51
|
Haybar H, Maleki Behzad M, Shahrabi S, Ansari N, Saki N. Expression of Blood Cells Associated CD Markers and Cardiovascular Diseases: Clinical Applications in Prognosis. Lab Med 2020; 51:122-142. [PMID: 31340048 DOI: 10.1093/labmed/lmz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a major cause of mortality worldwide. The results of various studies have shown that abnormality in the frequency and function of blood cells can be involved in CVD complications. In this review, we have focused on abnormalities in the expression of the CD (cluster of differentiation) markers of blood cells to assess the association of these abnormalities with CVD prognosis. METHODS We identified the relevant literature through a PubMed search (1990-2018) of English-language articles using the terms "Cardiovascular diseases", "CD markers", "leukocytes", "platelets", and "endothelial cells". RESULTS There is a variety of mechanisms for the effect of CD-marker expressions on CVDs prognosis, ranging from proinflammatory processes to dysfunctional effects in blood cells. CONCLUSION Considering the possible effects of CD-marker expression on CVDs prognosis, particularly prognosis of acute myocardial infarction and atherosclerosis, long-term studies in large cohorts are required to identify the prognostic value of CD markers and to target them with appropriate therapeutic agents.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
52
|
Sakamoto R, Kajihara I, Miyauchi H, Maeda-Otsuka S, Yamada-Kanazawa S, Sawamura S, Kanemaru H, Makino K, Aoi J, Makino T, Fukushima S, Masuzawa M, Masuzawa M, Amoh Y, Hoshina D, Abe R, Ihn H. Inhibition of Endoglin Exerts Antitumor Effects through the Regulation of Non-Smad TGF-β Signaling in Angiosarcoma. J Invest Dermatol 2020; 140:2060-2072.e6. [PMID: 32142796 DOI: 10.1016/j.jid.2020.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Angiosarcoma is a rare malignant tumor derived from endothelial cells, and its prognosis is poor because advanced angiosarcoma is often resistant to taxane therapy. Endoglin (CD105) acts as a coreceptor for TGF-β signaling and is overexpressed in tumor-associated endothelial cells and enhances tumor angiogenesis. Numerous clinical trials are testing the effectiveness of anti-endoglin antibodies in various types of malignancies. Here, we investigated the role of endoglin in the pathogenesis of angiosarcoma and whether endoglin inhibition results in antitumor activity. Endoglin was overexpressed in angiosarcoma, and its inhibition was effective in promoting apoptosis and the suppression of migration, invasion, tube formation, and Warburg effect in angiosarcoma cells. Knockdown of endoglin activated caspase 3/7 that is essential for apoptosis, reduced survivin levels, and decreased paxillin and vascular endothelial cadherin phosphorylation and matrix metalloproteinase 2 and matrix metalloproteinase 9 activities in angiosarcoma cells. Although endoglin is a coreceptor that regulates TGF-β signaling, the antitumor effect of endoglin in angiosarcoma was not based on Smad signaling regulation but on non-Smad TGF-β signaling. Taken together, these results indicated that endoglin could be a novel therapeutic target for angiosarcoma.
Collapse
Affiliation(s)
- Ryoko Sakamoto
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Hitomi Miyauchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saki Maeda-Otsuka
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saori Yamada-Kanazawa
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Soichiro Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mamiko Masuzawa
- Department of Dermatology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Mikio Masuzawa
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Daichi Hoshina
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Riichiro Abe
- Department of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
53
|
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.
Collapse
|
54
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1175] [Impact Index Per Article: 235.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
55
|
Gasiūnienė M, Valatkaitė E, Navakauskienė R. Long-term cultivation of human amniotic fluid stem cells: The impact on proliferative capacity and differentiation potential. J Cell Biochem 2020; 121:3491-3501. [PMID: 31898359 DOI: 10.1002/jcb.29623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Human amniotic fluid mesenchymal stem cells (AF-MSCs) are a valuable, easily obtainable alternative source of SCs for regenerative medicine. Usually, amounts of cells required for the translational purposes are large thus the goal of this study was to assess the potency of AF-MSCs to proliferate and differentiate during long-term cultivation in vitro. AF-MSCs were isolated from amniotic fluid of healthy women in the second trimester of pregnancy and cultivated in vitro. AF-MSCs were cultivated up to 42 passages and they still maintained pluripotency genes, such as OCT4, SOX2, and NANOG, expression at a similar level as in the initial passages as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Fluorescence-activated cell sorting analysis demonstrated that the cell surface markers CD34 (negative), CD44, and CD105 (positive) expression was also stable, only the expression of SCs marker CD90 decreased during the cultivation. The morphology of AF-MSCs changed over passage, acridine orange/ethidium bromide staining revealed that more cells entered into apoptosis and the first signs of aging were detected only at late passages (later than p33) using SA-β-gal assay. Concomitantly, the differentiation potential towards cardiomyogenic lineage, induced with DNA methyltransferases inhibitors decitabine, zebularine, and RG108, was impaired when comparing AF-MSCs at p31/33 with p6. The expression of cardiomyocytes genes MYH6, TNNT2, DES together with ion channels genes of the heart (sodium, calcium, and potassium) decreased in p31/33 induced AF-MSCs. AF-MSCs have a great proliferative capacity and maintain most of the characteristics up to 33 passages; however, the cardiomyogenic differentiation capacity decreases to a certain extent during the long-term cultivation. These results provide useful insights for the potential use of AF-MSCs for biobanking and broad applications requiring high yield of cells or repeated infusions. Hence, it is vital to take into account the passage number of AF-MSCs, cultivated in culture, when utilizing them in vivo or in clinical experiments.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
