and fetal livers from E14.5 KO mice gave rise to markedly reduced numbers of definitive multilineage and lineage-committed hematopoietic progenitors. Competitive reconstitution experiments demonstrated that Zfp36l2 KO fetal liver hematopoietic stem cells were unable to adequately reconstitute the hematopoietic system of lethally irradiated recipients. These data establish Zfp36l2 as a critical modulator of definitive hematopoiesis and suggest a novel regulatory pathway involving control of mRNA stability in the life cycle of hematopoietic stem and progenitor cells.
Collapse
|
61
|
Abstract
Polo-like protein kinase 3 (Plk3) has been proposed to regulate entry into S phase and promote apoptosis in response to oxidative stress. Its mRNA contains three AU-rich elements (AREs) in its 3' untranslated region (3'-UTR) that can contribute to the rapid degradation of labile transcripts. We investigated the possibility that tristetraprolin (TTP), a tandem CCCH zinc finger protein, could promote the decay of Plk3 transcripts. TTP is known to stimulate the deadenylation and decay of mRNAs possessing one or more copies of the consensus nonamer motif UUAUUUAUU. In stable mouse fibroblast cell lines derived from wild-type and TTP knockout littermates, the decay of Plk3 transcripts after serum stimulation was slowed in the absence of TTP. The specificity of TTP for promoting the degradation of Plk3 was demonstrated by the unaltered decay of Plk3 mRNA in cell lines deficient in the TTP family members ZFP36L1 and ZFP36L2. We also found that the AREs present in the Plk3 transcript were essential for both the binding of TTP to the 3'-UTR and promoting the destruction of target transcripts in cotransfection experiments. The regulation of Plk3 mRNA stability by TTP may influence the control of the cell cycle by this protein kinase.
Collapse
|
62
|
Abstract
Tristetraprolin/zinc finger protein 36 (TTP/ ZFP36) binds and destabilizes some proinflammatory cytokine mRNAs. TTP-deficient mice develop a profound inflammatory syndrome due to excessive production of proinflammatory cytokines. TTP gene expression is induced by various factors including insulin, cinnamon, and green tea extracts. Previous studies have shown that TTP is highly phosphorylated in vivo and multiple phosphorylation sites are identified in human TTP. This study evaluated the potential protein kinases that could phosphorylate recombinant TTP in vitro. Motif scanning suggested that TTP was a potential substrate for various kinases. SDS-PAGE showed that in vitro phosphorylation of TTP with p42 and p38 MAP kinases resulted in visible electrophoretic mobility shift of TTP to higher molecular masses. Autoradiography showed that TTP was phosphorylated in vitro by GSK3b, PKA, PKB, PKC, but not Cdc2, in addition to p42, p38, and JNK. These results demonstrate that TTP is a substrate for a number of protein kinases in vitro.
Collapse
|
63
|
Cao H, Urban JF, Anderson RA. Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes. Obesity (Silver Spring) 2008; 16:1208-18. [PMID: 18388887 DOI: 10.1038/oby.2008.65] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Tristetraprolin (TTP) family proteins (TTP/ZFP36; ZFP36L1, ZFP36L2, ZFP36L3) destabilize adenylate uridylate-rich element-containing mRNAs encoding cytokines, such as tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF). Little is known about the expression and insulin regulation of TTP and related genes in adipocytes. We analyzed the relative abundance of TTP family mRNAs in 3T3-L1 adipocytes compared to RAW264.7 macrophages and investigated insulin effects on the expression of 43 genes in 3T3-L1 adipocytes. METHODS AND PROCEDURES Insulin was added to mouse 3T3-L1 adipocytes. Relative abundance of mRNA levels was determined by quantitative real-time PCR. TTP and ZFP36L1 proteins were detected by immunoblotting. RESULTS Zfp36l1 and Zfp36l2 genes were expressed at eight- to tenfold higher than Ttp in adipocytes. Zfp36l3 mRNA was detected at approximately 1% of Ttp mRNA levels in adipocytes and its low level expression was confirmed in RAW cells. Insulin at 10 and 100 nmol/l increased Ttp mRNA levels by five- to sevenfold, but decreased those of Zfp36l3 by 40% in adipocytes after a 30-min treatment. Immunoblotting showed that insulin induced TTP but did not affect ZFP36L1 protein levels in adipocytes. Insulin decreased mRNA levels of Vegf and a number of other genes in adipocytes. DISCUSSION Insulin induced Ttp mRNA and protein expression and decreased Vegf mRNA levels in adipocytes. Zfp36l3 mRNA was detected, for the first time, in cells other than mouse placenta and extraembryonic tissues. This study established a basis for the investigation of TTP and VEGF genes in the regulation of obesity and suggested that Vegf mRNA may be a target of TTP in fat cells.
