51
|
Gründker C, Völker P, Emons G. Antiproliferative signaling of luteinizing hormone-releasing hormone in human endometrial and ovarian cancer cells through G protein alpha(I)-mediated activation of phosphotyrosine phosphatase. Endocrinology 2001; 142:2369-80. [PMID: 11356684 DOI: 10.1210/endo.142.6.8190] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The signaling pathway through which LHRH acts in endometrial and ovarian cancers is distinct from that in the anterior pituitary. The LHRH receptor interacts with the mitogenic signal transduction of growth factor receptors, resulting in down-regulation of expression of c-fos and proliferation. Only limited data are available on the cross-talk between LHRH receptor signaling and inhibition of mitogenic signal transduction. The present experiments were performed to analyze in endometrial and ovarian cancer cells: 1) whether mutations or splice variants of the LHRH receptor are responsible for differences in LHRH signaling, 2) the coupling of G protein subtypes to LHRH receptor, 3) the phosphotyrosine phosphatase (PTP) activation counteracting growth factor receptor tyrosine kinase activity. For these studies, the well characterized human Ishikawa and Hec-1A endometrial cancer cell lines and human EFO-21 and EFO-27 ovarian cancer cell lines were used, which express LHRH and its receptor. 1) Sequencing of the complementary DNA of the LHRH receptor from position 31 to position 1204, covering the complete coding region (position 56 to position 1042) showed that there are neither mutations nor splice variants of the LHRH receptor transcript in Ishikawa and Hec-1A endometrial cancer cells or in EFO-21 and EFO-27 ovarian cancer cells. 2) All analyzed cell lines except for the ovarian cancer cell line EFO-27 expressed both G proteins, alpha(i) and alpha(q), as shown by RT-PCR and Western blotting. In the EFO-27 cell line only G protein alpha(i), not G protein alpha(q), expression was found. Cross-linking experiments using disuccinimidyl suberate revealed that in the cell lines expressing G protein alpha(i) and G protein alpha(q), both G proteins coupled to the LHRH receptor. Inhibition of epidermal growth factor (EGF)-induced c-fos expression by LHRH, however, was mediated through pertussis toxin (PTX)-sensitive G protein alpha(i). Moreover, LHRH substantially antagonized the PTX-catalyzed ADP-ribosylation of G protein alpha(i). 3) Using a phosphotyrosine phosphatase assay based on molybdate-malachite green, treatment of quiescent EFO-21 and EFO-27 ovarian cancer cells and quiescent Ishikawa and Hec-1A endometrial cancer cells with 100 nM of the LHRH agonist triptorelin resulted in a 4-fold increase in PTP activity (P < 0.001). This effect was completely blocked by simultaneous treatment with PTX, supporting the concept of mediation through G protein alpha(i). As shown by quantitative Western blotting, EGF-induced tyrosine autophosphorylation of EGF receptors was reduced 45-63% after LHRH (100 nM) treatment (P < 0.001). This effect was completely blocked using the PTP inhibitor vanadate (P < 0.001). These results demonstrate that mutations or splice variants of the LHRH receptor in human endometrial and ovarian cancer cells are not responsible for the different signal transduction compared with that in pituitary gonadotrophs. We provide evidence that the tumor LHRH receptor couples to multiple G proteins, but the antiproliferative signal transduction is mediated through the PTX-sensitive G protein alpha(i). The tumor LHRH receptor activates a PTP counteracting EGF-induced tyrosine autophosphorylation of EGF receptor, resulting in down-regulation of mitogenic signal transduction and cell proliferation.
Collapse
Affiliation(s)
- C Gründker
- Department of Gynecology and Obstetrics, Georg August University, D-37070 Gottingen, Germany
| | | | | |
Collapse
|
52
|
Affiliation(s)
- J D Jacobson
- Section of Endocrinology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
53
|
Roumy M, Zajac JM. Neuropeptide FF receptors couple to a cholera toxin-sensitive G-protein in rat dorsal raphe neurones. Eur J Pharmacol 2001; 417:45-9. [PMID: 11301058 DOI: 10.1016/s0014-2999(01)00896-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In rat dorsal raphe neurones, nociceptin (300 nM) reduced the peak [Ca(2+)](i) transient, triggered by depolarization, by 36.7+/-1.8% (n=46). This effect of nociceptin decreased to 16.7+/-2.9% (n=18) after pre-treatment of the neurones with pertussis toxin (5 microg/ml, 2-6 h) but was unchanged (37.4+/-2.1%, n=44) after pre-incubation with cholera toxin (5 microg/ml, 2-6 h). This suggests that, in dorsal raphe neurones, the ORL1 receptor couples to inhibitory (G(i/o)) G-proteins. The neuropeptide FF analogue, [D-Tyr1, (N-Me)Phe(3)]neuropeptide FF (10, 100, 1000 nM), acted as an anti-opioid and reduced the effect of nociceptin (300 nM, 30 s) by 62.0+/-3.3% (n=28). Following pre-incubation with cholera toxin (5 microg/ml, 2-6 h) [D-Tyr1, (N-Me)Phe3] neuropeptide FF was unable, at the three concentrations tested, to block nociceptin activity. We conclude that, in rat dorsal raphe neurones, neuropeptide FF receptors couple to stimulatory G-proteins (Gs).
