51
|
Hernández-Delgado P, Felix-Portillo M, Martínez-Quintana JA. ADAMTS Proteases: Importance in Animal Reproduction. Genes (Basel) 2023; 14:1181. [PMID: 37372361 DOI: 10.3390/genes14061181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Many reproductive physiological processes, such as folliculogenesis, ovulation, implantation, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix (ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family genes code for key metalloproteinases in the remodeling process of different ECM. Several genes of this family encode for proteins with important functions in reproductive processes; in particular, ADAMTS1, 4, 5 and 9 are genes that are differentially expressed in cell types and the physiological stages of reproductive tissues. ADAMTS enzymes degrade proteoglycans in the ECM of the follicles so that the oocytes can be released and regulate follicle development during folliculogenesis, favoring the action of essential growth factors, such as FGF-2, FGF-7 and GDF-9. The transcriptional regulation of ADAMTS1 and 9 in preovulatory follicles occurs because of the gonadotropin surge in preovulatory follicles, via the progesterone/progesterone receptor complex. In addition, in the case of ADAMTS1, pathways involving protein kinase A (PKA), extracellular signal regulated protein kinase (ERK1/2) and the epidermal growth factor receptor (EGFR) might contribute to ECM regulation. Different Omic studies indicate the importance of genes of the ADAMTS family from a reproductive aspect. ADAMTS genes could serve as biomarkers for genetic improvement and contribute to enhance fertility and animal reproduction; however, more research related to these genes, the synthesis of proteins encoded by these genes, and regulation in farm animals is needed.
Collapse
|
52
|
Nascimento DR, Barbalho EC, Gondim Barrozo L, de Assis EIT, Costa FC, Silva JRV. The mechanisms that control the preantral to early antral follicle transition and the strategies to have efficient culture systems to promote their growth in vitro. ZYGOTE 2023:1-11. [PMID: 37221099 DOI: 10.1017/s0967199423000254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Preantral to early antral follicles transition is a complex process regulated by endocrine and paracrine factors, as well as by a precise interaction among oocyte, granulosa cells and theca cells. Understanding the mechanisms that regulate this step of folliculogenesis is important to improve in vitro culture systems, and opens new perspectives to use oocytes from preantral follicles for assisted reproductive technologies. Therefore, this review aims to discuss the endocrine and paracrine mechanisms that control granulosa cell proliferation and differentiation, formation of the antral cavity, estradiol production, atresia, and follicular fluid production during the transition from preantral to early antral follicles. The strategies that promote in vitro growth of preantral follicles are also discussed.
Collapse
Affiliation(s)
- D R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - L Gondim Barrozo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - E I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - F C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Av. Comandante Maurocélio Rocha Ponte 100, CEP 62041-040, Sobral, CE, Brazil
| |
Collapse
|
53
|
Li Y, Xiao N, Liu M, Liu Y, He A, Wang L, Luo H, Yao Y, Sun H. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121730. [PMID: 37116568 DOI: 10.1016/j.envpol.2023.121730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The widespread use of phthalates (PAEs) has drawn increasing attention due to their endocrine disruption and reproductive toxicity, while the steroid metabolome is essential for follicular development. However, the mechanism by which PAE exposure affects ovarian reserve through the steroid metabolome remains unclear. This study recruited 264 childbearing-age women in Tianjin (China) from April 2019 to August 2020 in a cross-sectional design. Target metabolome analysis of 16 steroids was performed in follicular fluid (FF) to compare diminished ovarian reserve (DOR) against normal ovarian reserve (NOR) women and differential steroids were identified using binary logistic analyses. Further analysis of eleven PAE metabolites (mPAEs) in FF was conducted, and the retrieved oocyte number (RON) representing ovarian reserve was counted. Multiple linear regression and quantile-based g-computation (qgcomp) models were used to associate individual mPAEs and mPAE mixture with the DOR-related differential steroids in FF. Mediation analysis was used to discuss the mediating effect of DOR-related steroids on the association between mPAEs and RON. Androstenedione (A4), corticosterone (CORT), cortisol (COR) and cortisone were significantly down-regulated in FF from women with DOR. Nine mPAEs with detection frequencies greater than 60% and median concentrations of 0.02-4.86 ng/mL were incorporated into statistical models. Negative associations with COR and CORT were found for mono-ethyl phthalate (mEP), mono-(2-ethyl-5-oxohexyl) phthalate (mEOHP), and mono-2-ethylhexyl phthalate (mEHP). A positive association with cortisone was found for mEOHP, mEHP, monobutyl phthalate (mBP), and mono (2-isobutyl) phthalate (miBP). The qgcomp and mediation analyses revealed that mEP and mEOHP not only significantly contributed to the decline of COR and CORT in the mixed exposure but also indirectly reduced RON through the mediating effects of COR and CORT. In conclusion, PAE exposure may decrease ovarian reserve by downregulating COR and CORT.
Collapse
Affiliation(s)
- Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Min Liu
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Shijitan Hospital, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Ana He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
54
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
55
|
Yang Y, Lang P, Zhang X, Wu X, Cao S, Zhao C, Shen R, Ling X, Yang Y, Zhang J. Molecular characterization of extracellular vesicles derived from follicular fluid of women with and without PCOS: integrating analysis of differential miRNAs and proteins reveals vital molecules involving in PCOS. J Assist Reprod Genet 2023; 40:537-552. [PMID: 36695944 PMCID: PMC10033803 DOI: 10.1007/s10815-023-02724-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
PURPOSE To elucidate the characterization of extracellular vesicles (EVs) in the follicular fluid-derived extracellular vesicles (FF-EVs) and discover critical molecules and signaling pathways associating with the etiology and pathobiology of PCOS, the differentially expressed miRNAs (DEmiRNAs) and differentially expressed proteins profiles (DEPs) were initially explored and combinedly analyzed. METHODS First, the miRNA and protein expression profiles of FF-EVs in PCOS patients and control patients were compared by RNA-sequencing and tandem mass tagging (TMT) proteomic methods. Subsequently, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological function of target genes of DEmiRNAs and DEPs. Finally, to discover the functional miRNA-target gene-protein interaction pairs involved in PCOS, DEmiRs target gene datasets and DEPs datasets were used integratedly. RESULTS A total of 6 DEmiRNAs and 32 DEPs were identified in FF-EVs in patients with PCOS. Bioinformatics analysis revealed that DEmiRNAs target genes are mainly involved in thiamine metabolism, insulin secretion, GnRH, and Apelin signaling pathway, which are closely related to the occurrence of PCOS. DEPs also closely related to hormone metabolism processes such as steroid hormone biosynthesis. In the analysis integrating DEmiRNAs target genes and DEPs, two molecules, GRAMD1B and STPLC2, attracted our attention that are closely associated with cholesterol transport and ceramide biosynthesis, respectively. CONCLUSION Dysregulated miRNAs and proteins in FF-EVs, mainly involving in hormone metabolism, insulin secretion, neurotransmitters regulation, adipokine expression, and secretion, may be closely related to PCOS. The effects of GRAMD1B and STPLC2 on PCOS deserve further study.
Collapse
Affiliation(s)
- Yuqin Yang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Peng Lang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xun Wu
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shanren Cao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Rong Shen
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ye Yang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
56
|
Zeng X, Li S, Liu L, Cai S, Ye Q, Xue B, Wang X, Zhang S, Chen F, Cai C, Wang F, Zeng X. Role of functional fatty acids in modulation of reproductive potential in livestock. J Anim Sci Biotechnol 2023; 14:24. [PMID: 36788613 PMCID: PMC9926833 DOI: 10.1186/s40104-022-00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/16/2023] Open
Abstract
Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and embryo development, as well as endometrial receptivity and placental vascular development, through enhancing energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prostaglandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establishment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Siyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Lu Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shuang Cai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Qianhong Ye
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Bangxin Xue
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xinyu Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shihai Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fang Chen
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chuanjiang Cai
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fenglai Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193, Beijing, P. R. China. .,Beijing Key Laboratory of Bio feed Additives, 100193, Beijing, P. R. China.
| |
Collapse
|
57
|
Isolation of Extracellular Vesicles from Human Follicular Fluid: Size-Exclusion Chromatography versus Ultracentrifugation. Biomolecules 2023; 13:biom13020278. [PMID: 36830647 PMCID: PMC9953485 DOI: 10.3390/biom13020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Follicular fluid (FF) is the microenvironment where a growing oocyte develops. Intrafollicular communication ensures oocyte competence and is carried out through paracrine signaling, the exchange of molecules via gap junctions, and the trafficking of extracellular vesicles (EVs). The study of FF-derived EVs is important for both translational and fundamental research in the female reproductive field. This study aimed to compare the efficacy and purity of two EV isolation methods: size-exclusion chromatography (SEC) and ultracentrifugation (UC). EVs isolated using SEC and UC were compared regarding their size and concentration using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA); protein contamination was assessed with microBCA; specific EV markers were detected with Western blot, and EV morphology was studied with transmission electron microscopy (TEM). Our results show that although both techniques isolated small EVs, a significantly increased yield in particle number was clear with UC compared with SEC. On the other hand, SEC generated purer EVs with fewer protein contaminants and aggregates. In conclusion, the selection of the most suited approach to isolate EVs must be conducted considering the degree of recovery, purity, and downstream application of the isolated EVs.