56
|
Synergy Between Low Dose Metronomic Chemotherapy and the pH-centered Approach Against Cancer. Int J Mol Sci 2019; 20:ijms20215438. [PMID: 31683667 PMCID: PMC6862380 DOI: 10.3390/ijms20215438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Low dose metronomic chemotherapy (MC) is becoming a mainstream treatment for cancer in veterinary medicine. Its mechanism of action is anti-angiogenesis by lowering vascular endothelial growth factor (VEGF) and increasing trombospondin-1 (TSP1). It has also been adopted as a compassionate treatment in very advanced human cancer. However, one of the main limitations of this therapy is its short-term effectiveness: 6 to 12 months, after which resistance develops. pH-centered cancer treatment (pHT) has been proposed as a complementary therapy in cancer, but it has not been adopted or tested as a mainstream protocol, in spite of existing evidence of its advantages and benefits. Many of the factors directly or indirectly involved in MC and anti-angiogenic treatment resistance are appropriately antagonized by pHT. This led to the testing of an association between these two treatments. Preliminary evidence indicates that the association of MC and pHT has the ability to reduce anti-angiogenic treatment limitations and develop synergistic anti-cancer effects. This review will describe each of these treatments and will analyze the fundamentals of their synergy.
Collapse
|
57
|
Qi Y, Li W, Kang S, Chen L, Hao M, Wang W, Ling B, Cui Z, Liang C, He J, Chen X, Chen C, Liu P. Expression of BDNF, TrkB, VEGF and CD105 is associated with pelvic lymph node metastasis and prognosis in IB2-stage squamous cell carcinoma. Exp Ther Med 2019; 18:4221-4230. [PMID: 31777532 PMCID: PMC6862709 DOI: 10.3892/etm.2019.8100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), vascular endothelial growth factor (VEGF) and CD105 are highly expressed in several types of cancer. The present study aimed to determine whether BDNF, TrkB, VEGF and CD105 are associated with the prognosis and metastasis of patients with cervical squamous cell carcinoma (SCC) at the IB2 stage. A total of 79 patients with IB2-stage SCC were enrolled in the present study. The expression levels of BDNF, TrkB, VEGF and CD105 in IB2-stage cervical cancer tissue were detected by immunohistochemistry and their association with clinicopathological indexes or prognostic factors was statistically analyzed. Reverse transcription quantitative PCR was used to detect whether the expression of VEGF was affected in SiHa cells co-cultured with BDNF. In addition, BDNF-induced SiHa cell migration and invasion were examined. BDNF expression in the cervical cancer samples was significantly associated with positive lymphovascular space invasion (P<0.001) and pelvic lymph node metastasis (P<0.05). In addition, microvessel density was verified as an independent prognostic factor for overall survival (P<0.05). In vitro analysis indicated that BDNF significantly induced cellular migration and invasion of SiHa cells in a dose-dependent manner (P<0.001). BDNF induced the expression of VEGF in SiHa cells, which was inhibited by BDNF antibodies or an inhibitor of TrkB receptor (P<0.05). BDNF may be considered a useful indicator of pelvic metastasis, which is involved in the aggressive spread of IB2-stage SCC. BDNF-induced upregulation of VEGF was revealed to act as a pro-angiogenic factor in SCC (Trial registration no. http://apps.who.int/trialsearch/; ChiCTR1800017778).
Collapse
Affiliation(s)
- Yingying Qi
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weili Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Long Chen
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Min Hao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Wuliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100000, P.R. China
| | - Zhumei Cui
- Department of Gynecology, The Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Cong Liang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junsheng He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaolin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
58
|
Huang X, Liang X, Zhang Q, Wang D, Liu J, Zhang L, Zhou J. Quantifying the angiogenesis of C6 glioma in rats based on CT quantitative parameters. Acta Radiol 2019; 60:985-993. [PMID: 30322293 DOI: 10.1177/0284185118808073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Glioma is the most common neoplasm that is neuroepithelial in nature. However, Spectral computed tomography (CT) has rarely been reported to detect angiogenesis in tumors. Purpose To investigate the value of multi-parameter spectral CT for the detection of angiogenesis in C6 glioma in rats. Material and Methods Fifteen male Wistar rats were seeded with C6 glioma cells in the right basal ganglia and spectral CT-enhanced scanning was performed at days 7, 10, and 14 after the C6 glioma cells were seeded. The spectral CT parameters were measured in three areas: the solid tumor; the peritumoral area; and the contralateral mirror area. After