Collapse
Affiliation(s)
- M Roumy
- Institut de Pharmacologie et de Biologie Structurale, C.N.R.S. UMR 5089, 205 Route de Narbonne, 31077 Cedex, Toulouse, France.
| | | |
Collapse
|
54
|
Abstract
Heterotrimeric G protein alpha,beta, and gamma subunits are subject to several kinds of co- and post-translational covalent modifications. Among those relevant to G protein-coupled receptor signaling in normal cell function are lipid modifications and phosphorylation. N-myristoylation is a co-translational modification occurring for members of the G(i) family of Galpha subunits, while palmitoylation is a post-translational modification that occurs for these and most other Galpha subunits. One or both modifications are required for plasma membrane targeting and contribute to regulating strength of interaction with the Gbetagamma heterodimer, effectors, and regulators of G protein signaling (RGS proteins). Galpha subunits, including those with transforming activity, are often inactive when unable to be modified with lipids. The reversible nature of palmitoylation is intriguing in this regard, as it lends itself to a regulation integrated with the activation state of the G protein. Several Galpha subunits are substrates for phosphorylation by protein kinase C and at least one is a substrate for phosphorylation by the p21-activated protein kinase. Phosphorylation in both instances inhibits the interactions of these subunits with the Gbetagamma heterodimer and RGS proteins. Several Galpha subunits are also substrates for tyrosine phosphorylation. A Ggamma subunit is phosphorylated by protein kinase C, with the consequence that it interacts more tightly with a Galpha subunit but less well with an effector.
Collapse
Affiliation(s)
- C A Chen
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
55
|
Kang SK, Tai CJ, Nathwani PS, Choi KC, Leung PC. Stimulation of mitogen-activated protein kinase by gonadotropin-releasing hormone in human granulosa-luteal cells. Endocrinology 2001; 142:671-9. [PMID: 11159838 DOI: 10.1210/endo.142.2.7960] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study investigated the activation of mitogen-activated protein kinases (MAPKs) by a GnRH agonist (GnRHa) in human granulosa-luteal cells (hGLCs). The phosphorylation state of p44 and p42 MAPK was examined using antibodies that distinguish phospho-p44/42 MAPK (Thr(202)/Tyr(204)) from total p44/42 MAPK (activated plus inactivated). Activation of MAPK by GnRHa was observed within 5 min and was sustained for 60 min after treatment. GnRHa stimulated MAPK activation in a dose-dependent manner, with maximum stimulation (6.7-fold over basal levels) at 10(-7) M. Pretreatment with a protein kinase C (PKC) inhibitor, GF109203X, completely blocked GnRHa-induced MAPK activation. In addition, pretreatment with a PKC activator, phorbol-12-myristate 13-acetate, potentiated GnRH-induced MAPK activation. These results indicate that GnRHa stimulates MAPK activation through a PKC-dependent pathway in hGLCs, possibly coupled to G(q)alpha protein. MAPK activation was also observed in response to 8-bromo-cAMP or cholera toxin, but not pertussis toxin. Forskolin (50 microM) substantially stimulated a rapid cAMP accumulation, whereas GnRHa (10(-7) M) or pertussis toxin (100 mg/ml) did not affect basal intracellular cAMP levels. Cotreatment of GnRHa (10(-7) M) did not attenuate forskolin- or hCG-stimulated cAMP accumulation. These results suggest that the GnRH receptor is probably not coupled to G(s)alpha or G(i)alpha in hGLCs. Finally, GnRHa (10(-7) M) stimulated a significant increase in Elk-1 phosphorylation and c-fos messenger RNA expression, as revealed by an in vitro kinase assay and Northern blot analysis, respectively. These results clearly demonstrate that GnRH activates the MAPK cascade through a PKC-dependent pathway in the human ovary.
Collapse
Affiliation(s)
- S K Kang
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | | | |
Collapse
|
56
|
Kang SK, Tai CJ, Nathwani PS, Leung PC. Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid in human granulosa-luteal cells. Endocrinology 2001; 142:182-92. [PMID: 11145581 DOI: 10.1210/endo.142.1.7895] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Until recently, the primate brain was thought to contain only one form of GnRH known as mammalian GnRH (GnRH-I). The recent cloning of a second form of GnRH (GnRH-II) with characteristics of chicken GnRH-II in the primate brain has prompted a reevaluation of the role of GnRH in reproductive functions. In the present study, we investigated the hormonal regulation of GnRH-II messenger RNA (mRNA) and its functional role in the human granulosa-luteal cells (hGLCs), and we provided novel evidence for differential hormonal regulation of GnRH-II vs. GnRH-I mRNA expression. Human GLCs were treated with various concentrations of GnRH-II, GnRH-II agonist (GnRH-II-a), or GnRH-I agonist (GnRH-I-a; leuprolide) in the absence or presence of FSH or human CG (hCG). The expression levels of GnRH-II, GnRH-I, and GnRH receptor (GnRHR) mRNA were investigated using semiquantitative or competitive RT-PCR. A significant decrease in GnRH-II and GnRHR mRNA levels was observed in cells treated with GnRH-II or GnRH-II-a. In contrast, GnRH-I-a revealed a biphasic effect (up- and down-regulation) of GnRH-I and GnRHR mRNA, suggesting that GnRH-I and GnRH-II may differentially regulate GnRHR and their ligands (GnRH-I and GnRH-II). Treatment with FSH or hCG increased GnRH-II mRNA levels but decreased GnRH-I mRNA levels, further indicating that GnRH-I and GnRH-II mRNA levels are differentially regulated. To investigate the physiological role of GnRH-II, hGLCs were treated with GnRH-II or GnRH-II-a in the presence or absence of hCG, for 24 h, and progesterone secretion was measured by RIA. Both GnRH-II and GnRH-II-a inhibited basal and hCG-stimulated progesterone secretion, effects which were similar to the effects of GnRH-I treatment on ovarian steroidogenesis. Next, hGLCs were treated with various concentrations of GnRH-II, GnRH-II-a, or GnRH-I-a; and the expression levels of FSH receptor and LH receptor were investigated using semiquantitative RT-PCR. A significant down-regulation of FSH receptor and LH receptor was observed in cells treated with GnRH-II, GnRH-II-a, and GnRH-I-a, demonstrating that GnRH-II and GnRH-I may exert their antigonadotropic effect by down-regulating gonadotropin receptors. Interestingly, GnRH-II and GnRH-II-a did not affect basal and hCG-stimulated intracellular cAMP accumulation, suggesting that the antigonadotropic effect of GnRH-II may be independent of modulation of cAMP levels. Taken together, these results suggest that GnRH-II may have biological effects similar to those of GnRH-I but is under differential hormonal regulation in the human ovary.