Collapse
|
58
|
The Effects of the Follicle-Stimulating Hormone on Human Follicular Fluid-Derived Stromal Cells. Int J Mol Sci 2023; 24:ijms24032450. [PMID: 36768772 PMCID: PMC9916742 DOI: 10.3390/ijms24032450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The prevalence of infertility is getting higher over the years. The increasing age of first-time parents, although economically more desirable, can cause various biological problems from low natural conception rate to poor pregnancy outcomes. The growing demand for assisted reproductive technology procedures worldwide draws medical specialists' and scientists' attention to various elements which could lead to successful conception, such as follicular fluid (FF) and hormones. In this study, we analyzed the effects of exposure to follicle-stimulating hormone (FSH) on FF-derived stromal cells isolated from females admitted for treatment due to infertility, participating in assisted reproductive technologies procedures. We demonstrated that FF stromal cells are positive for mesenchymal stromal cell surface markers (CD90+, CD44+, CD166+) and showed that FSH has no impact on FF stromal cell morphology yet lowers proliferation rate. Using a real-time polymerase chain reaction method, we indicated that the expression of PTGS2 is significantly downregulated in FF sediment cells of patients who did not conceive; furthermore, we showed that FSH can affect the expression of ovarian follicle development and FSH response-related genes differentially depending on the length of exposure and that levels of ovulatory cascade genes differ in conceived and not-conceived patients' FF stromal cells. Using mass spectrometry analysis, we identified 97 proteins secreted by FF stromal cells. The identified proteins are related to stress response, positive regulation of apoptotic cell clearance and embryo implantation.
Collapse
|
59
|
Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update 2023; 29:1-23. [PMID: 35856663 DOI: 10.1093/humupd/dmac031] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Folliculogenesis occurs in the highly dynamic environment of the ovary. Follicle cyclic recruitment, neo-angiogenesis, spatial displacement, follicle atresia and ovulation stand out as major events resulting from the interplay between mechanical forces and molecular signals. Morphological and functional changes to the growing follicle and to the surrounding tissue are required to produce oocytes capable of supporting preimplantation development to the blastocyst stage. OBJECTIVE AND RATIONALE This review will summarize the ovarian morphological and functional context that contributes to follicle recruitment, growth and ovulation, as well as to the acquisition of oocyte developmental competence. We will describe the changes occurring during folliculogenesis to the ovarian extracellular matrix (ECM) and to the vasculature, their influence on the mechanical properties of the ovarian tissue, and, in turn, their influence on the regulation of signal transduction. Also, we will outline how their dysregulation might be associated with pathologies such as polycystic ovary syndrome (PCOS), endometriosis or premature ovarian insufficiency (POI). Finally, for each of these three pathologies, we will highlight therapeutic strategies attempting to correct the altered biomechanical context in order to restore fertility. SEARCH METHODS For each area discussed, a systematic bibliographical search was performed, without temporal limits, using PubMed Central, Web of Science and Scopus search engines employing the keywords extracellular matrix, mechanobiology, biomechanics, vasculature, angiogenesis or signalling pathway in combination with: ovary, oogenesis, oocyte, folliculogenesis, ovarian follicle, theca, granulosa, cumulus, follicular fluid, corpus luteum, meiosis, oocyte developmental competence, preimplantation, polycystic ovary syndrome, premature ovarian insufficiency or endometriosis. OUTCOMES Through search engines queries, we yielded a total of 37 368 papers that were further selected based on our focus on mammals and, specifically, on rodents, bovine, equine, ovine, primates and human, and also were trimmed around each specific topic of the review. After the elimination of duplicates, this selection process resulted in 628 papers, of which 287 were cited in the manuscript. Among these, 89.2% were published in the past 22 years, while the remaining 8.0%, 2.4% or 0.3% were published during the 1990s, 1980s or before, respectively. During folliculogenesis, changes occur to the ovarian ECM composition and organization that, together with vasculature modelling around the growing follicle, are aimed to sustain its recruitment and growth, and the maturation of the enclosed oocyte. These events define the scenario in which mechanical forces are key to the regulation of cascades of molecular signals. Alterations to this context determine impaired folliculogenesis and decreased oocyte developmental potential, as observed in pathological conditions which are causes of infertility, such as PCOS, endometriosis or POI. WIDER IMPLICATIONS The knowledge of these mechanisms and the rules that govern them lay a sound basis to explain how follicles recruitment and growth are modulated, and stimulate insights to develop, in clinical practice, strategies to improve follicular recruitment and oocyte competence, particularly for pathologies like PCOS, endometriosis and POI.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Daria Soscia
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | | | | | - Gianluca Gennarelli
- Obstetrics and Gynecology, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Torino, Turin, Italy.,Livet, GeneraLife IVF, Turin, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
60
|
Nejabati HR, Roshangar L, Nouri M. Follicular fluid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta 2023; 538:29-35. [PMID: 36368351 DOI: 10.1016/j.cca.2022.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The decrease in the reproductive potential due to aging occurs as a gradual decline in the quantity and quality of the ovarian reserve, a phenomenon associated with risk of miscarriage, pregnancy loss, low ovarian stimulation, and oocyte abnormalities, such as chromosomal aneuploidies. Numerous studies have shown that the fertility potential of older women is decreased by changes to the cellular composition of the follicles. Additionally, a unique method of cellular communication has been identified which involves the release of extracellular vesicles (EVs) in various body fluids including follicular fluid (FF). The changing composition of EVs especially non-coding RNAs, such as miRNAs has been documented across a broad range of cell types during aging. Accordingly, alterations of miRNA cargo within FF-derived EVs due to increased age may serve as a potential predictor of oocyte quality. In this review we examine the relationship between FF EV miRNAs and ovarian aging.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
61
|
Zhang CL, Zhang J, Tuersuntuoheti M, Chang Q, Liu S. Population structure, genetic diversity and prolificacy in pishan red sheep under an extreme desert environment. Front Genet 2023; 14:1092066. [PMID: 37113996 PMCID: PMC10126422 DOI: 10.3389/fgene.2023.1092066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Extreme environmental conditions are a major challenge for livestock production. Changes in climate conditions, especially those that lead to extreme weather, can reduce livestock production. The screening of genes and molecular markers is of great significance to explore the genetic mechanism of sheep prolificacy traits in Taklimakan Desert environment. We selected healthy adult Pishan Red Sheep (PRS) and Qira Black Sheep (QR) which live in Taklimakan Desert environment, collected blood from jugular vein, extracted DNA, and prepared Illumina Ovine SNP50 chip. For PRS, linkage disequilibrium (LD) was calculated using the ovine SNP50 Beadchip and the effective population size (Ne) was estimated using SMC++. The genetic characteristics of PRS were analyzed by integrated haplotype score (iHS) and fixation index (F ST ). The result showed that r 2 of PRS was 0.233 ± 0.280 in the range of 0-10 Kb and decreased with increasing distances. SMC++ tested that the Ne of PRS remained at 236.99 in recent generations. 184 genes were screened out under iHS 1% threshold, and 1148 genes were screened out with F ST under the 5% threshold, and 29 genes were obtained from the intersection of the two gene sets. In this study, the genetic characteristics of PRS and QR were compared by ovine genome chip, and the related excellent genes were searched, providing reference for the protection of sheep germplasm resources and molecular breeding in a desert environment.
Collapse
Affiliation(s)
- Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Jihu Zhang
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Mirenisa Tuersuntuoheti
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Qianqian Chang
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
- *Correspondence: Shudong Liu,
| |
Collapse
|
62
|
Bastos NM, Goulart RS, Bambil DB, Bridi A, Mazzarella R, Alves L, da Silva Rosa PM, Neto AL, Silva SL, de Almeida Santana MH, Negrão JA, Pugliesi G, Meirelles FV, Perecin F, da Silveira JC. High body energy reserve influences extracellular vesicles miRNA contents within the ovarian follicle. PLoS One 2023; 18:e0280195. [PMID: 36626404 PMCID: PMC9831338 DOI: 10.1371/journal.pone.0280195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Aiming to evaluate the effects of increased body energy reserve (BER) in Nellore cows' reproductive efficiency, cows were fed with different nutritional plans to obtain animals with high BER (HBER; Ad libitum diet) and moderate BER (MBER: cows fed 70% of HBER group ingestion). To evaluate the BER, cows were weekly weighted and evaluated for subcutaneous fat thickness and insulin serum concentration along the experimental period. At the end of the experimental period, animals were submitted to estrous synchronization and artificial insemination. Animals were slaughtered approximately 120 h after ovulation induction and the reproductive tracts were collected for embryo recovery and samples collection. Cumulus-oocyte-complexes (COC) and follicular fluid were collected from 3-6 mm in diameter ovarian follicles to perform miRNA analysis of cumulus cells (CC) and extracellular vesicles from follicular fluid (EV FF). As expected, differences were observed among MBER and HBER groups for body weight, fat thickness, and insulin serum concentration. HBER animals showed lower ovulation and embryo recovery rates compared to MBER animals. Different miRNAs were found among CC and EV FF within groups, suggesting that the BER may influence follicular communication. This suggests that small follicles (3-6 mm diameter) are already under BER effects, which may be greater on later stages of follicular development.