different periods of scanning, the rats’ brain tissue was stained with HE and CD105 immunohistochemical staining. Different periods of spectral CT quantitative parameters and pathological images were analyzed. Results The spectral CT parameter and CD105 among the solid tumor, peritumoral area, and contralateral mirror area were significantly different: monochromatic CT value (211.30 ± 34.67 HU, 119.16 ± 13.31 HU, and 55.59 ± 7.87 HU, P < 0.001); CD105 (16.14 ± 1.91, 6.79 ± 1.31, and 2.50 ± 0.51, P < 0.001); spectral curve slope (10.35 ± 1.89, 5.33 ± 0.87, 0.88 ± 0.26, P < 0.001); iodine (water) value (49.75 ± 9.02, 26.04 ± 4.32, 4.36 ± 1.18, P < 0.001). CD105 correlated strongly with the CT value at 65 keV (correlation coefficient r = 0.98, P < 0.001). Conclusion Multi-parameter spectral CT can reflect the formation of tumor angiogenesis in rat C6 glioma to a certain extent and can be used as an effective means to evaluate glioma.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, PR China
| | - Xiaohong Liang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, PR China
| | - Qiaoying Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, PR China
| | - Dan Wang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, PR China
| | - Jianli Liu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, PR China
| | - Lingyan Zhang
- Department of Radiology, Nanjing General Hospital, Nanjing, PR China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
59
|
Capuano A, Andreuzzi E, Pivetta E, Doliana R, Favero A, Canzonieri V, Maiero S, Fornasarig M, Magris R, Cannizzaro R, Mongiat M, Spessotto P. The Probe Based Confocal Laser Endomicroscopy (pCLE) in Locally Advanced Gastric Cancer: A Powerful Technique for Real-Time Analysis of Vasculature. Front Oncol 2019; 9:513. [PMID: 31263680 PMCID: PMC6584847 DOI: 10.3389/fonc.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Probe based confocal laser endomicroscopy (pCLE) is an advanced technique which provides imaging of gastrointestinal mucosa at subcellular resolution and, importantly, a valid tool for the evaluation of microvasculature during endoscopic examination. In order to assess intratumoral vascularization and the efficiency of blood flow in locally advanced gastric cancer, we examined 57 patients through pCLE imaging. The vascular alterations in gastric cancer were mainly characterized by leakage and by the presence of tortuous and large size vessels. Defects in blood flow were detected very rarely. No association between the angiogenic score and the gastric tumor site or histological type was observed. Interestingly, no correlation was also found with the tumor grading indicating that the vascular angiogenic anomalies in gastric cancer represent an early pathological event to be observed and detected. The majority of patients displayed unchanged vascular alterations following neoadjuvant chemotherapy and this positively correlated with stable or progressive disease, suggesting that an unaltered angiogenic score could per se be indicative of poor therapeutic efficacy. Different vascular parameters were evaluated by immunofluorescence using bioptic samples and the vessel density did not correlate with clinical staging, site or histologic type. Interestingly, only CD105, Multimerin-2 and GLUT1 were able to discriminate normal from tumoral gastric mucosa. Taken together, these findings indicate that functional and structural angiogenic parameters characteristic of tumor blood network were fully detectable by pCLE. Moreover, the evaluation of tumor vasculature by real-time assessment may provide useful information to achieve tailored therapeutic interventions for gastric cancer patients.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Roberto Doliana
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Andrea Favero
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | | | - Stefania Maiero
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Raffaella Magris
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paola Spessotto
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
60
|
Shi D, Che J, Yan Y, Peng B, Yao X, Guo C. Expression and clinical value of CD105 in renal cell carcinoma based on data mining in The Cancer Genome Atlas. Exp Ther Med 2019; 17:4499-4505. [PMID: 31086581 PMCID: PMC6489005 DOI: 10.3892/etm.2019.7493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The objective of the present study was to assess the expression of CD105 and its association with overall survival in three subtypes of renal cell carcinoma (RCC), namely clear cell (cc)RCC, papillary (p)RCC and chromophobe (ch)RCC. Data regarding the transcriptome and copy number of genes in RCC tumor samples and survival were obtained from The Cancer Genome Atlas. Bioinformatics analysis revealed that CD105 is overexpressed in ccRCC tumor tissue vs. normal renal tissue, and a higher CD105 copy number in ccRCC tissues was significantly associated with longer patient survival. The effect of the mRNA expression of CD105 in all three types of RCC and the copy number in pRCC and chRCC on patient survival was insignificant, but certain trends were observed. In addition, CD105 mRNA expression was associated with the metastasis and tumor stage, as well as pathological stage in ccRCC and pRCC. Pathway enrichment analysis revealed that CD105 may, through translation initiation of associated genes, promote RCC progression. The results of the present study suggest that in RCC tumors, the association of CD105 with different stages is complex. To evaluate the role of CD105 in RCC, its function should be assessed in addition to its expression. The exact influence of CD105 mRNA expression and copy number in RCC tumors on patient survival and the underlying mechanisms require further elucidation.