Collapse
Affiliation(s)
- S K Kang
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | |
Collapse
|
57
|
Cheng KW, Leung PCK. The expression, regulation and signal transduction pathways of the mammalian gonadotropin-releasing hormone receptor. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-096] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal mammalian sexual maturation and reproductive functions require the integration and precise coordination of hormones at the hypothalamic, pituitary, and gonadal levels. Hypothalamic gonadotropin-releasing hormone (GnRH) is a key regulator in this system; after binding to its receptor (GnRHR), it stimulates de novo synthesis and release of gonadotropins in anterior pituitary gonadotropes. Since the isolation of the GnRHR cDNA, the expression of GnRHR mRNA has been detected not only in the pituitary, but also in extrapituitary tissues, including the ovary and placenta. It has been shown that change in GnRHR mRNA is one of the mechanisms for regulating the expression of the GnRHR. To help understand the molecular mechanism(s) involved in transcriptional regulation of the GnRHR gene, the 5' flanking region of the GnRHR gene has recently been isolated. Initial characterization studies have identified several DNA regions in the GnRHR 5' flanking region which are responsible for both basal expression and GnRH-mediated homologous regulation of this gene in pituitary cells. The mammalian GnRHR lacks a C-terminus and possesses a relatively short third intracellular loop; both features are important in desensitization of many others G-protein coupled receptors (GPCRs), Homologous desensitization of GnRHR has been shown to be regulated by various serine-threonine protein kinases including protein kinase A (PKA) and protein kinase C (PKC), as well as by G-protein coupled receptor kinases (GRKs). Furthermore, GnRHR was demonstrated to couple with multiple G proteins (Gq/11, Gs, and Gi), and to activate cascades that involved the PKC, PKA, and mitogen-activator protein kinases. These results suggest the diversity of GnRHR-G protein coupling and signal transduction systems. The identification of second form of GnRH (GnRH-II) in mammals adds to the complexity of the GnRH-GnRHR system. This review summaries our recent progress in understanding the regulation of GnRHR gene expression and the GnRHR signal transduction pathways.Key words: gonadotropin-releasing hormone receptor, transcriptional regulation, desensitization, signal transduction.
Collapse
|
58
|
Maya-Núñez G, Janovick JA, Conn PM. Combined modification of intracellular and extracellular loci on human gonadotropin-releasing hormone receptor provides a mechanism for enhanced expression. Endocrine 2000; 13:401-7. [PMID: 11216654 DOI: 10.1385/endo:13:3:401] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 08/11/2000] [Indexed: 11/11/2022]
Abstract
The mammalian gonadotropin-releasing hormone (GnRH) receptor (GnRH-R) has been a therapeutic target for human and animal medicine. This receptor is a unique G-protein-coupled receptor that lacks the intracellular C-terminal domain commonly associated with this family. Development of highthrough put screens for agents active in humans has been hampered by low expression levels of the hGnRH-R in cellular models. Two sites have attracted the interest of laboratories studying regulation of expression. The chimeric addition of the C-terminal tail from catfish GnRH-R (cfGnRH-R) to the rat GnRH-R significantly augmented receptor expression in GH3 cells. In addition, rodent GnRH-R contains 327 amino acids, but cow, sheep, and human GnRH-R (hGnRH-R) contain 328 residues, the "additional" residue being a Lys 191. Deletion of Lys 191 (del 191) from the hGnRH-R resulted in increased receptor expression levels and decreased internalization rates in both COS-7 and HEK 293 cells. In this study, the combined effect of the addition of the C-tail from cfGnRH-R and deletion of the Lys 191 from the hGnRH-R was compared to expression of the wild-type (WT) or either alteration alone in a transient expression system using primate cells. The altered receptor (hGnRH-R[del 191]-C-tail) showed significantly increased receptor expression at the cell surface compared with the WT or either modification alone. The inositol phosphate response to stimulation was also significantly elevated in response to GnRH agonist. After treatment with a GnRH agonist, the altered receptors showed a slower internalization rate. The homologous steady-state regulation of the WT and the altered receptors was similar, although the response of the altered receptors was significantly decreased. These results suggest that the conformational change in the receptor as a result of the deletion of Lys 191 and the addition of the C-terminus tail substantially increased the steady-state receptor expression and decreased internalization and homologous regulation. Because the effects on expression are greater than additive, it appears that these alterations exert their effects by differing means. These techniques for expression of the hGnRH-R in transfected mammalian cells provide the basis for a therapeutic screen for GnRH analogs, agonists, and antagonists of the hGnRH.