Collapse
Affiliation(s)
- Natália Marins Bastos
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rodrigo Silva Goulart
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Danilo Brito Bambil
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rosane Mazzarella
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Luana Alves
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Adomar Laurindo Neto
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Saulo Luz Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - João Alberto Negrão
- Department of Basic Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
63
|
Ho KT, Balboula AZ, Homma K, Takanari J, Bai H, Kawahara M, Thi Kim Nguyen K, Takahashi M. Synergistic effect of standardized extract of Asparagus officinalis stem and heat shock on progesterone synthesis with lipid droplets and mitochondrial function in bovine granulosa cells. J Steroid Biochem Mol Biol 2023; 225:106181. [PMID: 36150639 DOI: 10.1016/j.jsbmb.2022.106181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Progesterone (P4) is a well-known steroid hormone that plays a key role in oocyte growth and the maintenance of pregnancy in mammals, including cattle. Heat stress (HS) has an adverse effect on P4 synthesis through an imbalance in the cellular redox status. We have recently revealed that a standardized extract of Asparagus officinalis stem (EAS) increases P4 through non-HS induction of heat shock protein 70 (HSP70) and a synergistic increase of HSP70 by enhancing the intracellular redox balance, which was adversely affected by HS in bovine granulosa cells (GCs). Bovine GCs collected from bovine ovarian follicles were cultured at 38.5 °C and 41 °C for 12 h with or without 5 mg/mL EAS. After treatment, cells and culture suppernatant were collected for the analysis. Enzyme-linked immunosorbent assay (ELISA) was performed to detect in P4 levels. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) was used to detect expression of steroidogenesis related genes. Fluorescence staining was used to detect mitochondrial activity and lipid droplet. P4 level was increased by EAS treatment in association with increase in steroidogenic acute regulatory protein (STAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), mitochondrial membrane activity and lipid droplet both under non-HS and HS conditions. Notably, synergistic effect of EAS with HS co-treatment was observed to show a greater increase in P4 synthesis when comparison with EAS treatment under non-HS condition. Furthermore, inhibition of HSP70 significantly reduced EAS-induced P4 synthesis, mitochondrial activity and synthesis of lipid droplets. These results suggest that P4 synthesis by EAS is mediated by the steroidogenesis pathway via HSP70-regulated activation of STAR and 3β-HSD, together with improved mitochondrial activity and lipid metabolism in bovine GCs. Moreover, effect of EAS has a synergistic effect of with HSP70-regulated steroidogenesis pathway.
Collapse
Affiliation(s)
- Khoi Thieu Ho
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan; College of Agriculture, Can Tho University, Can Tho City, Viet Nam
| | | | - Kohei Homma
- AMINO UP Co. Ltd., Sapporo, Hokkaido 004-0839, Japan
| | - Jun Takanari
- AMINO UP Co. Ltd., Sapporo, Hokkaido 004-0839, Japan
| | - Hanako Bai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | | | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
64
|
Wu Z, Fang L, Liu B, Jia Q, Cheng JC, Sun YP. Biomarkers identification in follicular fluid of women with OHSS by using UPLC-MS method. Front Endocrinol (Lausanne) 2023; 14:1131771. [PMID: 36967756 PMCID: PMC10031058 DOI: 10.3389/fendo.2023.1131771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
To figure out the differentially changed metabolites and disturbed pathways in follicular fluid (FF) of patients with OHSS in comparison to the control group undergoing in vitro fertilization (IVF), we conducted this metabolomic analysis between two groups, the OHSS group included 30 patients treated with oocyte retrieval and developed OHSS in the next 7-14 days, while another 30 patients without OHSS tendency were selected as the control group. The FF samples were obtained during the process of oocyte retrieval. FF samples were analyzed using ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS). The results identified a total of 59 differentially changed metabolites, including 33 decreased metabolites (P < 0.01) and 26 increased metabolites (P < 0.01) in FF of OHSS compared with the control group. 12 metabolites could be the most valuable biomarkers for OHSS based on ROC results. Our correlation analyses showed that deoxyinosine levels were found positively correlated with serum estradiol (E2) levels in OHSS patients, while L-isoleucine, pyruvic acid, maleamate, and arachidonic acid were found to be positively correlated with the number of retrieved oocytes. Furthermore, 4-hydroxyphenylacetaldehyde, deoxycorticosterone, creatinine, and creatine were found to be negatively associated with serum E2 levels, while 4-hydroxyphenylacetaldehyde, L-carnitine, isovaleric acid and L-2-hydroxyglutaric acid were negatively related with the number of oocytes retrieved in OHSS patients. Taken together, our study provides better identification of OHSS FF metabolic dynamics, suggesting the metabolic compounds can be used as valuable predictors or treatment targets of OHSS.
Collapse
Affiliation(s)
| | - Lanlan Fang
- *Correspondence: Ying-Pu Sun, ; Lanlan Fang,
| | | | | | | | - Ying-Pu Sun
- *Correspondence: Ying-Pu Sun, ; Lanlan Fang,
| |
Collapse
|
65
|
Biswas A, Ng BH, Prabhakaran VS, Chan CJ. Squeezing the eggs to grow: The mechanobiology of mammalian folliculogenesis. Front Cell Dev Biol 2022; 10:1038107. [PMID: 36531957 PMCID: PMC9756970 DOI: 10.3389/fcell.2022.1038107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 08/25/2023] Open
Abstract
The formation of functional eggs (oocyte) in ovarian follicles is arguably one of the most important events in early mammalian development since the oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. While past studies have identified many genes that are critical to normal ovarian development and function, recent studies have highlighted the role of mechanical force in shaping folliculogenesis. In this review, we discuss the underlying mechanobiological principles and the force-generating cellular structures and extracellular matrix that control the various stages of follicle development. We also highlight emerging techniques that allow for the quantification of mechanical interactions and follicular dynamics during development, and propose new directions for future studies in the field. We hope this review will provide a timely and useful framework for future understanding of mechano-signalling pathways in reproductive biology and diseases.
Collapse
Affiliation(s)
- Arikta Biswas
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
66
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
67
|
Roos K, Rooda I, Keif RS, Liivrand M, Smolander OP, Salumets A, Velthut-Meikas A. Single-cell RNA-seq analysis and cell-cluster deconvolution of the human preovulatory follicular fluid cells provide insights into the pathophysiology of ovarian hyporesponse. Front Endocrinol (Lausanne) 2022; 13:945347. [PMID: 36339426 PMCID: PMC9635625 DOI: 10.3389/fendo.2022.945347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Reduction in responsiveness to gonadotropins or hyporesponsiveness may lead to the failure of in vitro fertilization (IVF), due to a low number of retrieved oocytes. The ovarian sensitivity index (OSI) is used to reflect the ovarian responsiveness to gonadotropin stimulation before IVF. Although introduced to clinical practice already years ago, its usefulness to predict clinical outcomes requires further research. Nevertheless, pathophysiological mechanisms of ovarian hyporesponse, along with advanced maternal age and in younger women, have not been fully elucidated. Follicles consist of multiple cell types responsible for a repertoire of biological processes including responding to pituitary gonadotropins necessary for follicle growth and oocyte maturation as well as ovulation. Encouraging evidence suggests that hyporesponse could be influenced by many contributing factors, therefore, investigating the variability of ovarian follicular cell types and their gene expression in hyporesponders is highly informative for increasing their prognosis for IVF live birth. Due to advancements in single-cell analysis technologies, the role of somatic cell populations in the development of infertility of ovarian etiology can be clarified. Here, somatic cells were collected from the fluid of preovulatory ovarian follicles of patients undergoing IVF, and RNA-seq was performed to study the associations between OSI and gene expression. We identified 12 molecular pathways differentially regulated between hypo- and normoresponder patient groups (FDR<0.05) from which extracellular matrix organization, post-translational protein phosphorylation, and regulation of Insulin-like Growth Factor (IGF) transport and uptake by IGF Binding Proteins were regulated age-independently. We then generated single-cell RNA-seq data from matching follicles revealing 14 distinct cell clusters. Using cell cluster-specific deconvolution from the bulk RNA-seq data of 18 IVF patients we integrated the datasets as a novel approach and discovered that the abundance of three cell clusters significantly varied between hypo- and normoresponder groups suggesting their role in contributing to the deviations from normal ovarian response to gonadotropin stimulation. Our work uncovers new information regarding the differences in the follicular gene expression between hypo- and normoresponders. In addition, the current study fills the gap in understanding the inter-patient variability of cell types in human preovulatory follicles, as revealed by single-cell analysis of follicular fluid cells.
Collapse
Affiliation(s)
- Kristine Roos
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Nova Vita Clinic AS, Tallinn, Estonia
| | - Ilmatar Rooda
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Robyn-Stefany Keif
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Maria Liivrand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
68
|
Paulino LRFM, Barroso PAA, Silva BR, Barroso LG, Barbalho EC, Bezerra FTG, Souza ALP, Monte APO, Silva AWB, Matos MHT, Silva JRV. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles. Domest Anim Endocrinol 2022; 81:106750. [PMID: 35870423 DOI: 10.1016/j.domaniend.2022.106750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the (1) expression of melatonin receptors types 1A/B (MTNR1A/B) in bovine ovaries and (2) the in vitro effects of melatonin on secondary follicle development, antrum formation, viability, and expression of messenger ribonucleic acid (mRNA) for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase-1 (GPX1) and peroxiredoxin 6 (PRDX6). The expression of MTNR1A/B in bovine ovarian follicles was demonstrated by immunohistochemistry. To choose the most effective concentration of melatonin on follicular growth and viability, isolated secondary follicles were cultured individually at 38.5°C, with 5% CO2 in air, for 18 d in TCM-199+ alone or supplemented with 10-11, 10-9, 10-7 or 10-5 M melatonin. Then, melatonin receptor antagonist, luzindole, was tested to further evaluate the mechanisms of actions of melatonin, that is, the follicles were cultured in control medium alone or supplemented with 10-7 M melatonin, 10 µM luzindole and both 10-7 M melatonin and 10 µM luzindole. Follicular growth, morphology and antrum formation were evaluated at days 6, 12 and 18. At the end of culture, viability of secondary follicles was analyzed by calcein-AM and ethidium homodimer-1, and the relative levels of mRNA for SOD, CAT, GPX1 and PRDX6 were evaluated by real time polymerase chain reaction. Immunohistochemistry results showed expression of MTNR1A/B in oocyte and granulosa cells of primordial, primary, secondary and antral follicles. Secondary follicles cultured in medium supplemented with melatonin at different concentrations had well preserved follicles after 18 d of culture. Furthermore, follicles cultured in presence of 10-7 M melatonin presented significantly higher diameters than those cultured in other treatments. The presence of melatonin receptor antagonist, luzindole, blocked the effects of melatonin on follicular growth and viability. In addition, follicles cultured in medium containing only melatonin had significantly higher rates of antrum formation. Follicles cultured in medium containing only melatonin had higher relative levels of mRNA for CAT, SOD and PRDX-6 than those cultured with both melatonin and luzindole. Follicles cultured with luzindole only or both melatonin and luzindole had lower relative levels of mRNA for PRDX6 and GPX1 than those cultured control medium. In conclusion, melatonin promotes growth of bovine secondary follicles through its membrane-coupled receptors, while luzindole blocks the effects of melatonin on follicle growth and reduces the expression of antioxidant enzymes in cultured follicles.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - L G Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A P O Monte
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - M H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil.
