51
|
Stuart CC, Vaughan JL, Kershaw-Young CM, Wilkinson J, Bathgate R, de Graaf SP. Effects of varying doses of β-nerve growth factor on the timing of ovulation, plasma progesterone concentration and corpus luteum size in female alpacas (Vicugna pacos). Reprod Fertil Dev 2015; 27:1181-6. [DOI: 10.1071/rd14037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/23/2014] [Indexed: 01/05/2023] Open
Abstract
Ovulation in camelids is induced by the seminal plasma protein ovulation-inducing factor (OIF), recently identified as β-nerve growth factor (β-NGF). The present study measured the total protein concentration in alpaca seminal plasma using a bicinchoninic acid (BCA) protein quantification assay and found it to be 22.2 ± 2.0 mg mL–1. To measure the effects of varying doses of β-NGF on the incidence and timing of ovulation, corpus luteum (CL) size and plasma progesterone concentration, 24 female alpacas were synchronised and treated with either: (1) 1 mL 0.9% saline (n = 5); (2) 4 µg buserelin (n = 5); (3) 1 mg β-NGF protein (n = 5); (4) 0.1 mg β-NGF (n = 5); or (5) 0.01 mg β-NGF (n = 4). Females were examined by transrectal ultrasonography at 1–2-h intervals between 20 and 45 h after treatment or until ovulation occurred, as well as on Day 8 to observe the size of the CL, at which time blood was collected to measure plasma progesterone concentrations. Ovulation was detected in 0/5, 5/5, 5/5, 3/5 and 0/4 female alpacas treated with saline, buserelin, 1, 0.1 and 0.01 mg β-NGF, respectively. Mean ovulation interval (P = 0.76), CL diameter (P = 0.96) and plasma progesterone concentration (P = 0.96) did not differ between treatments. Mean ovulation interval overall was 26.2 ± 1.0 h. In conclusion, buserelin and 1 mg β-NGF are equally effective at inducing ovulation in female alpacas, but at doses ≤0.1 mg, β-NGF is not a reliable method for the induction of ovulation.
Collapse
|
52
|
Affiliation(s)
- Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
53
|
The Role of Progesterone in Maternal Recognition of Pregnancy in Domestic Ruminants. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:87-104. [DOI: 10.1007/978-3-319-15856-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
54
|
Mullen MP, Bazer FW, Wu G, Parr MH, Evans ACO, Crowe MA, Diskin MG. Effects of systemic progesterone during the early luteal phase on the availabilities of amino acids and glucose in the bovine uterine lumen. Reprod Fertil Dev 2014; 26:282-92. [PMID: 23374643 DOI: 10.1071/rd12319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/18/2012] [Indexed: 12/26/2022] Open
Abstract
The uterine histotroph provides essential nutrition to the developing conceptus during the preimplantation period of pregnancy. The objective of the present study was to examine the effects of cycle stage and progesterone (P4) concentrations in the blood on the recoverable quantities of amino acids and glucose in the histotroph during the preimplantaion period of conceptus development. Following oestrus, dairy heifers were assigned to low, control or high P4 groups (n=6 heifers per treatment and time point). The uterine horn ipsilateral to the corpus luteum was flushed on either Day 7 or Day 13. The present study quantified 24 amino acids and glucose in the uterine flushings using HPLC and fluorometry, respectively. Heifers in the low P4 group had lower plasma concentrations of P4 throughout the cycle, whereas heifers in the high group had higher plasma concentrations of P4 between Days 3 and 7 compared with the control group (P<0.05). Total recoverable neutral (Ser, Gln, Gly, Thr, Cit, β-Ala, Tau, Ala, Tyr, Trp, Met, Val, Phe, Ile, Leu, Pro and Cys), acidic (Glu) and basic (His, Arg, Orn and Lys) amino acids were greater (P<0.05) on Day 13 than on Day 7. There was no significant difference in the amount of Asp or Asn between Day 7 and Day 13. The amount of amino acids recovered on Day 7 was similar across treatment groups. On Day 13, the amount of Asn, His and Thr was lower (P<0.05) in the low P4 heifers compared with the controls and/or high P4 heifers. Quantities of glucose were not altered by cycle stage or P4 treatment. In conclusion, the stage of oestrous cycle and P4 play important roles in modulating amino acids in the histotroph, a potentially critical factor for early embryonic and/or conceptus survival.