Collapse
Affiliation(s)
- G Maya-Núñez
- Oregon Regional Primate Research Center and Department of Physiology and Pharmacology, Oregon Health Sciences University, Beaverton, USA
| | | | | |
Collapse
|
59
|
Walker SE, Jacobson JD. Roles of prolactin and gonadotropin-releasing hormone in rheumatic diseases. Rheum Dis Clin North Am 2000; 26:713-36. [PMID: 11084941 DOI: 10.1016/s0889-857x(05)70166-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PRL is capable of influencing immune responses and is a cytokine in all likelihood. Circulating PRL is elevated in a number of autoimmune diseases, and about 20% of SLE patients are hyperprolactinemic. The serum PRL concentration often does not reflect disease activity in SLE. The PRL-suppressing drug bromocriptine has been reported to benefit small numbers of patients with reactive arthritis and inflammatory eye disease, and bromocriptine may be beneficial in treating SLE. In NZB/NZW mice, bromocriptine was beneficial and prolonged life. Bromocriptine therapy favorably modified disease in human SLE. In a preliminary open-label study, SLE patients treated with bromocriptine for 6 months had significant improvement in disease activity. These responses were corroborated by masted therapeutic studies. Daily treatment with low-dose bromocriptine prevented lupus flares, and bromocriptine was as effective as hydroxychloroquine in treating active nonorgan-threatening disease. The reports of the efficacy of bromocriptine treatment of SLE are encouraging. Additional studies may confirm the findings reported in this review and may lead to further use of hormonal modification to treat lupus and other autoimmune diseases. For the present, it is important to understand that treatment with dopamine agonists such as bromocriptine is experimental and best confined to therapeutic trials. In the experience of the authors, bromocriptine should not be relied on to treat severe life-threatening autoimmune disease. If bromocriptine is used to treat SLE and is then discontinued, the patient should be observed carefully for rebound hyperprolactinemia and the development of a lupus flare. GnRH is produced by lymphocytes and exerts immunomodulatory actions. Thus, GnRH resembles a cytokine. GnRH can be shown to exert gender-restricted immune actions in vitro and in vivo. The authors' preliminary observations are consistent with the possibility that gender-related differences in expression of the GnRH receptor or in GnRH signal transducers may contribute to gender-related differences in immune responsiveness to GnRH. These differences in G proteins may contribute to the gender-related differences in immunity and expression of autoimmune disease.
Collapse
Affiliation(s)
- S E Walker
- Department of Internal Medicine, University of Missouri, Columbia, USA.
| | | |
Collapse
|
60
|
Chen CA, Manning DR. Regulation of galpha i palmitoylation by activation of the 5-hydroxytryptamine-1A receptor. J Biol Chem 2000; 275:23516-22. [PMID: 10818105 DOI: 10.1074/jbc.m003439200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nearly all alpha subunits of heterotrimeric GTP-binding regulatory proteins (G proteins) are palmitoylated at cysteine residues near the N terminus. A regulated cycle of palmitoylation could provide a mechanism for modulating G protein signaling by affecting protein interactions and localization of the subunit. In the present studies we utilized both [(3)H]palmitate incorporation and pulse-chase techniques to address the dynamics of alpha(i) palmitoylation in Chinese hamster ovary cells. Both techniques demonstrated a dose- and time-dependent change in [(3)H]palmitate labeling of alpha(i) upon activation of stably expressed 5-hydroxytryptamine-1A receptors by the agonist (+/-)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (DPAT), with an EC(50) of approximately 10 nm. For the incorporation assay, DPAT elicited an approximate doubling in labeling at the earliest time point measured. For the pulse-chase assay, DPAT promoted a significant loss of radiolabel almost equally as fast. These data demonstrate that the exchange of palmitate on alpha(i) is increased upon stimulation of 5-hydroxytryptamine-1A receptors through the combined processes of depalmitoylation and palmitoylation. These results provide the basis for extending the concept of regulated exchange of palmitate beyond G(s) and provide a framework for exploring the specific functional attributes of the palmitoylated and depalmitoylated forms of subunit.
Collapse
Affiliation(s)
- C A Chen
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | |
Collapse
|
61
|
Cheng KW, Nathwani PS, Leung PC. Regulation of human gonadotropin-releasing hormone receptor gene expression in placental cells. Endocrinology 2000; 141:2340-9. [PMID: 10875233 DOI: 10.1210/endo.141.7.7543] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH has been suggested to regulate hCG secretion in the placenta. In the present study, we report isolation of full-length GnRH receptor (GnRHR) complementary DNA from human placental cells, including a choriocarcinoma cell line (JEG-3), immortalized extravillous trophoblasts (IEVT), and first trimester cytotrophoblast cells in primary culture. Sequence analysis of the placental GnRHR complementary DNA revealed a 100% similarity to its pituitary counterpart. Northern blot analysis using polyadenylated RNA isolated from JEG-3 and IEVT cells revealed a 2.5- and 1.2-kb GnRHR transcripts. Using semiquantitative RT-PCR, regulation ofplacental GnRHR gene expression was examined. In contrast to pituitary gonadotrope alphaT3-1 cells, down-regulation of GnRHR messenger RNA (mRNA) levels was not observed in placental cells after 24 h of 0.1-microM GnRH agonist (GnRHa) treatment. Instead, a 43% (P < 0.01) and 30% (P < 0.05) increase in GnRHR mRNA levels was observed in JEG-3 and IEVT cells, respectively. In addition, 10 microM phorbol ester or forskolin treatments resulted in a significant increase in GnRHR expression in both JEG-3 and IEVT cells. The GnRHa-induced increase in GnRHR expression was shown to be a receptor-mediated process, as cotreatment of GnRH antagonist abolished the effect. It has also been demonstrated that these stimulatory effects on GnRHR gene expression were regulated at least in part at the transcriptional level. Pretreatment of JEG-3 cells with a specific protein kinase C inhibitor (GF109203X), adenylate cyclase inhibitor (SQ22536), or protein kinase A inhibitor [PKI-(14-22) amide, myristylated] reversed GnRHa-induced GnRHR gene expression, suggesting that the placental GnRHR couples to the protein kinase C (PKC) and cAMP/ protein kinase A (PKA) pathways. By Northern blot analysis, we observed a 100% (P < 0.001) increase in hCGbeta mRNA levels after 0.1 microM GnRHa treatment in JEG-3 cells. Again, this effect was prevented in the presence of either protein kinase C inhibitor or adenylate cyclase inhibitor, further supporting the role of the PKC and PKA pathways in GnRHR-coupled signaling in placental cells. In summary, these data strongly support the idea that 1) GnRH plays an autocrine/paracrine role in regulating placental function through a receptor-mediated mechanism; and 2) the placental GnRHR couples to both the PKC and PKA pathways.