Collapse
Affiliation(s)
- Heping Cao
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland, USA.
| | | | | |
Collapse
|
64
|
Cao H, Urban JF, Anderson RA. Cinnamon polyphenol extract affects immune responses by regulating anti- and proinflammatory and glucose transporter gene expression in mouse macrophages. J Nutr 2008; 138:833-40. [PMID: 18424588 DOI: 10.1093/jn/138.5.833] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tristetraprolin (TTP/zinc finger protein 36) family proteins have antiinflammatory effects by destabilizing proinflammatory mRNA. TTP expression is reduced in fats of obese people with metabolic syndrome and brains of suicide victims and is induced by insulin and cinnamon polyphenol extract (CPE) in adipocytes, by lipopolysaccharide (LPS) in macrophages, and by green tea polyphenol extract in rats. CPE was reported to improve immune function against microorganisms, but the mechanism is unknown. This study tested the hypothesis that CPE regulates immune function involving genes encoding TTP, proinflammatory cytokines, and glucose transporter (GLUT) families and compared the effects of CPE to those of insulin and LPS in mouse RAW264.7 macrophages. CPE increased TTP mRNA and protein levels, but its effects were less than LPS. CPE (100 mg/L, 0.5-4 h) increased TTP and tumor necrosis factor (TNF) mRNA levels by up to 2- and 6-fold that of the control, respectively, and the base level of TTP was 6-fold that of TNF. LPS (0.1 mg/L, 4 h) increased TTP, TNF, granulocyte-macrophage colony-stimulating factor, cyclooxgenase-2, and interleukin 6 mRNA levels by 39-1868 fold. CPE and LPS increased GLUT1 expression (the major GLUT form in macrophages) to 3- and 2-fold that of the control, respectively. Insulin (100 nmol/L, 0.5-4 h) did not exhibit major effects on the expression of these genes. CPE increased TTP expression more rapidly than those of proinflammatory cytokines and the net increases of TTP mRNA levels were larger than those of proinflammatory cytokines. These results suggest that CPE can affect immune responses by regulating anti- and proinflammatory and GLUT gene expression.
Collapse
Affiliation(s)
- Heping Cao
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705-2350, USA.
| | | | | |
Collapse
|
65
|
Frederick ED, Ramos SBV, Blackshear PJ. A unique C-terminal repeat domain maintains the cytosolic localization of the placenta-specific tristetraprolin family member ZFP36L3. J Biol Chem 2008; 283:14792-800. [PMID: 18367448 DOI: 10.1074/jbc.m801234200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the tristetraprolin family of CCCH tandem zinc finger proteins bind to AU-rich elements in certain cellular mRNAs, leading to their deadenylation and destabilization. Studies in knock-out mice demonstrated roles for three of the family members, tristetraprolin, ZFP36L1, and ZFP36L2, in inflammation, chorioallantoic fusion, and early embryonic development, respectively. However, little is known about a recently discovered placenta-specific tristetraprolin family member, ZFP36L3. Tristetraprolin, ZFP36L1, and ZFP36L2 have been shown to shuttle between the nucleus and cytoplasm, using typical hydrophobic amino acid-rich nuclear export sequences, and nuclear localization sequences located within the tandem zinc finger domain. In contrast, we previously showed that green fluorescent protein-labeled ZFP36L3, expressed in HEK 293 cells, remained cytosolic, even in the presence of the nuclear export blocker leptomycin B. We show here that the conserved tandem zinc finger domain contains an active nuclear localization signal. However, the sequence corresponding to the nuclear export signal in the other family members was nonfunctional, and thus did not contribute to the cytosolic localization. The unique C-terminal repeat domain could override the activity of the nuclear localization sequence, preventing the import of ZFP36L3 into the nucleus. Immunostaining of mouse placenta demonstrated that ZFP36L3 was located only in the cytoplasm of trophoblast cells. Thus, in contrast to the other mammalian members of this protein family, ZFP36L3 is a "full-time" cytosolic protein, rather than a nucleocytoplasmic shuttling protein. The significance of this difference in subcellular localization to the physiology of placental trophoblast cells, where ZFP36L3 is selectively expressed, remains to be determined.