| |
Collapse
|
69
|
Zhao L, Pan Y, Wang M, Wang J, Wang Y, Han X, Wang J, Zhang T, Zhao T, He H, Cui Y, Yu S. Integrated analysis of the expression profiles of the lncRNA-miRNA-mRNA ceRNA network in granulosa and cumulus cells from yak ovaries. BMC Genomics 2022; 23:633. [PMID: 36057545 PMCID: PMC9441039 DOI: 10.1186/s12864-022-08848-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Growing oocytes acquire the ability to mature through two-way communication between gametes and surrounding somatic cumulus cells (CCs). Granulosa cells (GCs) support oocyte growth, regulate meiosis progression, and modulate global oocyte transcription activity. However, the proliferation and differentiation of the yak ovary in GCs and CCs remain unclear. To characterize the important roles of long non-coding RNA, (lncRNA), microRNA (miRNA), and messenger RNA (mRNA), whole-transcriptome analysis was performed. Real-time quantitative fluorescence PCR was performed to verify the selected RNA sequences. Results Important gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways related to differentiation and oocyte development were identified for the target genes of differentially expressed lncRNAs, miRNAs, and mRNAs. In total,6223 mRNAs (2197 upregulated, 4026 downregulated), 643 lncRNAs (204 upregulated, 479 downregulated), and 559 miRNAs (311 upregulated, 248 downregulated) were significantly altered between the two groups. Target genes involved in cell adhesion, cell differentiation, regulation of developmental processes, cell proliferation, embryo development, signal transduction, apoptosis, and aromatic compound biosynthetic processes were significantly enriched. These RNAs were involved in ECM-receptor interaction, MAPK signaling, Hippo signaling, PI3K-Akt signaling, cell cycle, cell adhesion, leukocyte trans-endothelial migration, and actin cytoskeleton regulation. Conclusions A comprehensive analysis of the co-expression network of competing endogenous RNAs (ceRNAs) will facilitate the understanding of the process of granulosa cell proliferation and differentiation and offer a theoretical basis for the development of oocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08848-3.
Collapse
Affiliation(s)
- Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junqian Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China. .,Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Lanzhou, 730070, China.
| |
Collapse
|
70
|
Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep 2022; 12:14886. [PMID: 36050481 PMCID: PMC9437019 DOI: 10.1038/s41598-022-18438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Michal Andrzej Kosior
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Natascia Cocchia
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Valentina Longobardi
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| | - Flavia Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, Via Einstein 1, 26900, Lodi, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche SCITEC-CNR, Milano, Italy
| | - Anna Lange Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, 20133, Lodi, Milano, Italy.
| | - Bianca Gasparrini
- Dipartimento di Medicina Veterinaria e Produzioni Animali (DMVPA), Università degli Studi di Napoli Federico II, Via F. Delpino 1, 80137, Napoli, Italy
| |
Collapse
|
71
|
Yuan C, Chen X, Shen C, Chen L, Zhao Y, Wang X, Cao M, Zhao Z, Chen T, Zhang B, Iqbal T, Li C, Zhou X. Follicular fluid exosomes regulate oxidative stress resistance, proliferation, and steroid synthesis in porcine theca cells. Theriogenology 2022; 194:75-82. [DOI: 10.1016/j.theriogenology.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
72
|
Wang W, Jiang Q, Niu Y, Ding Q, Yang X, Zheng Y, Hao J, Wei D. Proteomics and bioinformatics analysis of follicular fluid from patients with polycystic ovary syndrome. Front Mol Biosci 2022; 9:956406. [PMID: 36072434 PMCID: PMC9441494 DOI: 10.3389/fmolb.2022.956406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder with heterogeneous manifestations and complex etiology. We used quantitative proteomics analysis based on mass spectrometry to identify the differences in proteomics profiles for follicular fluid obtained from patients with or without PCOS and explore possible mechanisms underlying PCOS. Methods: Follicular fluid samples were collected from infertile patients with (n = 9) or without (n = 9) PCOS. Total protein was extracted, quantitatively labeled with a tandem mass tag (TMT), and analyzed using liquid chromatography-mass spectrometry (LC‐MS). TMT-based proteomics and bioinformatics analysis were used to determine the differentially expressed proteins (DEPs) and understand the protein networks. The analysis included protein annotation, unsupervised hierarchical clustering, functional classification, functional enrichment and clustering, and protein-protein interaction analysis. Selected DEPs were confirmed by ELISA, and correlation analysis was performed between these DEPs and the clinical characteristics. Results: In this study, we have identified 1,216 proteins, including 70 DEPs (32 upregulated proteins, 38 downregulated proteins). Bioinformatics analysis revealed that the inflammatory response, complement and coagulation cascades, activation of the immune response, lipid transport, and regulation of protein metabolic processes were co-enriched in patients with PCOS. Based on ELISA results, insulin-like growth factor binding protein 1 (IGFBP1) and apolipoprotein C2 (APOC2) were differentially expressed between patients with and without PCOS. Follicular IGFBP1 showed a positive correlation with the serum levels of high-density lipoprotein cholesterol (HDL-C) (r = 0.3046, p = 0.0419), but negatively correlated with the serum levels of anti-Müllerian hormone (AMH) (r = –0.2924, p = 0.0354) and triglycerides (r = –0.3177, p = 0.0246). Follicular APOC2 was negatively correlated with the serum apolipoprotein A1 (APOA1) levels (r = 0.4509, p = 0.0002). Conclusion: Our study identified DEPs in the follicular fluid of patients with PCOS. Inflammatory response, complement and coagulation cascades, activation of the immune response, lipid transport, and regulation of protein metabolic process were deregulated in PCOS, which may play essential roles in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Qi Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Qiaoqiao Ding
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Xiao Yang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yanjun Zheng
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Jing Hao, ; Daimin Wei,
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- *Correspondence: Jing Hao, ; Daimin Wei,
| |
Collapse
|
73
|
L-Carnitine Supports the In Vitro Growth of Buffalo Oocytes. Animals (Basel) 2022; 12:ani12151957. [PMID: 35953946 PMCID: PMC9367359 DOI: 10.3390/ani12151957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the effect of L-carnitine on the growth and subsequent nuclear maturation of buffalo small growing oocytes (92−108 µm in diameter) in vitro. Oocyte-granulosa cell complexes (OGCs) were dissected from early antral follicles of slaughtered buffaloes and cultured in in vitro growth (IVG) medium with the supplementation of different concentrations (0, 1.25, 1.875 or 2.5 mM) of L-carnitine for 6 days. The results revealed that L-carnitine increased the diameter of buffalo oocytes in vitro. The degeneration rate was significantly (p < 0.05) lower in 2.5 mM of L-carnitine-treated oocytes (10%) than others (55%, 45% and 32.5% in 0, 1.25 and 1.875 mM of L-carnitine-supplemented groups, respectively). The OGCs showed antrum-like structures significantly (p < 0.05) higher in the 2.5 mM of L-carnitine group (74.0%) than the 0- and 1.25-mM groups (34.6% and 38.1%, respectively). Furthermore, in vitro grown oocytes were placed in in vitro maturation (IVM) medium for 24 h to examine meiotic competence of in vitro grown oocytes with L-carnitine. The L-carnitine (1.875 and 2.5 mM) treated oocytes showed a higher rate of nuclear maturation up to the metaphase II (MII) stage and a lower rate of degeneration. In conclusion, L-carnitine enhances the growth, prevents degeneration, promotes the formation of antrum-like structures and supports nuclear maturation of buffalo oocytes in vitro.
Collapse
|
74
|
Adverse Effects of Fusarium Toxins in Ruminants: A Review of In Vivo and In Vitro Studies. DAIRY 2022. [DOI: 10.3390/dairy3030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With an increased knowledge of the mechanism of action of Fusarium mycotoxins, the concept that these substances are deleterious only for monogastric species is obsolete. Indeed, most mycotoxins can be converted into less toxic compounds by the rumen microflora from healthy animals. However, mycotoxin absorption and its conversion to more toxic metabolites, as well as their impact on the immune response and subsequently animal welfare, reproductive function, and milk quality during chronic exposure should not be neglected. Among the Fusarium mycotoxins, the most studied are deoxynivalenol (DON), zearalenone (ZEN), and fumonisins from the B class (FBs). It is remarkable that there is a paucity of in vivo research, with a low number of studies on nutrient digestibility and rumen function. Most of the in vitro studies are related to the reproductive function or are restricted to rumen incubation. When evaluating the production performance, milk yield is used as an evaluated parameter, but its quality for cheese production is often overlooked. In the present review, we summarize the most recent findings regarding the adverse effects of these mycotoxins with special attention to dairy cattle.