Collapse
Affiliation(s)
- Donghui Shi
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China.,Department of Urology, Suzhou Wu Zhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jianping Che
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yang Yan
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Bo Peng
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Xudong Yao
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Changcheng Guo
- Department of Urology, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
61
|
Surov A, Meyer HJ, Höhn AK, Wienke A, Sabri O, Purz S. 18F-FDG-PET Can Predict Microvessel Density in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11040543. [PMID: 30991696 PMCID: PMC6521262 DOI: 10.3390/cancers11040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Aim: Positron emission tomography (PET) with 18F-fluordeoxyglucose (18F-FDG) plays an essential role in the staging and tumor monitoring of head and neck squamous cell carcinoma (HNSCC). Microvessel density (MVD) is one of the clinically important histopathological features in HNSCC. The purpose of this study was to analyze possible associations between 18F-FDG-PET findings and MVD parameters in HNSCC. Materials and Methods: Overall, 22 patients with a mean age of 55.2 ± 11.0 and with different HNSCC were acquired. In all cases, whole-body 18F-FDG-PET was performed. For each tumor, the maximum and mean standardized uptake values (SUVmax; SUVmean) were determined. The MVD, including stained vessel area and total number of vessels, was estimated on CD105 stained specimens. All specimens were digitalized and analyzed by using ImageJ software 1.48v. Spearman's correlation coefficient (r) was used to analyze associations between investigated parameters. p-values of <0.05 were taken to indicate statistical significance. Results: SUVmax correlated with vessel area (r = 0.532, p = 0.011) and vessel count (r = 0.434, p = 0.043). Receiver operating characteristic analysis identified a threshold SUVmax of 15 to predict tumors with high MVD with a sensitivity of 72.7% and specificity of 81.8%, with an area under the curve of 82.6%. Conclusion: ⁸F-FDG-PET parameters correlate statistically significantly with MVD in HNSCC. SUVmax may be used for discrimination of tumors with high tumor-related MVD.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany.
| | - Hans Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany.
| | - Anne-Kathrin Höhn
- Department of Pathology, University Hospital of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany.
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 8, 06097 Halle, Germany.
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Liebigstrasse 18, 04103 Leipzig, Germany.
| | - Sandra Purz
- Department of Nuclear Medicine, University Hospital of Leipzig, Liebigstrasse 18, 04103 Leipzig, Germany.
| |
Collapse
|
62
|
Kim K, Lee J, Jang H, Park S, Na J, Myung JK, Kim MJ, Jang WS, Lee SJ, Kim H, Myung H, Kang J, Shim S. Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy. Int J Mol Sci 2019; 20:ijms20051131. [PMID: 30841658 PMCID: PMC6429482 DOI: 10.3390/ijms20051131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced enteropathy remains a major complication after accidental or therapeutic exposure to ionizing radiation. Recent evidence suggests that intestinal microvascular damage significantly affects the development of radiation enteropathy. Mesenchymal stem cell (MSC) therapy is a promising tool to regenerate various tissues, including skin and intestine. Further, photobiomodulation (PBM), or low-level light therapy, can accelerate wound healing, especially by stimulating angiogenesis, and stem cells are particularly susceptible to PBM. Here, we explored the effect of PBM on the therapeutic potential of MSCs for the management of radiation enteropathy. In vitro, using human umbilical cord blood-derived MSCs, PBM increased proliferation and self-renewal. Intriguingly, the conditioned medium from MSCs treated with PBM attenuated irradiation-induced apoptosis and impaired tube formation in vascular endothelial cells, and these protective effects were associated with the upregulation of several angiogenic factors. In a mouse model of radiation-induced enteropathy, treatment with PBM-preconditioned MSCs alleviated mucosal destruction, improved crypt cell proliferation and epithelial barrier functions, and significantly attenuated the loss of microvascular endothelial cells in the irradiated intestinal mucosa. This treatment also significantly increased angiogenesis in the lamina propria. Together, we suggest that PBM enhances the angiogenic potential of MSCs, leading to improved therapeutic efficacy for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jiyoung Na
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - JiHoon Kang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| |
Collapse
|
63
|
Feenstra DJ, Seleci M, Denk N, Fauser S, Drawnel FM, Jayagopal A. Indocyanine green molecular angiography of choroidal neovascularization. Exp Eye Res 2018; 180:122-128. [PMID: 30582913 DOI: 10.1016/j.exer.2018.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
Retinal diseases such as proliferative diabetic retinopathy and neovascular AMD are characterized by the formation of new blood vessels. Current imaging techniques such as fluorescein and ICG angiography help to identify areas of vascular leakage but are limited in their applicability due to their nonspecific nature. However, as new treatment paradigms emerge in an effort to have patient specific treatments, the development of new imaging techniques that are capable of identifying patient specific biomarkers will become crucial for the success of these approaches. In this study, we create and characterize an endoglin (CD105) targeted imaging probe that can be used for indocyanine green (ICG) molecular angiography. This anti-endoglin-ICG bioconjugate has a self-quenching "off-on" capacity to enable high contrast imaging of proliferative blood vessels at a molecular level in vivo. Using the laser CNV mouse model we demonstrate an approximate 3-fold increase in lesion visualization compared to non-targeting controls.