Collapse
Affiliation(s)
- Michael P Mullen
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Mervyn H Parr
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Alexander C O Evans
- UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mark A Crowe
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael G Diskin
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
55
|
Monteiro P, Ribeiro E, Maciel R, Dias A, Solé E, Lima F, Bisinotto R, Thatcher W, Sartori R, Santos J. Effects of supplemental progesterone after artificial insemination on expression of interferon-stimulated genes and fertility in dairy cows. J Dairy Sci 2014; 97:4907-21. [DOI: 10.3168/jds.2013-7802] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/24/2014] [Indexed: 02/01/2023]
|
56
|
Hoelker M, Held E, Salilew-Wondim D, Schellander K, Tesfaye D. Molecular signatures of bovine embryo developmental competence. Reprod Fertil Dev 2014; 26:22-36. [PMID: 24305174 DOI: 10.1071/rd13255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Assessment of the developmental capacity of early bovine embryos is still an obstacle. Therefore, the present paper reviews all current knowledge with respect to morphological criteria and environmental factors that affect embryo quality. The molecular signature of an oocyte or embryo is considered to reflect its quality and to predict its subsequent developmental capacity. Therefore, the primary aim of the present review is to provide an overview of reported correlations between molecular signatures and developmental competence. A secondary aim of this paper is to present some new strategies to enable concomitant evaluation of the molecular signatures of specific embryos and individual developmental capacity.
Collapse
Affiliation(s)
- M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Alle 15, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
57
|
Rodrigues MC, Leão KM, Silva NDC, Silva RPD, Viu MADO, Cardoso LM. Administração de acetato de melengestrol após inseminação artificial em tempo fixo em vacas Nelore lactantes. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2014. [DOI: 10.1590/s1519-99402014000200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objetivou-se com este estudo avaliar o efeito do fornecimento de Acetato de Melengestrol (MGA®Premix) após IATF (inseminação artificial em tempo fixo), sobre a taxa de concepção em vacas paridas da raça Nelore. Experimento I, avaliou-se o efeito do fornecimento de 2,28g de MGA/ vaca/ dia, do dia 13 (D13) ao dia 18 (D18) após a IATF. As vacas foram divididas em dois grupos, sendo o Grupo I (n=83, controle) que foi realizado apenas IATF e Grupo II (n=104, tratado) que foi fornecido o MGA após a IATF. Experimento II, avaliou-se o efeito do fornecimento de 2,28g de MGA/ vaca/ dia, do dia cinco (D5) ao dia 10 (D10) após a IATF. As vacas foram divididas em dois grupos, sendo o Grupo I (n=94, controle) que foi realizado apenas IATF e Grupo II (n=100, tratado) que foi fornecido o MGA após a IATF. O diagnóstico de gestação foi realizado 45 dias após a IATF em ambos os experimentos. As taxas de concepção foram comparadas pelo teste de Qui-quadrado. No Experimento I, as taxas de concepção foram de 42,16% para o grupo controle e 50,0% para o grupo tratado. No Experimento II, a taxa de concepção do grupo controle (47,87%) foi significativamente maior do que o grupo tratado (28,0%). Conclui-se que o fornecimento de MGA®Premix, administrado do D13 ao D18 após a IATF não afetou a taxa concepção. Entretanto, quando fornecido do D5 ao D10, reduziu a taxa de concepção em vacas Nelore paridas.