Collapse
Affiliation(s)
- K W Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
62
|
Chang JP, Johnson JD, Goor FV, Wong CJH, Yunker WK, Uretsky AD, Taylor D, Jobin RM, Wong AOL, Goldberg JI. Signal transduction mechanisms mediating secretion in goldfish gonadotropes and somatotropes. Biochem Cell Biol 2000. [DOI: 10.1139/o00-011] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intracellular signal transduction mechanisms mediating maturational gonadotropin and somatotropin secretion in goldfish are reviewed. Several major signaling mechanisms, including changes in intracellular [Ca2+], arachidonic acid cascades, protein kinase C, cyclic AMP/protein kinase A, calmodulin, nitric oxide, and Na+/H+ antiport, are functional in both cell types. However, their relative importance in mediating basal secretion and neuroendocrine-factor-regulated hormone release differs according to cell type. Similarly, agonist- and cell-type-specificity are also present in the transduction pathways leading to neuroendocrine factor-modulated maturational gonadotropin and somatotropin release. Specificity is present not only in the actions of different regulators within the same cell type and with the same ligand in the two cell types, but this also exists between isoforms of the same neuroendocrine factor within a single cell type. Other evidence suggests that function-selectivity of signaling may also result from differential modulation of Ca2+ fluxes from different sources. The interaction of different second messenger systems provide the basis by which regulation of maturational gonadotropin and somatotropin release by multiple neuroendocrine factors can be integrated at the target cell level. Key words: Ca2+ signaling, cAMP, PKC, arachidonic acid, NO.
Collapse
|
63
|
Grosse R, Schmid A, Schöneberg T, Herrlich A, Muhn P, Schultz G, Gudermann T. Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to G(q/11) proteins. J Biol Chem 2000; 275:9193-200. [PMID: 10734055 DOI: 10.1074/jbc.275.13.9193] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The agonist-bound gonadotropin-releasing hormone (GnRH) receptor engages several distinct signaling cascades, and it has recently been proposed that coupling of a single type of receptor to multiple G proteins (G(q), G(s), and G(i)) is responsible for this behavior. GnRH-dependent signaling was studied in gonadotropic alphaT3-1 cells endogenously expressing the murine receptor and in CHO-K1 (CHO#3) and COS-7 cells transfected with the human GnRH receptor cDNA. In all cell systems studied, GnRH-induced phospholipase C activation and Ca(2+) mobilization was pertussis toxin-insensitive, as was GnRH-mediated extracellular signal-regulated kinase activation. Whereas the G(i)-coupled m2 muscarinic receptor interacted with a chimeric G(s) protein (G(s)i5) containing the C-terminal five amino acids of Galpha(i2), the human GnRH receptor was unable to activate the G protein chimera. GnRH challenge of alphaT3-1, CHO#3 and of GnRH receptor-expressing COS-7 cells did not result in agonist-dependent cAMP formation. GnRH challenge of CHO#3 cells expressing a cAMP-responsive element-driven firefly luciferase did not result in increased reporter gene expression. However, coexpression of the human GnRH receptor and adenylyl cyclase I in COS-7 cells led to clearly discernible GnRH-dependent cAMP formation subsequent to GnRH-elicited rises in [Ca(2+)](i). In alphaT3-1 and CHO#3 cell membranes, addition of [alpha-(32)P]GTP azidoanilide resulted in GnRH receptor-dependent labeling of Galpha(q/11) but not of Galpha(i), Galpha(s) or Galpha(12/13) proteins. Thus, the murine and human GnRH receptors exclusively couple to G proteins of the G(q/11) family. Multiple GnRH-dependent signaling pathways are therefore initiated downstream of the receptor/G protein interface and are not indicative of a multiple G protein coupling potential of the GnRH receptor.
Collapse
Affiliation(s)
- R Grosse
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, D-14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
64
|
Blum JJ, Reed MC, Janovick JA, Conn PM. A mathematical model quantifying GnRH-induced LH secretion from gonadotropes. Am J Physiol Endocrinol Metab 2000; 278:E263-72. [PMID: 10662710 DOI: 10.1152/ajpendo.2000.278.2.e263] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mathematical model is developed to investigate the rate of release of luteinizing hormone (LH) from pituitary gonadotropes in response to short pulses of gonadotropin-releasing hormone (GnRH). The model includes binding of the hormone to its receptor, dimerization, interaction with a G protein, production of inositol 1,4, 5-trisphosphate, release of Ca(2+) from the endoplasmic reticulum, entrance of Ca(2+) into the cytosol via voltage-gated membrane channels, pumping of Ca(2+) out of the cytosol via membrane and endoplasmic reticulum pumps, and release of LH. Cytosolic Ca(2+) dynamics are simplified (i.e., oscillations are not included in the model), and it is assumed that there is only one pool of releasable LH. Despite these and other simplifications, the model explains the qualitative features of LH release in response to GnRH pulses of various durations and different concentrations in the presence and absence of external Ca(2+).