Collapse
|
75
|
Zhang G, Wang A, Zhuang L, Wang X, Song Z, Liang R, Ren M, Long M, Jia X, Li Z, Su S, Wang J, Zhang N, Shen G, Wang B. Enrichment of boron element in follicular fluid and its potential effect on the immune function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119147. [PMID: 35314206 DOI: 10.1016/j.envpol.2022.119147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The blood-follicle barrier (BFB) between the blood and follicular fluid (FF) can maintain the microenvironment balance of oocyte. Boron, an exogenous environmental trace element, has been found to possibly play an important role in oocyte maturation. This study aimed to examine the distribution characteristics of boron across the BFB and find the potential effect of boron on FF microenvironment. We analyzed the concentration of boron in paired FF and serum collected from 168 women undergoing in vitro fertilization and embryo transfer in Beijing City and Shandong Province, China. To explore the potential health impact of boron enrichment in oocyte maturation, a global proteomics analysis was conducted to tentatively correlate the protein levels with the boron enrichment. Interestingly, the results showed that the concentration of boron in FF (34.5 ng/mL) was significantly higher than that in serum (22.0 ng/mL), with a median concentration ratio of 1.52. Likewise, the concentrations of boron in FF and serum were positively correlated (r = 0.446), suggesting that boron concentration in serum can represent its concentration in follicular fluid to a large extent.. This is the first time to observe the enrichment of boron in the FF to our knowledge. It is interesting to observe a total of 13 proteins, which mainly belong to immunoglobulin class, were positively correlated with boron concentration in FF. We concluded that boron, as one environmental trace element, was enriched in FF from blood validated by two area in north china, which may be involved in an increased level of immune processes of immunoglobulins.
Collapse
Affiliation(s)
- Guohuan Zhang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Anni Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, 264000, China
| | - Xikai Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziyi Song
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Rong Liang
- Reproductive Medical Center, Peking University People's Hospital, Beijing, 100044, China
| | - Mengyuan Ren
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Manman Long
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaoqian Jia
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Shu Su
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiahao Wang
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, 100191, China
| | - Nan Zhang
- Gynecology Department, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Beijing, 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Bin Wang
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing, 100191, PR China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
76
|
Lundberg AL, Jaskiewicz NM, Maucieri AM, Townson DH. Stimulatory effects of TGFα in granulosa cells of bovine small antral follicles. J Anim Sci 2022; 100:6620783. [PMID: 35772748 DOI: 10.1093/jas/skac105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Intraovarian growth factors play a vital role in influencing the fate of ovarian follicles. They affect proliferation and apoptosis of granulosa cells (GC) and can influence whether small antral follicles continue their growth or undergo atresia. Transforming growth factor-alpha (TGFα), an oocyte-derived growth factor, is thought to regulate granulosa cell function; yet its investigation has been largely overshadowed by emerging interest in TGF-beta superfamily members, such as bone morphogenetic proteins (BMP) and anti-Mullerian hormone (AMH). Here, effects of TGFα on bovine GC proliferation, intracellular signaling, and cytokine-induced apoptosis were evaluated. Briefly, all small antral follicles (3-5 mm) from slaughterhouse specimens of bovine ovary pairs were aspirated and the cells were plated in T25 flasks containing DMEM/F12 medium, 10% FBS, and antibiotic-antimycotic, and incubated at 37 °C in 5% CO2 for 3 to 4 d. Once confluent, the cells were sub-cultured for experiments (in 96-, 12-, or 6-well plates) in serum-free conditions (DMEM/F12 medium with ITS). Exposure of the bGC to TGFα (10 or 100 ng/mL) for 24 h stimulated cell proliferation compared to control (P < 0.05; n = 7 ovary pairs). Proliferation was accompanied by a concomitant increase in mitogen-activated protein kinase (MAPK) signaling within 2 h of treatment, as evidenced by phosphorylated ERK1/2 expression (P < 0.05, n = 3 ovary pairs). These effects were entirely negated, however, by the MAPK inhibitor, U0126 (10uM, P < 0.05). Additionally, prior exposure of the bGC to TGFα (100 ng/mL) failed to prevent Fas Ligand (100 ng/mL)-induced apoptosis, as measured by caspase 3/7 activity (P < 0.05, n = 7 ovary pairs). Collectively, the results indicate TGFα stimulates proliferation of bGC from small antral follicles via a MAPK/ERK-mediated mechanism, but this action alone fails to prevent apoptosis, suggesting that TGFα may be incapable of promoting their persistence in follicles during the process of follicular selection/dominance.
Collapse
Affiliation(s)
| | - Nicole M Jaskiewicz
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Abigail M Maucieri
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
77
|
Sohel MMH, Hoelker M, Schellander K, Tesfaye D. The extent of the abundance of exosomal and non-exosomal extracellular miRNAs in the bovine follicular fluid. Reprod Domest Anim 2022; 57:1208-1217. [PMID: 35765751 DOI: 10.1111/rda.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 11/27/2022]
Abstract
Follicular fluid (FF) plays an important role during follicular development and it contains several bioactive molecules including extracellular microRNAs (ECmiRNAs) that may mediate cell-cell communication during follicular development. Yet, the distribution patterns of ECmiRNAs in FF is not well characterized. This study aims to investigate the distribution of ECmiRNAs in two major fractions, namely exosomal and non-exosomal, of bovine follicular fluid (bFF). Exosomal and non-exosomal fractions from bFF were separated using Exoquick™ exosomes precipitation kit. miRNA expression was evaluated using the human miRCURY LNA™ Universal RT miRNA PCR array system. Transmission electron microscopy and immunoblotting revealed that the isolated vesicles were exosomes. The real-time PCR-based expression analysis revealed that 516 miRNAs were detected in the exosomal fraction of bFF, while 393 miRNAs were detected in the non-exosomal fraction. Among the detected miRNAs, a total of 370 miRNAs were detected in both fractions, while 145 miRNAs and 23 miRNAs were solely detected in exosomal and non-exosomal fractions, respectively. Exploratory pathway analysis showed that the genes targeted by exosomal and non-exosomal miRNAs to be involved in MAPK, Wnt, FoxO, TGF-beta, Oxytocin, ErbB, PI3K-Akt, Neurotrophin signalling pathways which are believed to be involved in follicular development, cell proliferation, and meiotic resumption. The results of our study demonstrated that besides the exosomal fraction, non-exosomal fractions can carry a significant amount of miRNAs in bFF where the exosomal fraction carries a significantly higher number of detectable miRNAs.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh.,Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Michael Hoelker
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Biomedical Sciences, Animal Reproduction and Biotechnology Lab, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
78
|
Björvang RD, Hallberg I, Pikki A, Berglund L, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Olovsson M, Persson S, Holte J, Sjunnesson Y, Damdimopoulou P. Follicular fluid and blood levels of persistent organic pollutants and reproductive outcomes among women undergoing assisted reproductive technologies. ENVIRONMENTAL RESEARCH 2022; 208:112626. [PMID: 34973191 DOI: 10.1016/j.envres.2021.112626] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) are industrial chemicals resistant to degradation and have been shown to have adverse effects on reproductive health in wildlife and humans. Although regulations have reduced their levels, they are still ubiquitously present and pose a global concern. Here, we studied a cohort of 185 women aged 21-43 years with a median of 2 years of infertility who were seeking assisted reproductive technology (ART) treatment at the Carl von Linné Clinic in Uppsala, Sweden. We analyzed the levels of 9 organochlorine pesticides (OCPs), 10 polychlorinated biphenyls (PCBs), 3 polybrominated diphenyl ethers (PBDEs), and 8 perfluoroalkyl substances (PFASs) in the blood and follicular fluid (FF) samples collected during ovum pick-up. Impact of age on chemical transfer from blood to FF was analyzed. Associations of chemicals, both individually and as a mixture, to 10 ART endpoints were investigated using linear, logistic, and weighted quantile sum regression, adjusted for age, body mass index, parity, fatty fish intake and cause of infertility. Out of the 30 chemicals, 20 were detected in more than half of the blood samples and 15 in FF. Chemical transfer from blood to FF increased with age. Chemical groups in blood crossed the blood-follicle barrier at different rates: OCPs > PCBs > PFASs. Hexachlorobenzene, an OCP, was associated with lower anti-Müllerian hormone, clinical pregnancy, and live birth. PCBs and PFASs were associated with higher antral follicle count and ovarian response as measured by ovarian sensitivity index, but also with lower embryo quality. As a mixture, similar findings were seen for the sum of PCBs and PFASs. Our results suggest that age plays a role in the chemical transfer from blood to FF and that exposure to POPs significantly associates with ART outcomes. We strongly encourage further studies to elucidate the underlying mechanisms of reproductive effects of POPs in humans.
Collapse
Affiliation(s)
- Richelle D Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Ida Hallberg
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Anne Pikki
- Carl von Linnékliniken, 751 83 Uppsala, Sweden; Department of Women's and Children's Health, Uppsala University, 751 85 Uppsala, Sweden
| | - Lars Berglund
- School of Health and Welfare, Dalarna University, 791 88 Falun, Sweden; Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, 751 22 Uppsala, Sweden
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine and Department of Medicine, Karolinska Institutet, Huddinge, 141 52 Stockholm, Sweden; Medicine Unit Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Päivi Ruokojärvi
- Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, 223 61 Lund, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, 751 85 Uppsala, Sweden
| | - Sara Persson
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Jan Holte
- Carl von Linnékliniken, 751 83 Uppsala, Sweden; Department of Women's and Children's Health, Uppsala University, 751 85 Uppsala, Sweden
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
79
|
Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal 2022; 20:61. [PMID: 35534864 PMCID: PMC9082924 DOI: 10.1186/s12964-022-00876-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/02/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies. Methods and results In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways. Conclusions In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00876-6.