Collapse
|
58
|
Strazzullo M, Gasparrini B, Neglia G, Balestrieri ML, Francioso R, Rossetti C, Nassa G, De Filippo MR, Weisz A, Di Francesco S, Vecchio D, D'Esposito M, D'Occhio MJ, Zicarelli L, Campanile G. Global transcriptome profiles of Italian Mediterranean buffalo embryos with normal and retarded growth. PLoS One 2014; 9:e90027. [PMID: 24587197 PMCID: PMC3938533 DOI: 10.1371/journal.pone.0090027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
The transcriptome profiles were compared for buffalo embryos with normal growth and embryos with retarded growth on Day 25 after mating. Embryos with retarded growth on Day 25 after mating have a reduced likelihood of undergoing attachment to the uterine endometrium and establishing a pregnancy. Italian Mediterranean buffaloes were mated by AI and on Day 25 underwent trans-rectal ultrasonography to ascertain embryo development. Embryos with an embryonic width (EW)>2.7 mm were classed as normal embryos and embryos with an EW<2.7 mm were classed as retarded embryos. Three buffaloes with embryos of the largest EW (3.7, 3.7 and 3.9 mm) and three buffaloes with embryos of the smallest EW (1.5, 1.6 and 1.9 mm) were slaughtered on Day 27 to recover embryos for transcriptome analysis using a bovine custom designed oligo array. A total of 1,047 transcripts were differentially expressed between embryos with normal growth and embryos with retarded growth. Retarded embryos showed 773/1,047 (74%) transcripts that were down-regulated and 274/1,047 (26%) transcripts that were up-regulated relative to normal embryos; in silico analyses focused on 680/1,047 (65%) of the differentially expressed transcripts. The most altered transcripts observed in retarded embryos were associated with membrane structure and function and with metabolic and homeostasis maintenance functions. Other notable functions altered in retarded embryos were developmental processes and in particular nervous system differentiation and function. Specific biochemical pathways such as the complement cascade and coagulation were also altered in retarded embryos. It was concluded from the findings that buffalo embryos with retarded growth on Day 25 after mating show altered gene expression compared with normal embryos, and some de-regulated functions are associated with attachment to the uterine endometrium.
Collapse
Affiliation(s)
- Maria Strazzullo
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
- * E-mail:
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Romina Francioso
- Institute of Genetics and Biophysics ABT, National Research Council, Naples, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Neuromed, Pozzilli, Italy
| | - Cristina Rossetti
- Institute for Animal Production System in Mediterranean Environment, National Research Council, Naples, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | | | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Serena Di Francesco
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Domenico Vecchio
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics ABT, National Research Council, Naples, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Neuromed, Pozzilli, Italy
| | - Michael John D'Occhio
- Faculty of Agriculture and Environment, The University of Sydney, Camden, NSW, Australia
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
59
|
Trigal B, Díez C, Muñoz M, Caamaño JN, Goyache F, Correia-Alvarez E, Corrales FJ, Mora MI, Carrocera S, Martin D, Gómez E. Elements of functional genital asymmetry in the cow. Reprod Fertil Dev 2014; 26:493-501. [PMID: 24709319 DOI: 10.1071/rd13056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/11/2013] [Indexed: 11/23/2022] Open
Abstract
Asymmetry in the cow affects ovarian function and pregnancy. In this work we studied ovarian and uterine asymmetry. Synchronised animals, in which in vitro-produced embryos (n=30-60) had been transferred on Day 5 to the uterine horn ipsilateral to the corpus luteum (CL), were flushed on Day 8. Ovulatory follicle diameter, oestrus response and total protein flushed did not differ between sides. However, a corpus luteum in the right ovary led to plasma progesterone concentrations that were higher than when it was present in the left ovary. Fewer embryos were recovered from the left than the right horn. Among 60 uterine proteins identified by difference gel electrophoresis, relative abundance of nine (acyl-CoA dehydrogenase, very long chain; twinfilin, actin-binding protein, homologue 1; enolase 1; pyruvate kinase isozymes M1/M2 (rabbit); complement factor B Bb fragment ; albumin; fibrinogen gamma-B chain; and ezrin differed (P<0.05) between horns. Glucose concentration was higher, and fructose concentration lower, in the left horn. In a subsequent field trial, pregnancy rates after embryo transfer did not differ between horns (51.0±3.6, right vs 53.2±4.7, left). However, Day 7 blood progesterone concentrations differed (P=0.018) between pregnant and open animals in the left (15.9±1.7 vs 8.3±1.2) but not in the right horn (12.4±1.3 vs 12.4±1.2). Progesterone effects were independent of CL quality (P=0.55). Bilateral genital tract asymmetry in the cow affects progesterone, proteins and hexoses without altering pregnancy rates.