Collapse
Affiliation(s)
- J J Blum
- Department of Cell Biology, Duke University Medical Center, Durham 27710, North Carolina, USA.
| | | | | | | |
Collapse
|
65
|
Evanko DS, Thiyagarajan MM, Wedegaertner PB. Interaction with Gbetagamma is required for membrane targeting and palmitoylation of Galpha(s) and Galpha(q). J Biol Chem 2000; 275:1327-36. [PMID: 10625681 DOI: 10.1074/jbc.275.2.1327] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peripheral membrane proteins utilize a variety of mechanisms to attach tightly, and often reversibly, to cellular membranes. The covalent lipid modifications, myristoylation and palmitoylation, are critical for plasma membrane localization of heterotrimeric G protein alpha subunits. For alpha(s) and alpha(q), two subunits that are palmitoylated but not myristoylated, we examined the importance of interacting with the G protein betagamma dimer for their proper plasma membrane localization and palmitoylation. Conserved alpha subunit N-terminal amino acids predicted to mediate binding to betagamma were mutated to create a series of betagamma binding region mutants expressed in HEK293 cells. These alpha(s) and alpha(q) mutants were found in soluble rather than particulate fractions, and they no longer localized to plasma membranes as demonstrated by immunofluorescence microscopy. The mutations also inhibited incorporation of radiolabeled palmitate into the proteins and abrogated their signaling ability. Additional alpha(q) mutants, which contain these mutations but are modified by both myristate and palmitate, retained their localization to plasma membranes and ability to undergo palmitoylation. These findings identify binding to betagamma as a critical membrane attachment signal for alpha(s) and alpha(q) and as a prerequisite for their palmitoylation, while myristoylation can restore membrane localization and palmitoylation of betagamma binding-deficient alpha(q) subunits.
Collapse
Affiliation(s)
- D S Evanko
- Department of Microbiology and Immunology and Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
66
|
Pinter JH, Janovick JA, Conn PM. Gonadotropin-releasing hormone receptor concentration differentially regulates intracellular signaling pathways in GGH3 cells. Pituitary 1999; 2:181-90. [PMID: 11081152 DOI: 10.1023/a:1009946807430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pituitary cell lines (GGH3) expressing the GnRH receptor (GnRHR) were used to investigate the effect of GnRHR concentration on the ability of a GnRH agonist to activate second messenger systems. Four different strategies were utilized to generate cells expressing functionally different concentrations of receptors: (1) transient transfection with different concentrations of wild type GnRHR into GH3 cells, (2) utilization of two cell lines derived from a common stably transfected line expressing high (4,209 +/- 535 receptors/cell) or low (1,031 +/- 36 receptors/cell) concentrations of GnRHR, (3) co-incubation of GGH3-1' cells with a GnRH agonist (Buserelin) and a GnRH antagonist to compete for binding sites, and (4) photo-affinity binding to GnRHR with a GnRH antagonist to change effective receptor concentration. A range of receptor concentrations (1,000-8,000 receptors/cell) were generated by these techniques. Inositol phosphate (IP) and cAMP accumulation were quantified to assess the effect of receptor concentration on receptor-effector coupling. Under all four paradigms, the efficacy and potency of Buserelin stimulated IP production was dependent on receptor concentration. In contrast, Buserelin stimulated cAMP release was relatively unchanged at varying concentrations of GnRHR. This suggests that the cellular concentration of GnRHR affects the induction of cell signaling pathways. These results demonstrate that a single ligand-receptor-complex can differentially activate second messenger systems and present a mechanism by which multiple physiological endpoints can be differentially regulated by a single hormone/receptor interaction.
Collapse
Affiliation(s)
- J H Pinter
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton 97006-3499, USA
| | | | | |
Collapse
|
67
|
Johnson JD, Van Goor F, Wong CJ, Goldberg JI, Chang JP. Two endogenous gonadotropin-releasing hormones generate dissimilar Ca(2+) signals in identified goldfish gonadotropes. Gen Comp Endocrinol 1999; 116:178-91. [PMID: 10562448 DOI: 10.1006/gcen.1999.7349] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) signals are involved in the signal transduction of neuroendocrine regulators. In goldfish, two endogenous gonadotropin-releasing hormones, salmon (s)GnRH and chicken (c)GnRH-II, control maturational gonadotropin secretion. Although considerable evidence suggests that sGnRH and cGnRH-II exert their activity on goldfish gonadotropes through a single population of receptors, differences in signal transduction mechanisms between these peptides have been demonstrated. We used ratiometric Fura-2 Ca(2+) imaging of single morphologically identified gonadotropes to quantitatively compare the Ca(2+) signals evoked by sGnRH and cGnRH-II. The amplitude and the rate of rise of sGnRH- and cGnRH-II-evoked Ca(2+) signals increased with concentration. At maximal concentrations, Ca(2+) signals generated by cGnRH-II rose significantly faster than those elicited by sGnRH, while other parameters such as the maximum amplitude, average Ca(2+) increase, and latency did not differ between the two peptides. Ca(2+) signals evoked by sGnRH or cGnRH-II were often spatially restricted to one part of the cell over the duration of the response. We provide a comprehensive account of the spatial and temporal aspects, including calculated kinetics, of GnRH-evoked Ca(2+) signals in single identified gonadotropes. This is the first report of quantified differences in Ca(2+) signals generated by two endogenous GnRH neuropeptides, which may act through the same receptor population in this cell type.