Collapse
|
80
|
Chen Y, Du S, Huang Z, Han L, Wang Q. HIF1 α is dispensable for oocyte development and female fertility in mice. PeerJ 2022; 10:e13370. [PMID: 35529504 PMCID: PMC9074875 DOI: 10.7717/peerj.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023] Open
Abstract
Background It has been thought that oocyte may develop in a low oxygen environment, as changes in follicle structure and formation of a fluid-filled antrum. The survival of hypoxic tissues is controlled by hypoxia-inducible factors (HIFs) that are activated in a low oxygen state. HIF1α is expressed in mature mouse oocytes and continues to be expressed after fertilization, from the 2-cell to blastocyst stage. However, the physiological roles of HIF pathway during oogenesis and embryogenesis have still not been elucidated in detail. Methods Mutant mice with oocyte-specific HIF1α deletion were generated by crossing Hif1α fl/fl mice with transgenic mice expressing Gdf9-promoter-mediated Cre recombinase. Breeding assay was carried out to detect female fertility. In vitro fertilization and embryo culture were used to assess early embryo development. Oocyte meiotic progression was also examined. Quantitative RT-PCR was used for analyzing of candidate genes expression. Results We successfully generated mutant mice with oocyte-specific deletion of HIF1α. Oocytes loss of HIF1α did not affect female fertility, ovulation and early embryo development. Moreover, oocytes can mature in vitro, and form well-organized spindle in the absence of HIF1α. In addition, pronounced differences in Hif2α and Hif3α mRNA expression were not observed in HIF1α-deleted oocytes. These results revealed that HIF pathway in oocytes is not essential for female fertility.
Collapse
Affiliation(s)
- Yujia Chen
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Siyu Du
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
81
|
In vitro- and in vivo-derived early antral follicles have comparable in vitro follicular growth and oocyte maturation rates in goats. Theriogenology 2022; 188:135-144. [DOI: 10.1016/j.theriogenology.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
82
|
Cumulus cell antioxidant system is modulated by patients' clinical characteristics and correlates with embryo development. J Assist Reprod Genet 2022; 39:1277-1295. [PMID: 35469374 DOI: 10.1007/s10815-022-02496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development. METHODS A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics. A total of 223 other human cumulus samples from previous studies were submitted to a gene expression meta-analysis. RESULTS The antioxidant system changes dramatically depending on patients' age, infertility diagnosis, stimulation protocol applied, and oocyte quality. SOD activity in cumulus cells revealed to be predictive of top-quality blastocysts for young patients with male factor infertility (P < 0.05), while GST levels were shown to be extremely influenced by infertility cause (P < 0.0001) and stimulation protocol applied (P < 0.05), but nonetheless, it can be used as a complementary tool for top-quality blastocyst prediction in patients submitted to intracytoplasmic sperm injection technique (ICSI) by male factor infertility (P < 0.05). CONCLUSION Through a simple and non-invasive analysis, the evaluation of redox enzymes in cumulus cells could be used to predict embryo development, in a personalized matter in specific patient groups, indicating top-quality oocytes and improving success rates in in vitro fertilization treatments. TRIAL REGISTRATION The trial was registered at UFRGS Research Ethics Committee and Plataforma Brasil under approval number 68081017.2.0000.5347 in June 6, 2019.
Collapse
|
83
|
Vaigauskaitė B, Baušytė R, Valatkaitė E, Skliutė G, Kazėnaitė E, Ramašauskaitė D, Navakauskienė R. Prognostic Gene Predictors of Gestational Diabetes in Endometrium and Follicular Fluid of Women after Infertility. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:498. [PMID: 35454338 PMCID: PMC9025034 DOI: 10.3390/medicina58040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Background and objectives. Gestational diabetes mellitus is an increasingly diagnosed metabolic disorder during pregnancy with unknown pathological pathways. Taking into account the growing numbers of women who are conceiving after assisted reproductive technologies, they comprise an engaging target group for gestational diabetes mellitus etiopathogenesis research. In terms of metabolism and genetics, as the evidence shows, both unexplained infertility and gestational diabetes mellitus pose challenges for their interpretation due to the complex bodily processes. Materials and Methods. Our study examined the expression of genes (IGF2, GRB10, CRTC2, HMGA2, ESR1, DLK1, SLC6A15, GPT2, PLAGL1) associated with glucose metabolism in unexplained infertility patients who conceived after in vitro fertilization procedure, were diagnosed with GDM and their findings were compared with control population. Results. There were no significant differences in gene expression of endometrium stromal cells between healthy pregnant women and women with gestational diabetes, although the significant downregulation of CRTC2 was observed in the follicular fluid of women with gestational diabetes mellitus. Moreover, expression of HMGA2 and ESR1 was significantly reduced in FF cells when compared to endometrial cells. Conclusions. These findings may indicate about the importance of follicular fluid as an indicator for gestational diabetes and should be explored more by further research.
Collapse
Affiliation(s)
- Brigita Vaigauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Raminta Baušytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
| | - Giedrė Skliutė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
| | - Edita Kazėnaitė
- Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Diana Ramašauskaitė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania;
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (R.B.); (E.V.); (G.S.); (R.N.)
| |
Collapse
|
84
|
Proteomic Alterations in Follicular Fluid of Human Small Antral Follicles Collected from Polycystic Ovaries—A Pilot Study. Life (Basel) 2022; 12:life12030391. [PMID: 35330141 PMCID: PMC8954146 DOI: 10.3390/life12030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3–11 mm in diameter, perturbing the dominant follicle’s selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6–9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence.
Collapse
|
85
|
Strączyńska P, Papis K, Morawiec E, Czerwiński M, Gajewski Z, Olejek A, Bednarska-Czerwińska A. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. Reprod Biol Endocrinol 2022; 20:37. [PMID: 35209923 PMCID: PMC8867761 DOI: 10.1186/s12958-022-00906-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/06/2022] [Indexed: 12/18/2022] Open
Abstract
In vitro fertilization (IVF) is currently one of the most effective methods of infertility treatment. An alternative to commonly used ovarian hyperstimulation can become extracorporeal maturation of oocytes (in vitro maturation; IVM). Fertilization and normal development of the embryo depends on the cytoplasmic, nuclear and genomic maturity of the oocyte. The microenvironment of the ovarian follicle and maternal signals, which mediate bidirectional communication between granulosa, cumulus and oocyte cells, influence the growth, maturation and acquisition of oocyte development capability. During oogenesis in mammals, the meiosis is inhibited in the oocyte at the prophase I of the meiotic division due to the high cAMP level. This level is maintained by the activity of C-type natriuretic peptide (CNP, NPPC) produced by granulosa cells. The CNP binds to the NPR2 receptor in cumulus cells and is responsible for the production of cyclic guanosine monophosphate (cGMP). The cGMP penetrating into the oocyte through gap junctions inhibits phosphodiesterase 3A (PDE3A), preventing cAMP hydrolysis responsible for low MPF activity. The LH surge during the reproductive cycle reduces the activity of the CNP/NPR2 complex, which results in a decrease in cGMP levels in cumulus cells and consequently in the oocyte. Reduced cGMP concentration unblocks the hydrolytic activity of PDE3A, which decreases cAMP level inside the oocyte. This leads to the activation of MPF and resumption of meiosis. The latest IVM methods called SPOM, NFSOM or CAPA IVM consist of two steps: prematuration and maturation itself. Taking into account the role of cAMP in inhibiting and then unblocking the maturation of oocytes, they have led to a significant progress in terms of the percentage of mature oocytes in vitro and the proportion of properly developed embryos in both animals and humans.
Collapse
Affiliation(s)
- Patrycja Strączyńska
- Department of Gynecology, Obstetrics and Oncological Gynecology in Bytom, Medical University of Silesia, Katowice, Poland
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- Gyncentrum Fertility Clinic, Katowice, Poland
| | - Krzysztof Papis
- Center for Translational Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
- nOvum Fertility Clinic, Warsaw, Poland.
| | - Emilia Morawiec
- Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | | | - Zdzisław Gajewski
- Center for Translational Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anita Olejek
- Department of Gynecology, Obstetrics and Oncological Gynecology in Bytom, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
86
|
Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol Reprod 2022; 106:351-365. [PMID: 34982142 PMCID: PMC8862720 DOI: 10.1093/biolre/ioab241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
The ovary is the first organ to age in humans with functional decline evident already in women in their early 30s. Reproductive aging is characterized by a decrease in oocyte quantity and quality, which is associated with an increase in infertility, spontaneous abortions, and birth defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid that directly surround the oocyte during its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic, epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality with age. We also review the limitations of published studies and highlight future research frontiers.
Collapse
Affiliation(s)
- Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
87
|
Xu X, Guan R, Gong K, Xie H, Shi L. Circ_FURIN knockdown assuages Testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:32. [PMID: 35177076 PMCID: PMC8851856 DOI: 10.1186/s12958-022-00891-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. The mechanism by which circular RNA (circRNA) drives PCOS development remains unclear. Thus, the study is designed to explore the role of a novel circRNA, circ_FURIN, in the PCOS cell model and the underlying mechanism. METHODS PCOS cell model was established by treating human ovarian granulosa-like tumor cells (KGN) with Testosterone (TTR). RNA expressions of circ_FURIN, microRNA-423-5p (miR-423-5p) and myotubularin 1 (MTM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was checked by Western blot. Cell proliferation was investigated by a 5-Ethynyl-29-deoxyuridine assay, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis for cell cycle. Apoptotic cells were quantified by flow cytometry analysis for cell apoptosis. The interplay between miR-423-5p and circ_FURIN or MTM1 was identified by dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_FURIN and MTM1 expressions were significantly upregulated, whereas miR-423-5p was downregulated in the ovarian cortex tissues of PCOS patients and TTR-treated KGN cells compared with controls. Circ_FURIN depletion relieved TTR-induced proliferation inhibition and apoptosis promotion. Besides, knockdown of miR-423-5p, a target miRNA of circ_FURIN, rescued circ_FURIN knockdown-mediated effects under TTR treatment. MiR-423-5p remitted TTR-induced cell disorders by binding to MTM1. Moreover, circ_FURIN modulated MTM1 expression through miR-423-5p. CONCLUSION Circ_FURIN silencing protected against TTR-induced dysfunction by the miR-423-5p/MTM1 pathway in human ovarian granulosa-like tumor cells.