Collapse
Affiliation(s)
- B Trigal
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - C Díez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - J N Caamaño
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - F Goyache
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Correia-Alvarez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - F J Corrales
- Centro de Investigación Médica Aplicada (CIMA), Avda Pío XII 55, 31008 Pamplona, Navarra, Spain
| | - M I Mora
- Centro de Investigación Médica Aplicada (CIMA), Avda Pío XII 55, 31008 Pamplona, Navarra, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - D Martin
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
60
|
Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 2014; 8 Suppl 1:70-81. [DOI: 10.1017/s1751731114000585] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
61
|
The effects of progesterone treatment following artificial insemination on the reproductive performance of dairy cows. Trop Anim Health Prod 2013; 46:405-10. [DOI: 10.1007/s11250-013-0504-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
62
|
Torres A, Batista M, Diniz P, Mateus L, Lopes-da-Costa L. Embryo–luteal cells co-culture: an in vitro model to evaluate steroidogenic and prostanoid bovine early embryo–maternal interactions. In Vitro Cell Dev Biol Anim 2013; 49:134-46. [DOI: 10.1007/s11626-012-9577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
|
63
|
Ulbrich SE, Wolf E, Bauersachs S. Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo - endometrium interactions in cattle. Reprod Fertil Dev 2013; 25:62-70. [DOI: 10.1071/rd12279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ongoing detailed investigations into embryo–maternal communication before implantation reveal that during early embryonic development a plethora of events are taking place. During the sexual cycle, remodelling and differentiation processes in the endometrium are controlled by ovarian hormones, mainly progesterone, to provide a suitable environment for establishment of pregnancy. In addition, embryonic signalling molecules initiate further sequences of events; of these molecules, prostaglandins are discussed herein as specifically important. Inadequate receptivity may impede preimplantation development and implantation, leading to embryonic losses. Because there are multiple factors affecting fertility, receptivity is difficult to comprehend. This review addresses different models and methods that are currently used and discusses their respective potentials and limitations in distinguishing key messages out of molecular twitter. Transcriptome, proteome and metabolome analyses generate comprehensive information and provide starting points for hypotheses, which need to be substantiated using further confirmatory methods. Appropriate in vivo and in vitro models are needed to disentangle the effects of participating factors in the embryo–maternal dialogue and to help distinguish associations from causalities. One interesting model is the study of somatic cell nuclear transfer embryos in normal recipient heifers. A multidisciplinary approach is needed to properly assess the importance of the uterine milieu for embryonic development and to use the large number of new findings to solve long-standing issues regarding fertility.
Collapse
|
64
|
Forde N, Carter F, di Francesco S, Mehta JP, Garcia-Herreros M, Gad A, Tesfaye D, Hoelker M, Schellander K, Lonergan P. Endometrial response of beef heifers on day 7 following insemination to supraphysiological concentrations of progesterone associated with superovulation. Physiol Genomics 2012; 44:1107-15. [PMID: 23012394 DOI: 10.1152/physiolgenomics.00092.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ovarian stimulation is a routine procedure in assisted reproduction to stimulate the growth of multiple follicles in naturally single-ovulating species including cattle and humans. The aim of this study was to analyze the changes induced in the endometrial transcriptome associated with superovulation in cattle and place these observations in the context of our previous data on changes in the endometrial transcriptome associated with elevated progesterone (P4) concentrations within the physiological range and those changes induced in the embryo due to superovulation. Mean serum P4 concentrations were significantly higher from day 4 to day 7 in superovulated compared with unstimulated control heifers (P < 0.05). Between-group analysis revealed a clear separation in the overall transcriptional profile of endometria from unstimulated control heifers (n = 5) compared with superovulated heifers (n = 5). This was reflected in the number of differentially expressed genes (DEGs) identified between the two groups with 795 up- and 440 downregulated in superovulated endometria. Ten times more genes were altered by superovulation (n = 1,234) compared with the number altered due to elevated P4 within physiological ranges by insertion of a P4-releasing intravaginal device (n = 124) with only 22 DEGs common to both models of P4 manipulation. Fewer genes were affected by superovulation in the embryo compared with the endometrium, (443 vs. 1,234 DEGs, respectively), and the manner in which genes were altered was different with 64.5% of genes up- and 35.5% of genes downregulated in the endometrium, compared with the 98.9% of DEGs upregulated in the embryo. In conclusion, superovulation induces significant changes in the transcriptome of the endometrium which are distinct from those in the embryo.