Collapse
Affiliation(s)
- J D Johnson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | | | | | | | | |
Collapse
|
68
|
Ulloa-Aguirre A, Stanislaus D, Janovick JA, Conn PM. Structure-activity relationships of G protein-coupled receptors. Arch Med Res 1999; 30:420-35. [PMID: 10714355 DOI: 10.1016/s0188-0128(99)00041-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The primary function of cell-surface receptors is to discriminate the specific signaling molecule or ligand from a large array of chemically diverse extracellular substances and to activate an effector signaling cascade that triggers an intracellular response and eventually a biological effect. G protein-coupled cell-surface receptors (GPCRs) mediate their intracellular actions through the activation of guanine nucleotide-binding signal-transducing proteins (G proteins), which form a diverse family of regulatory GTPases that, in the GTP-bound state, bind and activate downstream membrane-localized effectors. Hundreds of GPCRs signal through one or more of these G proteins in response to a large variety of stimuli including photons, neurotransmitters, and hormones of variable molecular structure. The mechanisms by which these ligands provoke activation of the receptor/G-protein system are highly complex and multifactorial. Knowledge and mapping of the structural determinants and requirements for optimal GPCR function are of paramount importance, not only for a better and more detailed understanding of the molecular basis of ligand action and receptor function in normal and abnormal conditions, but also for a rational design of early diagnostic and therapeutic tools that may allow exogenous regulation of receptor and G protein function in disease processes.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Unidad de Investigación en Medicina Reproductiva, Hospital de Gineco Obstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, México, D.F., Mexico.
| | | | | | | |
Collapse
|
69
|
Maya-Núñez G, Conn PM. Transcriptional regulation of the gonadotropin-releasing hormone receptor gene is mediated in part by a putative repressor element and by the cyclic adenosine 3',5'-monophosphate response element. Endocrinology 1999; 140:3452-8. [PMID: 10433200 DOI: 10.1210/endo.140.8.6945] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The levels of the GnRH receptor (GnRHR) and its messenger RNA depend on the pattern of administration of GnRH. In this study, internal deletion mutants in a luciferase reporter gene vector (GnRHR-pXP2) containing a 1226-bp promoter fragment of mouse GnRHR gene were used to examine the regulation of GnRHR gene transcription in GGH3 cells. Our results indicate that the mouse GnRHR promoter contains one putative repressor element located at position -343/-335. When this sequence was deleted, the GnRHR promoter activity was significantly increased in both basal and GnRH agonist (Buserelin)-, phorbol ester-, and forskolin-stimulated cells. Gel mobility shift assay showed that the sequence -343/-335 is capable of binding GGH3 nuclear proteins. With deletion of the cAMP response element (-107/-100), basal and Buserelin-stimulated transcription was decreased. The same response was observed after stimulation with forskolin. Stimulation with (Bu)2cAMP did not alter transcription above basal levels. The stimulation with phorbol ester resulted in an attenuated increase in transcriptional activity, suggesting that this sequence of the GnRHR promoter is a cAMP response element. These results suggest that the transcriptional activity of the GnRHR gene is mediated in part by a putative repressor element and by the cAMP response element.
Collapse
Affiliation(s)
- G Maya-Núñez
- Oregon Regional Primate Research Center, Beaverton 97006, USA
| | | |
Collapse
|
70
|
Han XB, Conn PM. The role of protein kinases A and C pathways in the regulation of mitogen-activated protein kinase activation in response to gonadotropin-releasing hormone receptor activation. Endocrinology 1999; 140:2241-51. [PMID: 10218977 DOI: 10.1210/endo.140.5.6707] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is convincing evidence that mitogen-activated protein kinase (MAPK) activation is coupled to both receptor tyrosine kinase and G protein-coupled receptors. The presence of the epidermal growth factor (EGF) receptor and the GnRH receptor on the surface of GGH(3)1' cells makes this cell line a good model for the assessment of MAPK activation by receptor tyrosine kinases and G protein-coupled receptors. In this study, to assess the activated and total (i.e. activated plus inactivated) MAPK, the phosphorylation state of p44 and p42 MAPKs was examined using antisera that distinguish phospho-p44/42 MAPK (Thr202/Tyr204) from p44/42 MAPK (phosphorylation state independent). The data show that both EGF (200 ng/ml) and Buserelin (a GnRH agonist; 10 ng/ml) provoke rapid activation of MAPK (within 5 and 15 min, respectively) after binding to their receptors. The role of protein kinase A (PKA) and protein kinase C (PKC) signal transduction pathways in mediating MAPK activation was also assessed. Both phorbol ester (phorbol 12-myristate 13-acetate; 10 ng/ml) and (Bu)2cAMP (1 mM) trigger the phosphorylation of MAPK, suggesting potential roles for PKC and PKA signaling events in MAPK activation in GGH(3)1' cells. Treatment of PKC-depleted cells with Buserelin activated MAPK, suggesting involvement of PKC-independent signal transduction pathways in MAPK activation in response to GnRH. Similarly, treatment of PKC-depleted cells with forskolin (50 microM) or cholera toxin (100 ng/ml) stimulated MAPK activation, whereas pertussis toxin (100 ng/ml) had no measurable effect. To further assess the role of PKA in response to EGF and Buserelin, cells were treated with EGF (200 ng/ml) for 3 min or with Buserelin (10 ng/ml) for 10 min after pretreatment with 3-isobutyl-1-methylxanthine (0.5 mM), forskolin (50 microM), or (Bu)2cAMP (1 mM) for 15 min. The results show that MAPK can be activated in a PKA-dependent manner in GGH(3)1' cells. Consistent with previous reports, the current data support the view that MAPK activation can be achieved via both PKC- and PKA-dependent signaling pathways triggered by the GnRH receptor that couples to G(q/11) and Gs alpha-subunit proteins. In contrast, G(i/o)alpha does not appear to participate in MAPK activation in GGH(3)1' cells.