Collapse
|
66
|
Cao H, Lin R, Ghosh S, Anderson RA, Urban JF. Production and characterization of ZFP36L1 antiserum against recombinant protein from Escherichia coli. Biotechnol Prog 2008; 24:326-33. [PMID: 18302406 DOI: 10.1021/bp070269n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tristetraprolin/zinc finger protein 36 (TTP/ZFP36) family proteins are anti-inflammatory. They bind and destabilize some AU-rich element-containing mRNAs such as tumor necrosis factor mRNA. In this study, recombinant ZFP36L1/TIS11B (a TTP homologue) was overexpressed in E. coli, purified, and used for polyclonal antibody production in rabbits. The antiserum recognized nanograms of the antigen on immunoblots. This antiserum and another antiserum developed against recombinant mouse TTP were used to detect ZFP36L1 and TTP in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. Immunoblotting showed that ZFP36L1 was stably expressed with a size corresponding to the lower mass size of ZFP36L1 expressed in transfected human embryonic kidney 293 cells, but TTP was induced by cinnamon extract and not by lipopolysaccharide (LPS) in adipocytes. In contrast, ZFP36L1 was undetectable, but TTP was strongly induced in LPS-stimulated RAW cells. Quantitative real-time polymerase chain reaction confirmed the higher levels of ZFP36L1 mRNA in adipocytes and TTP mRNA in RAW cells. Low levels of ZFP36L1 expression were also confirmed by Northern blotting in mouse embryonic fibroblasts. These results demonstrate that ZFP36L1 antiserum is useful in the detection of this protein and that TTP and ZFP36L1 are differentially expressed and regulated at the mRNA and protein levels in mouse adipocytes and macrophages.
Collapse
Affiliation(s)
- Heping Cao
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
67
|
Cao H, Deterding LJ, Blackshear PJ. Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin. Expert Rev Proteomics 2008; 4:711-26. [PMID: 18067411 DOI: 10.1586/14789450.4.6.711] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been used to identify its phosphorylation sites. This article highlights the recent progress and different approaches utilized for the identification of phosphorylation sites in mammalian TTP. Important but limited results are obtained using traditional methods, including in vivo labeling, site-directed mutagenesis, phosphopeptide mapping and protein sequencing. Mass spectrometry (MS), including MALDI/MS, MALDI/MS/MS, liquid chromatography/MS/MS, immobilized metal ion affinity chromatography (IMAC)/MALDI/MS/MS and multidimensional protein identification technology has led the way in identifying TTP phosphorylation sites. The combination of these approaches has identified multiple phosphorylation sites in mammalian TTP, some of which are predicted by motif scanning to be phosphorylated by several protein kinases. This information should provide the molecular basis for future investigation of TTP's regulatory functions in controlling proinflammatory cytokines.
Collapse
Affiliation(s)
- Heping Cao
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
68
|
Jalonen U, Nieminen R, Vuolteenaho K, Kankaanranta H, Moilanen E. Down-regulation of tristetraprolin expression results in enhanced IL-12 and MIP-2 production and reduced MIP-3alpha synthesis in activated macrophages. Mediators Inflamm 2007; 2006:40691. [PMID: 17392586 PMCID: PMC1775030 DOI: 10.1155/mi/2006/40691] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In inflammation, the post-transcriptional regulation of transiently expressed genes provides a potential therapeutic target. Tristetraprolin (TTP) is of the factors regulating decay of cytokine mRNAs. The aim of the present study was to identify cytokines whose expression is regulated by TTP. We established a TTP knock-down cell line by expressing shRNA against TTP (shTTP cell line). A cytokine antibody array was used to measure cytokine production in macrophages exposed to lipopolysaccharide (LPS). Cytokines IL-6, IL-12, TNF-α, and MIP-2 (a homologue to human IL-8) were expressed at higher
levels whereas MIP-3α was produced at lower levels in LPS-treated shTTP cells than in control cells suggesting that the expression of these cytokines is regulated by TTP. The present data provide IL-12, MIP-2, and MIP-3α as novel inflammatory cytokine targets for TTP-mediated mRNA decay and stress the role of TTP in the regulation of the inflammatory process.