Collapse
Affiliation(s)
- Derrick J Feenstra
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Muharrem Seleci
- Institute of Technical Chemistry, Leibniz University of Hanover, Hanover, Germany
| | - Nora Denk
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Sascha Fauser
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Faye M Drawnel
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Ashwath Jayagopal
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland.
| |
Collapse
|
64
|
Kasprzak A, Adamek A. Role of Endoglin (CD105) in the Progression of Hepatocellular Carcinoma and Anti-Angiogenic Therapy. Int J Mol Sci 2018; 19:E3887. [PMID: 30563158 PMCID: PMC6321450 DOI: 10.3390/ijms19123887] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
The liver is perfused by both arterial and venous blood, with a resulting abnormal microenvironment selecting for more-aggressive malignancies. Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, the sixth most common cancer globally, and the third leading cause of cancer-related mortality worldwide. HCC is characterized by its hypervascularization. Improving the efficiency of anti-angiogenic treatment and mitigation of anti-angiogenic drug resistance are the top priorities in the development of non-surgical HCC therapies. Endoglin (CD105), a transmembrane glycoprotein, is one of the transforming growth factor β (TGF-β) co-receptors. Involvement of that protein in angiogenesis of solid tumours is well documented. Endoglin is a marker of activated endothelial cells (ECs), and is preferentially expressed in the angiogenic endothelium of solid tumours, including HCC. HCC is associated with changes in CD105-positive ECs within and around the tumour. The large spectrum of endoglin effects in the liver is cell-type- and HCC- stage-specific. High expression of endoglin in non-tumour tissue suggests that this microenvironment might play an especially important role in the progression of HCC. Evaluation of tissue expression, as well as serum concentrations of this glycoprotein in HCC, tends to confirm its role as an important biomarker in HCC diagnosis and prognosis. The role of endoglin in liver fibrosis and HCC progression also makes it an attractive therapeutic target. Despite these facts, the exact molecular mechanisms of endoglin functioning in hepatocarcinogenesis are still poorly understood. This review summarizes the current data concerning the role and signalling pathways of endoglin in hepatocellular carcinoma development and progression, and provides an overview of the strategies available for a specific targeting of CD105 in anti-angiogenic therapy in HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Poznań 60-781, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Poznań 61-285, Poland.
| |
Collapse
|
65
|
Martínez-Periñán E, Sánchez-Tirado E, González-Cortés A, Barderas R, Sánchez-Puelles J, Martínez-Santamaría L, Campuzano S, Yáñez-Sedeño P, Pingarrón J. Amperometric determination of endoglin in human serum using disposable immunosensors constructed with poly(pyrrolepropionic) acid-modified electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
66
|
InVivo Molecular Ultrasound Assessment of Glioblastoma Neovasculature with Endoglin-Targeted Microbubbles. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8425495. [PMID: 30498402 PMCID: PMC6220748 DOI: 10.1155/2018/8425495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/16/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Objectives Glioblastoma, as one of the most malignant cancer in the world, usually shows substantially increased angiogenesis. Endoglin (CD105), which is an alternative proangiogenic growth factor, has been remarkably upregulated on the proliferating glioblastoma neovasculature. However, little is known on the noninvasive assessment of the expression levels of CD105 during glioblastoma progression. Herein, we investigated the potential of the molecular ultrasound imaging for the noninvasive assessment of the expression levels of the biomarker CD105 during the glioblastoma progression. Materials and Methods The CD105-targeted perfluorocarbon-containing lipid-shelled microbubbles (MBs) were prepared. A parallel flow chamber was employed, in which the CD105-targeted and non-targeted MBs were tested across the CD105 ± expression cell lines. In vivo molecular US imaging was conducted based on a subcutaneous xenograft tumor model (n=9). Finally, the statistical analysis was conducted to quantitatively correlate the attachment numbers of MBs in the parallel flow chamber test with the CD105 expression levels of the cells in the flow cytometry test and the in vivo molecular ultrasound signals with the ex vivo expression levels of CD105 in the immunohistochemical test. Results and Discussion The attachment numbers of the CD105-targeted MBs significantly correlated with the CD105 expression levels of the cells in the parallel flow chamber test. There was a good correlation between the in vivo molecular ultrasound signals with the CD105-targeted MBs and the ex vivo expression levels of CD105 in the immunohistochemical test. The results indicate that the molecular US imaging is much potential to assess the progression of the glioblastoma neovasculature noninvasively.
Collapse
|
67
|
Choueiri TK, Michaelson MD, Posadas EM, Sonpavde GP, McDermott DF, Nixon AB, Liu Y, Yuan Z, Seon BK, Walsh M, Jivani MA, Adams BJ, Theuer CP. An Open Label Phase Ib Dose Escalation Study of TRC105 (Anti-Endoglin Antibody) with Axitinib in Patients with Metastatic Renal Cell Carcinoma. Oncologist 2018; 24:202-210. [PMID: 30190302 DOI: 10.1634/theoncologist.2018-0299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND TRC105 is an IgG1 endoglin monoclonal antibody that potentiates VEGF inhibitors in preclinical models. We assessed safety, pharmacokinetics, and antitumor activity of TRC105 in combination with axitinib in patients with metastatic renal cell carcinoma (mRCC). SUBJECTS, MATERIALS, AND METHODS Heavily pretreated mRCC patients were treated with TRC105 weekly (8 mg/kg and then 10 mg/kg) in combination with axitinib (initially at 5 mg b.i.d. and then escalated per patient tolerance to a maximum of 10 mg b.i.d.) until disease progression or unacceptable toxicity using a standard 3 + 3 phase I design. RESULTS Eighteen patients (median number of prior therapies = 3) were treated. TRC105 dose escalation proceeded to 10 mg/kg weekly without dose-limiting toxicity. Adverse event characteristics of each drug were not increased in frequency or severity when the two drugs were administered concurrently. TRC105 and axitinib demonstrated preliminary evidence of activity, including partial responses (PR) by RECIST in 29% of patients, and median progression-free survival (11.3 months). None of the patients with PR had PR to prior first-line treatment. Lower baseline levels of osteopontin and higher baseline levels of TGF-β receptor 3 correlated with overall response rate. CONCLUSION TRC105 at 8 and 10 mg/kg weekly was well tolerated in combination with axitinib, with encouraging evidence of activity in patients with mRCC. A multicenter, randomized phase II trial of TRC105 and axitinib has recently completed enrollment (NCT01806064). IMPLICATIONS FOR PRACTICE TRC105 is a monoclonal antibody to endoglin (CD105), a receptor densely expressed on proliferating endothelial cells and also on renal cancer stem cells that is implicated as a mediator of resistance to inhibitors of the VEGF pathway. In this Phase I trial, TRC105 combined safely with axitinib at the recommended single agent doses of each drug in patients with renal cell carcinoma. The combination demonstrated durable activity in a VEGF inhibitor-refractory population and modulated several angiogenic biomarkers. A randomized Phase II trial testing TRC105 in combination with axitinib in clear cell renal cell carcinoma has completed accrual.