Collapse
Affiliation(s)
- Xia Xu
- Department of Obstetrical, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Rui Guan
- Department of Gynaecology, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Ke Gong
- Department of Obstetrical, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Huaibing Xie
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Qingjiangpu District, Huai'an City, No.62, Huaihai South Road, 223001, Jiangsu Province, China.
| | - Lei Shi
- Department of Obstetrics and Gynecology, Hongze Huai'an District People's Hospital, Hongze District, Huai'an City, No.102 Dongfeng Road, 223001, Jiangsu Province, China.
| |
Collapse
|
88
|
Differential proteomic analysis demonstrates follicle fluid participate immune reaction and protein translation in yak. BMC Vet Res 2022; 18:34. [PMID: 35031034 PMCID: PMC8758897 DOI: 10.1186/s12917-021-03097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. Results The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. Conclusions The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03097-0.
Collapse
|
89
|
MORIKAWA R, KYOGOKU H, LEE J, MIYANO T. Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells <i>in vitro</i>. J Reprod Dev 2022; 68:238-245. [PMID: 35491090 PMCID: PMC9334317 DOI: 10.1262/jrd.2022-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9)
and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte–cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles
(1.2–1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0–100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium
without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent
manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by
8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate
their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from
oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.
Collapse
Affiliation(s)
- Riho MORIKAWA
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirohisa KYOGOKU
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak LEE
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi MIYANO
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
90
|
Carvalheira LDR, Santos GBD, Jasmim, Guimarães CR, Campos MM, Machado FS, Pedroso AM, Silva TED, Nogueira LAG, Rodrigues ALR, Carvalho BCD. Diet crude protein reduction on follicular fluid and cumulus-oocyte complexes of mid-lactating Girolando cows. Anim Reprod 2022; 19:e20210088. [PMID: 36156883 PMCID: PMC9484397 DOI: 10.1590/1984-3143-ar2021-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | - Jasmim
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Zhou W, Zhang T, Lian Y, Zhang W, Yang M, Li Y, Wang L, Yan X. Exosomal lncRNA and mRNA profiles in polycystic ovary syndrome: bioinformatic analysis reveals disease-related networks. Reprod Biomed Online 2022; 44:777-790. [DOI: 10.1016/j.rbmo.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/05/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
|
92
|
Nagyová E, Němcová L, Camaioni A. Cumulus Extracellular Matrix Is an Important Part of Oocyte Microenvironment in Ovarian Follicles: Its Remodeling and Proteolytic Degradation. Int J Mol Sci 2021; 23:54. [PMID: 35008478 PMCID: PMC8744823 DOI: 10.3390/ijms23010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an essential structure with biological activities. It has been shown that the ECM influences gene expression via cytoskeletal components and the gene expression is dependent upon cell interactions with molecules and hormones. The development of ovarian follicles is a hormone dependent process. The surge in the luteinizing hormone triggers ovulatory changes in oocyte microenvironment. In this review, we discuss how proteolytic cleavage affects formation of cumulus ECM following hormonal stimulation; in particular, how the specific proteasome inhibitor MG132 affects gonadotropin-induced cytoskeletal structure, the organization of cumulus ECM, steroidogenesis, and nuclear maturation. We found that after the inhibition of proteolytic cleavage, gonadotropin-stimulated oocyte-cumulus complexes (OCCs) were without any signs of cumulus expansion; they remained compact with preserved cytoskeletal F-actin-rich transzonal projections through the oocyte investments. Concomitantly, a significant decrease was detected in progesterone secretion and in the expression of gonadotropin-stimulated cumulus expansion-related transcripts, such as HAS2 and TNFAIP6. In agreement, the covalent binding between hyaluronan and the heavy chains of serum-derived the inter-alpha-trypsin inhibitor, essential for the organization of cumulus ECM, was missing.
Collapse
Affiliation(s)
- Eva Nagyová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic;
| | - Lucie Němcová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic;
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpelier 1, 00133 Rome, Italy;
| |
Collapse
|
93
|
Wischral A, Pastorello M, Gastal MO, Beg MA, Gastal EL. Hemodynamic, endocrine, and gene expression mechanisms regulating equine ovarian follicular and cellular development. Mol Reprod Dev 2021; 89:23-38. [PMID: 34911155 DOI: 10.1002/mrd.23549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/09/2022]
Abstract
Ovulatory follicle development and associated oocyte maturation involve complex coordinated molecular and cellular mechanisms not yet fully understood. This study addresses the relationships among follicle diameter, follicle wall blood flow, follicular-fluid factors, and gene expression for follicle growth, steroidogenesis, angiogenesis, and apoptosis in granulosa/cumulus cells and oocytes during different stages from the beginning of largest/ovulatory follicle to impending ovulation in mares. The most remarkable findings were (i) a positive association between follicle development, follicle blood flow, intrafollicular follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, and messenger RNA (mRNA) expression for FSHR and LHCGR in granulosa cells of the largest/ovulatory follicle; (ii) a plateau or decrease in follicle diameter and blood flow and granulosa cell mRNA for FSHR, LHCGR, IGF1R, VEGFR2, CYP19A1, and CASP3 at the preovulatory stage; (iii) higher StAR and BCL2 and lower CASP3 mRNA in granulosa cells at the time of impending ovulation; (iv) greater IGF1R mRNA for granulosa cells at the predeviation stage; and (v) lower FSHR, LHCGR, IGF1R, and VEGFR2 mRNA in cumulus cells and greater LHCGR and IGF1R mRNA in oocytes at the ovulatory stage. This study is a critical advance in the understanding of molecular mechanisms of follicle development and oocyte maturation and is expected to be vital for future studies targeting potential markers.
Collapse
Affiliation(s)
- Aurea Wischral
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA.,Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Marilia Pastorello
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
94
|
Azzam M, Hamood A, Abdulkadim H. Cell-free DNA in Human Follicular Fluid as Biomarker for Intracytoplasmic Sperm Injection Procedure Outcome. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Follicular fluid considered as an important microenvironment for oocyte development, cell free-DNA (cfDNA) fragments that are found in this fluid and are released from cell apoptosis and/or necrosis, aimed to quantified the level of cf-DNA, in the follicular fluid and to assess any relation between the level of cf-DNA in this fluid with women’s age, duration of infertility, cause of infertility, her ovarian reserve values. Methods: Eighty-nine women were prospectively included in this study FF cf-DNA which was determined by conventional real time PCR-syber green detection approach which quantified by ALU-specific primers. Results: cell-free DNA (cfDNA) level in Follicular fluid samples of Iraqi women level was; cfDNA (Mean±SD, 0.916±0.106 ng/μl). there was no significant relation between cfDNA and pregnancy outcome, but very low level and very high level cf DNA were related to negative pregnancy outcome, cfDNA was second most important predictive factor of pregnancy outcome after fertilization rate, but both not statistically significant p value was (0.622 and 0.241) respectively. Conclusion: current study notice that cfDNA in the follicular fluid may mainly reflect the cellular activity and the balance between programed apoptosis and cell necrosis.
Collapse
|
95
|
Javadi M, Soleimani Rad J, Pashaiasl M, Farashah MSG, Roshangar L. The effects of plasma-derived extracellular vesicles on cumulus expansion and oocyte maturation in mice. Reprod Biol 2021; 22:100593. [PMID: 34906824 DOI: 10.1016/j.repbio.2021.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/31/2022]
Abstract
Cumulus cell expansion is required for the ovulation of a fertilizable oocyte. Extracellular vesicles (EVs) are bilayer-lipid membrane vesicles that may be found in a variety of bodily fluids and play an important role in biological processes. This study aimed to examine the effects of plasma-derived EVs on cumulus expansion and in vitro maturation (IVM) of the oocyte. EVswere isolated using ultracentrifugation from the plasma of female mice. The morphology and size of EVs were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Western blotting allowed us to identify CD63, CD81, CD9, and HSP70 protein markers of EVs; the expression of the genes related to cumulus cell expansion, including hyaluronan synthase 2 (Has2) and prostaglandinendoperoxide synthase 2 (Ptgs2), were assessed using real-time polymerase chain reaction. Plasma-derived EVs labeled with Dil dye were successfully incorporated with cumulus cells during IVM. Plasma-derived EVs significantly induced cumulus expansion and maturation of oocytes. The percentage of oocytes that reached the MII stage was significantly greater in the EVs treatment group compared with other groups. Although treatment with epidermal growth factor (EGF) significantly increased cumulus expansion in cumulus-oocyte complexes (COCs), the impact was less than that seen with plasma-derived EVs. Furthermore, EVs generated from plasma substantially enhanced Has2 and Ptgs2 mRNA expression in the cumulus-oocyte complex. This research indicates that EVs derived from plasma are capable of promoting cumulus expansion and oocyte maturation.
Collapse
Affiliation(s)
- Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
96
|
Gysin T, Kowalewski MP. The involvement of hypoxia-inducible factor 1α (HIF1α)-stabilising factors in steroidogenic acute regulatory (STAR) protein-dependent steroidogenesis in murine KK1 granulosa cells in vitro. Reprod Fertil Dev 2021; 33:865-880. [PMID: 34871543 DOI: 10.1071/rd21170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
As a component of hypoxia-inducible factor1 (HIF1)-complexes, HIF1α regulates the expression of steroidogenic acute regulatory (STAR) protein in granulosa cells. However, severe hypoxia or exaggeratedly expressed HIF1α have detrimental effects. HIF1α is regulated by factor inhibiting HIF (FIH), prolyl hydroxylases (PHD1, 2, 3) and von Hippel-Lindau (VHL) suppressor protein. In this study, the expression of FIH, PHD1, 2, 3 and VHL was investigated in murine ovaries and immortalised KK1 granulosa cells. We found FIH, VHL and PHD2 transcripts predominantly in growing tertiary follicles. Functional aspects were assessed in KK1 cells exposed to decreasing O2 (20%, 10%, 1%), by determining HIF1α, FIH, VHL, PHD1-3 and STAR expression. The main findings indicated gradually increasing PHD2 under lowered O2. Functional blocking of PHDs revealed biphasic effects on STAR expression; concomitantly with increasing HIF1α, STAR expression, which was initially induced, decreased significantly when HIF1α was strongly stabilised. Finally, PHD2 in particular might act as a specific regulator of HIF1α and, thereby, of STAR availability in granulosa cells.