Collapse
Affiliation(s)
- Ulla Jalonen
- The Immunopharmacology Research Group, Medical School, University of Tampere, and Tampere University Hospital,
Research Unit, 33014 Tampere, Finland
- *Ulla Jalonen:
| | - Riina Nieminen
- The Immunopharmacology Research Group, Medical School, University of Tampere, and Tampere University Hospital,
Research Unit, 33014 Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Medical School, University of Tampere, and Tampere University Hospital,
Research Unit, 33014 Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical School, University of Tampere, and Tampere University Hospital,
Research Unit, 33014 Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Medical School, University of Tampere, and Tampere University Hospital,
Research Unit, 33014 Tampere, Finland
| |
Collapse
|
69
|
Carrick DM, Blackshear PJ. Comparative expression of tristetraprolin (TTP) family member transcripts in normal human tissues and cancer cell lines. Arch Biochem Biophys 2007; 462:278-85. [PMID: 17517366 DOI: 10.1016/j.abb.2007.04.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/02/2007] [Accepted: 04/09/2007] [Indexed: 11/16/2022]
Abstract
The tristetraprolin (TTP) family of tandem zinc finger proteins comprises three members in man and most other mammals, with a fourth expressed in rodents. In mice, gene disruption of TTP itself leads to a systemic inflammatory syndrome that is mediated in large part by over-expression of tumor necrosis factor alpha (TNF). This increased expression is secondary to stabilization of the TNF mRNA in the TTP KO mice, a finding that led to the characterization of TTP as an mRNA binding protein that can promote the removal of the poly(A) tail from selected mRNAs and facilitate their nucleolytic destruction. The other human family members behave similarly to TTP in over-expression studies of transfected cells, but gene disruption experiments have implicated them in different physiological processes. In the present study, we developed a real-time PCR assay for all three human family members that allowed for comparative measurements of all three family members in the same tissues and cells. We used this assay to quantitate expression levels of all three transcripts in a variety of normal human tissues, as well as in the ;;NCI 60", a well characterized panel of human tumor cell lines. Although studies in fibroblasts and macrophages derived from knockout mice have failed to demonstrate compensatory expression of the family members in terms of transcript levels, it remains possible that the different family members can function as ;;TTP equivalents" in certain physiological or pathological circumstances.
Collapse
Affiliation(s)
- Danielle M Carrick
- The Office of Clinical Research, National Institute of Environmental Health Sciences, NIEHS MD A2-05, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
70
|
Cao H, Kelly MA, Kari F, Dawson HD, Urban JF, Coves S, Roussel AM, Anderson RA. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats. JOURNAL OF INFLAMMATION-LONDON 2007; 4:1. [PMID: 17207279 PMCID: PMC1783848 DOI: 10.1186/1476-9255-4-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/05/2007] [Indexed: 12/02/2022]
Abstract
Background Tristetraprolin (TTP/ZFP36) family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet) on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3), pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2), and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet) increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet) increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.
Collapse
Affiliation(s)
- Heping Cao
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Building 307C, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Meghan A Kelly
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Building 307C, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Frank Kari
- Office of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Harry D Dawson
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Building 307C, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Joseph F Urban
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Building 307C, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Sara Coves
- Unilever France, F92842 Rueil Malmaison, France
| | - Anne M Roussel
- Laboratoire de NVMC (Nutrition, Vieillissement et Maladies Cardiovasculaires), Faculte de Pharmacie, Joseph Fourier University, Domaine de la Merci, 38700 La Tronche, France
| | - Richard A Anderson
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Building 307C, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
71
|
Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ. Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 2006; 26:9196-208. [PMID: 17030620 PMCID: PMC1698545 DOI: 10.1128/mcb.00945-06] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tristetraprolin (TTP) is a tandem CCCH zinc finger protein that was identified through its rapid induction by mitogens in fibroblasts. Studies of TTP-deficient mice and cells derived from them showed that TTP could bind to certain AU-rich elements in mRNAs, leading to increases in the rates of mRNA deadenylation and destruction. Known physiological target mRNAs for TTP include tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and interleukin-2beta. Here we used microarray analysis of RNA from wild-type and TTP-deficient fibroblast cell lines to identify transcripts with different decay rates, after serum stimulation and actinomycin D treatment. Of 250 mRNAs apparently stabilized in the absence of TTP, 23 contained two or more conserved TTP binding sites; nine of these appeared to be stabilized on Northern blots. The most dramatically affected transcript encoded the protein Ier3, recently implicated in the physiological control of blood pressure. The Ier3 transcript contained several conserved TTP binding sites that could bind TTP directly and conferred TTP sensitivity to the mRNA in cell transfection studies. These studies have identified several new, physiologically relevant TTP target transcripts in fibroblasts; these target mRNAs encode proteins from a variety of functional classes.