Collapse
Affiliation(s)
| | | | | | - Guru P Sonpavde
- University of Alabama Comprehensive Cancer Center, Birmingham, Alabama, USA
| | | | - Andrew B Nixon
- Duke University Medical Center, Durham, North Carolina, USA
| | - Yingmiao Liu
- Duke University Medical Center, Durham, North Carolina, USA
| | - Zhenhua Yuan
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ben K Seon
- Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Meghara Walsh
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Manoj A Jivani
- TRACON Pharmaceuticals, Inc., San Diego, California, USA
| | - Bonne J Adams
- TRACON Pharmaceuticals, Inc., San Diego, California, USA
| | | |
Collapse
|
68
|
Qian H, Yang L, Zhao W, Chen H, He S. A comparison of CD105 and CD31 expression in tumor vessels of hepatocellular carcinoma by tissue microarray and flow cytometry. Exp Ther Med 2018; 16:2881-2888. [PMID: 30214510 PMCID: PMC6125829 DOI: 10.3892/etm.2018.6553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor endothelial cells (TECs) have been isolated from solid tumors by using immunological magnetic beads and magnetic active cell sorting, and lead to a more precise way to investigate tumor angiogenesis as well as screening of vascular targeting drugs. However, the question of which endothelial marker is a stable molecular signature in TECs and can be used for the isolation of TECs from tumor tissues remains unclear. In this study, we investigated the endothelial markers CD105 and CD31 in the tumor vessels from 90 patients with hepatocellular carcinoma (HCC) by tissue microarray, in addition to their expression in TECs isolated from fresh tissues resected from 11 patients with HCC by flow cytometry and confocal microscopy. The results revealed that among 90 cases of TMA, all tumor vessels were CD31 positive whereas 39 cases (43.3%) had little or no CD105 expression in tumors and their vessels but not peritumoral tissue spots, and that among these 39, 29 cases (74.4%) were poor-differentiated HCC. These findings were further verified by flow cytometry and confocal analysis of TECs isolated from HCC. Overall, the results suggested that CD105 may not be expressed in TECs derived from poor-differentiated HCC cases. In addition, combined with previous studies in which CD105 is not only expressed in TECs, but also in tumor cells, the results indicated a high risk of contamination with CD105+ tumor cells. Thus, there is a limitation to the use CD105 as an endothelial marker for the isolation of TECs.
Collapse
Affiliation(s)
- Hongyan Qian
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Liping Yang
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Wenjing Zhao
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Haizhen Chen
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Song He
- Key Laboratory of Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
69
|
Sowa P, Goroszkiewicz K, Szydelko J, Chechlinska J, Pluta K, Domka W, Misiolek M, Scierski W. A Review of Selected Factors of Salivary Gland Tumour Formation and Malignant Transformation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2897827. [PMID: 30155477 PMCID: PMC6092996 DOI: 10.1155/2018/2897827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary gland tumours represent about 6% of head and neck neoplasms and about 0.5% of all malignancies in humans. Tumour growth and malignant transformation are complex processes involving various actions of molecules. Furthermore, some malignant salivary gland tumours are deemed to be caused by dedifferentiation or malignant transformation of benign tumours. The mechanisms of this transformation depend on a variety of different elements, such as cell cycle regulators, oncogenes, proteins, angiogenesis factors, and adipocytokines. The authors used PubMed, Medline, and Google websites to find and review the most significant papers related to malignant transformation in benign salivary gland tumours.