Collapse
Affiliation(s)
- N Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gad A, Schellander K, Hoelker M, Tesfaye D. Transcriptome profile of early mammalian embryos in response to culture environment. Anim Reprod Sci 2012; 134:76-83. [PMID: 22917875 DOI: 10.1016/j.anireprosci.2012.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early embryonic development, the period from maturation until blastocyst formation, is one of the most critical periods of mammalian development involves various morphological, cellular, and biochemical changes related to genomic activity. During the post-fertilization period, several major developmental events occur in the embryo which are regulating by a harmonized expression of genes and strongly influenced by culture conditions. The products of these genes are involved in various biological processes including metabolism, growth factor/cytokine signaling, stress adaptation, transcription and translation, epigenetic regulation of transcription, apoptosis, compaction and blastocyst formation. Post-fertilization culture environment is known to be the most important factor determining the quality of the resulting embryos as indicated in terms of cryo-tolerance and relative abundance of transcripts. However, the exact effect of culture conditions on gene expression and subsequent influences on molecular pathways controlling early development is still unknown. A number of culture environmental factors can influence the gene expression of produced embryos such as media composition, serum supplementation, number of embryos present in the culture drop and gas atmosphere. During the last ten years several studies were concerned with differences in the transcriptome profile of embryos produced under different environmental conditions and its subsequent influence on embryo developmental competence. From these studies, several genes have been determined as candidate genes controlling preimplantation embryo development and affecting its quality. Here we will discuss results of different experiments investigated the effect of different culture conditions on the transcriptome profile of bovine blastocyst. These experiments identified molecular mechanisms and pathways that influenced by culture conditions and this will enable to launch strategies to modify culture conditions to enhance the development of competent blastocyst.
Collapse
Affiliation(s)
- A Gad
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
66
|
Maillo V, Rizos D, Besenfelder U, Havlicek V, Kelly A, Garrett M, Lonergan P. Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows. J Dairy Sci 2012; 95:3865-76. [DOI: 10.3168/jds.2011-5270] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
|
67
|
Parr M, Mullen M, Crowe M, Roche J, Lonergan P, Evans A, Diskin M. Relationship between pregnancy per artificial insemination and early luteal concentrations of progesterone and establishment of repeatability estimates for these traits in Holstein-Friesian heifers. J Dairy Sci 2012; 95:2390-6. [DOI: 10.3168/jds.2011-4498] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 12/28/2011] [Indexed: 11/19/2022]
|
68
|
Ledgard AM, Berg MC, McMillan WH, Smolenski G, Peterson AJ. Effect of asynchronous transfer on bovine embryonic development and relationship with early cycle uterine proteome profiles. Reprod Fertil Dev 2012; 24:962-72. [DOI: 10.1071/rd11225] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
The uterus provides the nurturing environment that supports the growth of the early preimplantation bovine conceptus. To determine critical time points of uterine influence, in vitro-produced Day 7 blastocysts were transferred into synchronous (Day 7) uteri and asynchronous uteri (Days 5 or 9). Embryo growth was evaluated 7 and 15 days after transfer and compared with that of embryos generated by AI. Conceptuses recovered from asynchronous Day 9 transfers were fourfold larger than synchronous transfer or gestational Day 14 AI conceptuses; by 15 days after transfer, differences were less marked. Two-dimensional gel electrophoresis was used to compare the histotroph protein composition of uterine luminal flushings (ULF) on Days 5 and 9 after oestrous to determine any protein differences that would promote embryo growth. The ULF were collected by serially flushing the uteri of the same heifers and mature cows at different times of the cycle. Ten proteins that differed in abundance between Day 5 and 9 were identified by mass spectrometry. Three, namely phosphoserine aminotransferase 1, purine nucleoside phosphorylase and aldose reductase, were verified by western blot analysis as more abundant on Day 9 (P < 0.002). Myostatin was present in only in Day 9 ULF, whereas tissue inhibitor of matrix metalloproteinase 2 (TIMP2) and legumain were only detected in Day 14 ULF. Although mature cows had lower progesterone concentrations on Days 5 and 14 (P < 0.05) and tended to have less TIMP2 than heifer groups, no other protein differences were detected. Thus, the embryo growth-enhancing environment on Day 9 was associated with temporal changes in the expression of several proteins of the histotroph.