Collapse
Affiliation(s)
- X B Han
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton 97006, USA
| | | |
Collapse
|
71
|
Lin X, Conn PM. Transcriptional activation of gonadotropin-releasing hormone (GnRH) receptor gene by GnRH: involvement of multiple signal transduction pathways. Endocrinology 1999; 140:358-64. [PMID: 9886846 DOI: 10.1210/endo.140.1.6452] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that GnRH activates transcriptional activity of its own receptor (GnRHR) gene in part through the cAMP signal transduction pathway. In the present study we explored the possible involvement of multiple signal transduction pathways in GnRH regulation of GnRHR gene transcription; these studies relied upon a luciferase reporter gene vector (GnRHR-pXP2) containing a 1226-bp promoter fragment (-1164 to +62, relative to the major transcription start site) of the mouse GnRHR gene in GGH3 cells (GH3 cells stably expressing rat GnRHR). Activation of protein kinase C (PKC) by phorbol myristic acid significantly stimulated GnRHR-luciferase reporter gene (GnRHR-Luc) activity, but did not potentiate the stimulation of GnRHR-Luc activity by the GnRH agonist, buserelin (GnRH-A). Inhibition of PKC by PKC inhibitor (GF 109203X) or depletion of PKC blocked phorbol myristic acid- or GnRH-A-stimulated GnRHR-Luc activity, but did not affect (Bu)2cAMP-stimulated GnRHR-Luc activity. In addition, GnRH-A-stimulated GnRHR-Luc activity was inhibited by preventing external Ca2+ influx with the external Ca2+ chelator EGTA or the Ca2+ ion channel antagonist, D600. Surprisingly, overexpression of the mitogen-activated protein kinase (MAPK) kinase kinase (Raf-1) inhibited GnRHR-Luc activity and partially blocked GnRH-A-stimulated GnRHR-Luc activity. In contrast, inhibition of MAPK activity by MAPK kinase inhibitor (PD 98059) or by overexpression of kinase-deficient MAPKs activated basal and GnRH-A-stimulated GnRHR-Luc activity. These results suggested that PKC- and Ca2+-dependent signal transduction pathways participate in the GnRH activation of GnRHR promoter activity, and that the MAPK cascade is involved in the negative regulation of basal and GnRH-stimulated GnRHR transcriptional activity conferred by the 1226-bp promoter fragment.
Collapse
Affiliation(s)
- X Lin
- Oregon Regional Primate Research Center, Beaverton 97006, USA
| | | |
Collapse
|
72
|
Lin X, Janovick JA, Conn PM. Mutations at the consensus phosphorylation sites in the third intracellular loop of the rat gonadotropin-releasing hormone receptor: effects on receptor ligand binding and signal transduction. Biol Reprod 1998; 59:1470-6. [PMID: 9828194 DOI: 10.1095/biolreprod59.6.1470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this study, site-directed mutagenesis of potential phosphorylation sites (Thr238, Ser253, and Thr264) for protein kinase C and C-terminal portion (Ala260-Leu265) of the third intracellular loop of the rat GnRH receptor (rGnRHR) was performed to assess the significance of these regions in the function of the GnRHR. Mutation at one or all of the three potential phosphorylation sites had differential effects on receptor ligand binding. Mutation of Ser253 or Thr264 to Ala did not significantly affect the receptor-binding affinity but decreased the number of measurable binding sites. Mutation of Thr238 to Ala or triple mutation of Thr238, Ser253, and Thr264 impaired or abolished receptor-binding affinity. Mutations of the potential phosphorylation sites affected receptor-mediated inositol phospholipid (IP) production and correlated with alterations in receptor binding after mutation, but they did not significantly affect receptor-mediated cAMP production or cAMP-mediated prolactin release. In addition, mutation of Ser253 or Thr264 to Ala did not affect the GnRH-provoked desensitization in terms of GnRH agonist-stimulated IP production. Deletion of the C-terminal portion (Ala260-Leu265) of the third intracellular loop of the rGnRHR, including a potential phosphorylation site (Thr264), abolished the receptor-binding affinity and receptor-mediated signal transduction. Replacement of the deleted C-terminal portion with a C-terminal portion (Ala-Ala-Arg-Thr-Leu-Ser) of the third intracellular loop of the Gq/11-coupled rat M1 muscarinic acetylcholine receptor did not restore receptor function. These results suggest that the potential phosphorylation sites or the region around the phosphorylation site of the third intracellular loop of the GnRHR is important for the structural integrity and expression of the receptor but that phosphorylation at these sites is not required for desensitization.
Collapse
Affiliation(s)
- X Lin
- Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
73
|
Stanislaus D, Pinter JH, Janovick JA, Conn PM. Mechanisms mediating multiple physiological responses to gonadotropin-releasing hormone. Mol Cell Endocrinol 1998; 144:1-10. [PMID: 9863622 DOI: 10.1016/s0303-7207(98)00126-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A central question in endocrinology is how a single ligand interacting with a single receptor can mediate multiple responses. GnRH interaction with receptor offers a prime example, leading to the regulation of synthesis and release of at least three molecules, regulation of target cell responsiveness and receptor number. The present study suggests a molecular model consistent with extant data that provides a mechanism by which this may occur and, further, which allows for coordinate regulation.
Collapse
Affiliation(s)
- D Stanislaus
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | |
Collapse
|