Collapse
Affiliation(s)
- Pawel Sowa
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Karolina Goroszkiewicz
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Szydelko
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Chechlinska
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Pluta
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Domka
- Department of Otorhinolaryngology, Faculty of Medicine, University of Rzeszow, Poland
| | - Maciej Misiolek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Scierski
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
70
|
Shan R, Wang B, Wang A, Sun Z, Dong F, Liu J, Sun H. Endoglin-targeted contrast-enhanced ultrasound imaging in hepatoblastoma xenografts. Oncol Lett 2018; 16:3784-3790. [PMID: 30127989 PMCID: PMC6096263 DOI: 10.3892/ol.2018.9067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is required for the growth of hepatoblastoma (HB). In the present study, an ultrasonic contrast agent, microbubbles (MB), was combined with an endoglin antibody, and then injected into nude mice with HB. This was conducted to detect specific binding to microvessels via non-linear harmonic imaging for tumor angiogenesis assessment. In addition, endoglin expression in experimental animals was measured using western blotting, reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. In vitro, human umbilical vein endothelial cells (HUVECs) were co-cultured with conditioned media collected from HepG2 cells. Western blotting and reverse transcription-quantitative PCR was performed to detect the changes of endoglin expression. In targeted ultrasound imaging, it was determined that the differential targeted enhancement of MBendoglin was significantly higher than that of MBisotype. Over expression of endoglin was identified in the tumor of experimental nude mice; however, it was not present in the liver of the mice. Endoglin expression in HUVECs was significantly increased by co-culture with the conditioned media of HepG2 cells; therefore, the results suggest that endoglin is upregulated in angiogenic vessels in the HepG2 cell xenografts in nude mice. Thus, endoglin-targeted ultrasound imaging is presented as a potential approach for the diagnosis of liver carcinoma.
Collapse
Affiliation(s)
- Rong Shan
- Department of Ultrasonography, Jinan Infectious Disease Hospital, Jinan, Shandong 250021, P.R. China.,Department of Ultrasound, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Bei Wang
- Department of Ultrasonography, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Aiguang Wang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zongguo Sun
- The Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fengyun Dong
- The Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ju Liu
- The Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Hongjun Sun
- Department of Ultrasonography, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
71
|
Kim PM, Lee JJ, Choi D, Eoh H, Hong YK. Endothelial lineage-specific interaction of Mycobacterium tuberculosis with the blood and lymphatic systems. Tuberculosis (Edinb) 2018; 111:1-7. [PMID: 30029892 DOI: 10.1016/j.tube.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/22/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has plagued humanity for tens of thousands of years, yet still remains a threat to human health. Its pathology is largely associated with pulmonary tuberculosis with symptoms including fever, hemoptysis, and chest pain. Mtb, however, also manifests in other extrapulmonary organs, such as the pleura, bones, gastrointestinal tract, central nervous system, and lymph nodes. Compared to the knowledge of pulmonary tuberculosis, extrapulmonary pathologies of Mtb are quite understudied. Lymph node tuberculosis is one of the most common extrapulmonary manifestations of tuberculosis, and presents significant challenges in its diagnosis, management, and treatment due to its elusive etiologies and pathologies. The objective of this review is to overview the current understanding of the tropism and pathogenesis of Mtb in endothelial cells of the extrapulmonary tissues, particularly, in lymph nodes. Lymphatic endothelial cells (LECs) are derived from blood vascular endothelial cells (BECs) during development, and these two types of endothelial cells demonstrate substantial molecular, cellular and genetic similarities. Therefore, systemic comparison of the differential and common responses of BECs vs. LECs to Mtb invasion could provide new insights into its pathogenesis, and may promote new investigations into this deadly disease.
Collapse
Affiliation(s)
- Paul M Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dongwon Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hyungjin Eoh
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
72
|
Browne S, Jha AK, Ameri K, Marcus SG, Yeghiazarians Y, Healy KE. TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels. PLoS One 2018; 13:e0194679. [PMID: 29566045 PMCID: PMC5864059 DOI: 10.1371/journal.pone.0194679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022] Open
Abstract
Cell-based strategies for the treatment of ischemic diseases are at the forefront of tissue engineering and regenerative medicine. Cell therapies purportedly can play a key role in the neovascularization of ischemic tissue; however, low survival and poor cell engraftment with the host vasculature following implantation limits their potential to treat ischemic diseases. To overcome these limitations, we previously developed a growth factor sequestering hyaluronic acid (HyA)-based hydrogel that enhanced transplanted mouse cardiosphere-derived cell survival and formation of vasculature that anastomosed with host vessels. In this work, we examined the mechanism by which HyA hydrogels presenting transforming growth factor beta-1 (TGF-β1) promoted proliferation of more clinically relevant human cardiosphere-derived cells (hCDC), and their formation of vascular-like networks in vitro. We observed hCDC proliferation and enhanced formation of vascular-like networks occurred in the presence of TGF-β1. Furthermore, production of nitric oxide (NO), VEGF, and a host of angiogenic factors were increased in the presence of TGF-β1. This response was dependent on the co-activity of CD105 (Endoglin) with the TGF-βR2 receptor, demonstrating its role in the process of angiogenic differentiation and vascular organization of hCDC. These results demonstrated that hCDC form vascular-like networks in vitro, and that the induction of vascular networks by hCDC within growth factor sequestering HyA hydrogels was mediated by TGF-β1/CD105 signaling.