Collapse
Affiliation(s)
- Wi S Lai
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
72
|
Benjamin D, Schmidlin M, Min L, Gross B, Moroni C. BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol Cell Biol 2006; 26:9497-507. [PMID: 17030608 PMCID: PMC1698544 DOI: 10.1128/mcb.01099-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BRF1 posttranscriptionally regulates mRNA levels by targeting ARE-bearing transcripts to the decay machinery. We previously showed that protein kinase B (PKB) phosphorylates BRF1 at Ser92, resulting in binding to 14-3-3 and impairment of mRNA decay activity. Here we identify an additional regulatory site at Ser203 that cooperates in vivo with Ser92. In vitro kinase labeling and wortmannin sensitivity indicate that Ser203 phosphorylation is also performed by PKB. Mutation of both serines to alanine uncouples BRF1 from PKB regulation, leading to constitutive mRNA decay even in the presence of stabilizing signals. BRF1 protein is labile because of proteasomal degradation (half-life, <3 h) but becomes stabilized upon phosphorylation and is less stable in PKBalpha(-/-) cells. Surprisingly, phosphorylation-dependent protein stability is also regulated by Ser92 and Ser203, with parallel phosphorylation required at these sites. Phosphorylation-dependent binding to 14-3-3 is abolished only when both sites are mutated. Cell compartment fractionation experiments support a model in which binding to 14-3-3 sequesters BRF1 through relocalization and prevents it from executing its mRNA decay activity, as well as from proteasomal degradation, thereby maintaining high BRF1 protein levels that are required to reinstate decay upon dissipation of the stabilizing signal.
Collapse
Affiliation(s)
- Don Benjamin
- Institute for Medical Microbiology, Petersplatz 10, 4003 Basel, Switzerland
| | | | | | | | | |
Collapse
|
73
|
Cao H, Deterding LJ, Venable JD, Kennington EA, Yates JR, Tomer KB, Blackshear PJ. Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis. Biochem J 2006; 394:285-97. [PMID: 16262601 PMCID: PMC1386027 DOI: 10.1042/bj20051316] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tristetraprolin (TTP) is a zinc-finger protein that binds to AREs (AU-rich elements) within certain mRNAs and causes destabilization of those mRNAs. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. Previous studies showed that TTP is phosphorylated extensively in intact cells. However, limited information is available about the identities of these phosphorylation sites. We investigated the phosphorylation sites in human TTP from transfected HEK-293 cells by MS and site-directed mutagenesis. A number of phosphorylation sites including Ser66, Ser88, Thr92, Ser169, Ser186, Ser197, Ser218, Ser228, Ser276 and Ser296 were identified by MS analyses using MALDI (matrix-assisted laser-desorption-ionization)-MS, MALDI-tandem MS, LC (liquid chromatography)-tandem MS and multidimensional protein identification technology. Mutations of Ser197, Ser218 and Ser228 to alanine in the human protein significantly increased TTP's gel mobility (likely to be stoichiometric), whereas mutations at the other sites had little effect on its gel mobility. Dephosphorylation and in vivo labelling studies showed that mutant proteins containing multiple mutations were still phosphorylated, and all were able to bind to RNA probes containing AREs. Confocal microscopy showed a similar cytosolic localization of TTP among the various proteins. Ser197, Ser218 and Ser228 are predicted by motif scanning to be potential sites for protein kinase A, glycogen synthase kinase-3 and extracellular-signal-regulated kinase 1 (both Ser218 and Ser228) respectively. The present study has identified multiple phosphorylation sites in the anti-inflammatory protein TTP in mammalian cells and should provide the molecular basis for further studies on the function and regulation of TTP in controlling pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Heping Cao
- Laboratories of Neurobiology and Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|