Collapse
|
69
|
Wiltbank MC, Souza AH, Carvalho PD, Bender RW, Nascimento AB. Improving fertility to timed artificial insemination by manipulation of circulating progesterone concentrations in lactating dairy cattle. Reprod Fertil Dev 2012; 24:238-43. [DOI: 10.1071/rd11913] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This manuscript reviews the effect of progesterone (P4) during timed AI protocols in lactating dairy cows. Circulating P4 is determined by a balance between P4 production, primarily by the corpus luteum (CL), and P4 metabolism, primarily by the liver. In dairy cattle, the volume of luteal tissue is a primary determinant of P4 production; however, inadequate circulating P4 is generally due to high P4 metabolism resulting from extremely elevated liver blood flow. Three sections in this manuscript summarise the role of P4 concentrations before breeding, near the time of breeding and after breeding. During timed AI protocols, elevations in P4 are generally achieved by ovulation, resulting in an accessory CL, or by supplementation with exogenous P4. Elevating P4 before timed AI has been found to decrease double ovulation and increase fertility to the timed AI. Slight elevations in circulating P4 can dramatically reduce fertility, with inadequate luteolysis to the prostaglandin F2α treatment before timed AI being the underlying cause of this problem. After AI, circulating P4 is critical for embryo growth, and for establishment and maintenance of pregnancy. Many studies have attempted to improve fertility by elevating P4 after timed AI with marginal elevations in fertility. Thus, previous research has provided substantial insights into mechanisms regulating circulating P4 concentrations and actions. Understanding this prior research can focus future research on P4 manipulation to improve timed AI protocols.
Collapse
|
70
|
Mamo S, Mehta JP, McGettigan P, Fair T, Spencer TE, Bazer FW, Lonergan P. RNA Sequencing Reveals Novel Gene Clusters in Bovine Conceptuses Associated with Maternal Recognition of Pregnancy and Implantation1. Biol Reprod 2011; 85:1143-51. [DOI: 10.1095/biolreprod.111.092643] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
71
|
Regulation of non-classical major histocompatability complex class I mRNA expression in bovine embryos. J Reprod Immunol 2011; 91:31-40. [DOI: 10.1016/j.jri.2011.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 01/28/2023]
|
72
|
Gene expression in placentation of farm animals: an overview of gene function during development. Theriogenology 2011; 76:589-97. [PMID: 21550103 DOI: 10.1016/j.theriogenology.2011.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/22/2022]
Abstract
Eutherian mammals share a common ancestor that evolved into two main placental types, i.e., hemotrophic (e.g., human and mouse) and histiotrophic (e.g., farm animals), which differ in invasiveness. Pregnancies initiated with assisted reproductive techniques (ART) in farm animals are at increased risk of failure; these losses were associated with placental defects, perhaps due to altered gene expression. Developmentally regulated genes in the placenta seem highly phylogenetically conserved, whereas those expressed later in pregnancy are more species-specific. To elucidate differences between hemotrophic and epitheliochorial placentae, gene expression data were compiled from microarray studies of bovine placental tissues at various stages of pregnancy. Moreover, an in silico subtractive library was constructed based on homology of bovine genes to the database of zebrafish - a nonplacental vertebrate. In addition, the list of placental preferentially expressed genes for the human and mouse were collected using bioinformatics tools (Tissue-specific Gene Expression and Regulation [TiGER] - for humans, and tissue-specific genes database (TiSGeD) - for mice and humans). Humans, mice, and cattle shared 93 genes expressed in their placentae. Most of these were related to immune function (based on analysis of gene ontology). Cattle and women shared expression of 23 genes, mostly related to hormonal activity, whereas mice and women shared 16 genes (primarily sexual differentiation and glycoprotein biology). Because the number of genes expressed by the placentae of both cattle and mice were similar (based on cluster analysis), we concluded that both cattle and mice were suitable models to study the biology of the human placenta.
Collapse
|
73
|
Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D, Hossain M, Tesfaye D, Lonergan P, Becker A, Cinar U, Schellander K, Havlicek V, Hölker M. Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum Reprod 2011; 26:1693-707. [DOI: 10.1093/humrep/der110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|