Collapse
Affiliation(s)
- Tina Gysin
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich CH-8057, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Zurich CH-8057, Switzerland
| |
Collapse
|
97
|
Huang P, Du S, Lin Y, Huang Z, Li H, Chen G, Chen S, Chen Q, Da L, Shi H, Wei W, Yang L, Sun Y, Zheng B. Identification of Three Potential circRNA Biomarkers of Polycystic Ovary Syndrome by Bioinformatics Analysis and Validation. Int J Gen Med 2021; 14:5959-5968. [PMID: 34588800 PMCID: PMC8473987 DOI: 10.2147/ijgm.s324126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Objective It is well known that circRNAs are closely involved in the progression of various diseases. However, their functions and potential regulatory mechanisms in polycystic ovary syndrome (PCOS) remain largely unknown. In the present study, our aim was to investigate the potential diagnostic value of circRNAs in PCOS. Methods The circRNA dataset GSE145296, mRNA dataset GSE155489 and miRNA GSE138572 were downloaded from Gene Expression Omnibus (GEO) database. Then, differentially expressed genes (DEGs) were identified. Based on the potential interactions, a network of cirRNA-related competing endogenous RNAs (ceRNAs) was constructed. Biological functions were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. For further validation, qRT-PCR method was used to detect the expression level of the candidate circRNAs. Then, receiver operating characteristics (ROC) were constructed to evaluate the diagnostic value of the three differentially expressed circRNA (DE-circRNA). Results We constructed a network of cirRNA-related ceRNA network. Hsa_circ_0075691, hsa_circ_0075692 and hsa_circ_0085997 were validate to be dysregulated in PCOS. Conclusion Hsa_circ_0075691, hsa_circ_0075692 and hsa_circ_0085997 may be potential diagnostic biomarkers of PCOS, but their specific regulatory mechanisms still need to be further studied.
Collapse
Affiliation(s)
- Pengyu Huang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Shengrong Du
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yunhong Lin
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Zhiqing Huang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Haiyan Li
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Gangxin Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Suzhu Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Qingfen Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Lincui Da
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Hang Shi
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Wei Wei
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Lei Yang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yan Sun
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Beihong Zheng
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, People's Republic of China
| |
Collapse
|
98
|
Lee S, Kang HG, Ryou C, Cheon YP. Spatiotemporal expression of aquaporin 9 is critical for the antral growth of mouse ovarian follicles†. Biol Reprod 2021; 103:828-839. [PMID: 32577722 DOI: 10.1093/biolre/ioaa108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Although a few aquaporins (AQPs) expressed in granulosa cells have been postulated to mediate fluid passage into the antrum, the specific expression of AQPs in different follicle cell types and stages and their roles have not been evaluated extensively. The spatiotemporal expression of aquaporin (Aqp) 7, 8, and 9 and the functional roles of Aqp9 in antral growth and ovulation were examined using a superovulation model and 3-dimensional follicle culture. Aqp9 was expressed at a high level in the rapid growth phase (24-48 h post equine chorionic gonadotropin (eCG) for superovulation induction) compared to Aqp7 (after human chorionic gonadotropin (hCG)) and Aqp8 (8-24 h post eCG and 24 h post hCG). A dramatic increase in the expression and localization of Aqp9 mRNA in theca cells was observed, as evaluated using quantitative reverse transcription-polymerase (RT-PCR) coupled with laser capture microdissection and immunohistochemistry. AQP9 was located primarily on the theca cells of the tertiary and preovulatory follicles but not on the ovulated follicles. In phloretin-treated mice, the diameter of the preovulatory follicles and the number of ovulated oocytes decreased. Consistent with these findings, knocking down Aqp9 expression with an Aqp9 siRNA inhibited follicle growth (0.28:1 = siRNA:control) and decreased the number of ovulated follicles (0.36:1 = siRNA:control) during in vitro growth and ovulation induction. Based on these results, the expression of AQPs is under the control of the physiological status, and AQP9 expression in theca during folliculogenesis is required for antral growth and ovulation in a tissue-specific and stage-dependent manner.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Biotechnology, Sungshin University, Seoul, Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Engineering and Institute of Pharmaceutical Science and Technology, Eulji University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Yong-Pil Cheon
- Department of Biotechnology, Sungshin University, Seoul, Korea
| |
Collapse
|
99
|
Hopkins TIR, Bemmer VL, Franks S, Dunlop C, Hardy K, Dunlop IE. Micromechanical mapping of the intact ovary interior reveals contrasting mechanical roles for follicles and stroma. Biomaterials 2021; 277:121099. [PMID: 34537501 DOI: 10.1016/j.biomaterials.2021.121099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Follicle development in the ovary must be tightly regulated to ensure cyclical release of oocytes (ovulation). Disruption of this process is a common cause of infertility, for example via polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Recent ex vivo studies suggest that follicle growth is mechanically regulated, however, crucially, the actual mechanical properties of the follicle microenvironment have remained unknown. Here we use atomic force microscopy (AFM) spherical probe indentation to map and quantify the mechanical microenvironment in the mouse ovary, at high resolution and across the entire width of the intact (bisected) ovarian interior. Averaging over the entire organ, we find the ovary to be a fairly soft tissue comparable to fat or kidney (mean Young's Modulus 3.3±2.5 kPa). This average, however, conceals substantial spatial variations, with the overall range of tissue stiffnesses from c. 0.5-10 kPa, challenging the concept that a single Young's Modulus can effectively summarize this complex organ. Considering the internal architecture of the ovary, we find that stiffness is low at the edge and centre which are dominated by stromal tissue, and highest in an intermediate zone that is dominated by large developmentally-advanced follicles, confirmed by comparison with immunohistology images. These results suggest that large follicles are mechanically dominant structures in the ovary, contrasting with previous expectations that collagen-rich stroma would dominate. Extending our study to the highest resolutions (c. 5 μm) showed substantial mechanical variations within the larger zones, even over very short (sub-100 μm) lengths, and especially within the stiffer regions of the ovary. Taken together, our results provide a new, physiologically accurate, framework for ovarian biomechanics and follicle tissue engineering.
Collapse
Affiliation(s)
- Thomas I R Hopkins
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK; Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Victoria L Bemmer
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Carina Dunlop
- Department of Mathematics, University of Surrey, GU2 7XH, UK
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| | - Iain E Dunlop
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
100
|
Tomaszewski CE, DiLillo KM, Baker BM, Arnold KB, Shikanov A. Sequestered cell-secreted extracellular matrix proteins improve murine folliculogenesis and oocyte maturation for fertility preservation. Acta Biomater 2021; 132:313-324. [PMID: 33766798 DOI: 10.1016/j.actbio.2021.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Synthetic matrices offer a high degree of control and tunability for mimicking extracellular matrix functions of native tissue, allowing the study of disease and development in vitro. In this study, we functionalized degradable poly(ethylene glycol) hydrogels with extracellular matrix (ECM)-sequestering peptides aiming to recapitulate the native ECM composition for culture and maturation of ovarian follicular organoids. We hypothesized that ECM-sequestering peptides would facilitate deposition and retention of cell-secreted ECM molecules, thereby recreating cell-matrix interactions in otherwise bioinert PEG hydrogels. Specifically, heparin-binding peptide from antithrombin III (HBP), heparan sulfate binding peptide derived from laminin (AG73), basement membrane binder peptide (BMB), and heparan sulfate binding region of placental growth factor 2 (RRR) tethered to a PEG hydrogel significantly improved follicle survival, growth and maturation compared to PEG-Cys, a mechanically similar but biologically inert control. Immunohistochemical analysis of the hydrogel surrounding cultured follicles confirmed sequestration and retention of laminin, collagen I, perlecan, and fibronectin in ECM-sequestering hydrogels but not in bioinert PEG-Cys hydrogels. The media from follicles cultured in PEG-AG73, PEG-BMB, and PEG-RRR also had significantly higher concentrations of factors known to regulate follicle development compared to PEG-Cys. PEG-AG73 and PEG-BMB were the most beneficial for promoting follicle maturation, likely because AG73 and BMB mimic basement membrane interactions which are crucial for follicle development. Here we have shown that functionalizing PEG with ECM-sequestering peptides allows cell-secreted ECM to be retained within the hydrogels, restoring critical cell-matrix interactions and promoting healthy organoid development in a fully synthetic culture system. STATEMENT OF SIGNIFICANCE: Here we present a novel approach for sequestering and retaining cell-secreted extracellular matrix in a fully synthetic material for organoid culture. We have engineered a biomimetic poly(ethylene glycol) hydrogel functionalized with extracellular matrix-binding peptides to recapitulate the ovarian microenvironment. Incorporation of these peptides allows ovarian follicles to recreate their native matrix with the sequestered ECM that subsequently binds growth factors, facilitating follicle maturation. The novel design resulted in improved outcomes of folliculogenesis, potentially developing a fertility preservation option for young women undergoing sterilizing treatments for cancer. The fully synthetic and modular nature of this biomimetic material holds promise for other tissue engineering applications as it allows encapsulated cells to rebuild their native microenvironments in vitro.
Collapse
Affiliation(s)
- Claire E Tomaszewski
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Katarina M DiLillo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|