Collapse
Affiliation(s)
- Shane Browne
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Amit K. Jha
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
| | - Kurosh Ameri
- Department of Medicine, University of California, San Francisco, CA, United States of America
| | - Sivan G. Marcus
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
| | - Yerem Yeghiazarians
- Department of Medicine, University of California, San Francisco, CA, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Kevin E. Healy
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
73
|
Saeednejad Zanjani L, Madjd Z, Abolhasani M, Shariftabrizi A, Rasti A, Asgari M. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma. Cancer Biomark 2018; 21:821-837. [DOI: 10.3233/cbm-170755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Zahra Madjd
- Oncopathology Research Center,
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine,
| | | | - Ahmad Shariftabrizi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology,
| | | | - Mojgan Asgari
- Oncopathology Research Center,
- Hasheminejad Kidney Center,
| |
Collapse
|
74
|
The expression of the MSC-marker CD73 and of NF2/Merlin are correlated in meningiomas. J Neurooncol 2018; 138:251-259. [PMID: 29468444 DOI: 10.1007/s11060-018-2807-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
|
75
|
Nakamura T. Changes in Expression of Bile Canalicular CD10 and Sinusoidal CD105 (Endoglin) in Peritumoral Hepatic Tissue. TUMORI JOURNAL 2018; 95:495-500. [DOI: 10.1177/030089160909500415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aims and background Hepatic tissues, including bile canaliculi and sinusoids, around primary or metastatic tumors are destructed and regenerate associated with tumor growth, and may show some phenotypic changes. The present study was undertaken to examine the expression of CD10 in bile canaliculi [CD10(BC)] and CD105 (endoglin) along hepatic sinusoids [CD105(HS)] in peritumoral hepatic tissue (PTH). Methods Fifty samples of resected liver bearing hepatocellular carcinoma (HCC) or metastatic carcinoma were immunostained for CD10 and CD105. The immunoreactivity for CD10(BC) and CD105(HS) in the background hepatic tissue of tumors and PTH was scored separately. Results CD10(BC) was moderately or markedly expressed in the background hepatic tissue without chronic hepatitis or cirrhosis in most of the cases, and was significantly downregulated in chronic hepatitis and cirrhosis. CD105(HS) was negative or minimally positive in most of the cases of hepatic tissue bearing metastatic carcinoma, and showed a significant increase in chronic hepatitis and cirrhosis. Compared with the background, PTH revealed significantly decreased CD10(BC) staining irrespective of HCC or metastatic carcinoma, and showed belt-like CD105(HS) expression in 66.7% of the cases of metastatic carcinoma and in 88.6% of those with HCC. Conclusions These data indicate that the expression patterns of CD10(BC) and CD105(HS) in PTH are similar to those in chronic hepatitis and cirrhosis, which may be caused by persistent injury and resultant regeneration of hepatic tissue.
Collapse
|
76
|
Zhang J, Zhang L, Lin Q, Ren W, Xu G. Prognostic value of endoglin-assessed microvessel density in cancer patients: a systematic review and meta-analysis. Oncotarget 2018; 9:7660-7671. [PMID: 29484142 PMCID: PMC5800934 DOI: 10.18632/oncotarget.23546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endoglin (ENG, CD105), an auxiliary receptor for several TGF-β superfamily ligands, is constitutively expressed in tumor microvessels. The prognostic value of ENG-assessed microvessel density (MVD) has not been systemically analyzed. This meta-analysis reviews and evaluates the association between ENG expression and prognosis in cancer patients. MATERIALS AND METHODS Thirty published studies involving in 3613 patients were included after searching of PubMed, Web of Science, and EMBASE. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS) were calculated using random-effects models. The publication bias was detected by a Begg's test and Egger's test. The outcome stability was verified by sensitivity analysis. RESULTS The high ENG-assessed MVD was significantly associated with poor OS (HR = 2.14, 95% CI 1.62-2.81; P < 0.001), DFS (HR = 3.23, 95% CI 2.10-4.95; P < 0.001), CSS (HR = 3.33, 95% CI 1.32-8.37; P < 0.001). Furthermore, subgroup analysis revealed that the association between the overexpression of ENG in tumor microvessels and the outcome endpoints (OS or DFS) were also significant in the Asians and Caucasians patients with different cancer types. CONCLUSIONS ENG of tumor microvessels is a predictor of poor OS, DFS and CSS and may be a prognostic marker of patients with cancer.
Collapse
Affiliation(s)
- Jinguo Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lingyun Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qunbo Lin
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weimin Ren
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
77
|
Kenswil KJG, Jaramillo AC, Ping Z, Chen S, Hoogenboezem RM, Mylona MA, Adisty MN, Bindels EMJ, Bos PK, Stoop H, Lam KH, van Eerden B, Cupedo T, Raaijmakers MHGP. Characterization of Endothelial Cells Associated with Hematopoietic Niche Formation in Humans Identifies IL-33 As an Anabolic Factor. Cell Rep 2018; 22:666-678. [DOI: 10.1016/j.celrep.2017.12.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/06/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
|
78
|
Mihaylova Z, Tsikandelova R, Sanimirov P, Gateva N, Mitev V, Ishkitiev N. Role of PDGF-BB in proliferation, differentiation and maintaining stem cell properties of PDL cells in vitro. Arch Oral Biol 2018; 85:1-9. [DOI: 10.1016/j.archoralbio.2017.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/10/2017] [Accepted: 09/24/2017] [Indexed: 12/19/2022]
|
79
|
Shoeibi S, Mozdziak P, Mohammadi S. Important signals regulating coronary artery angiogenesis. Microvasc Res 2017; 117:1-9. [PMID: 29247718 DOI: 10.1016/j.mvr.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
Angiogenesis is a complex process of budding, the formation of new blood vessels from pre-existing microvessels, via migration, proliferation and survival. Vascular angiogenesis factors include different classes of molecules that have a fundamental role in blood vessel formation. Numerous inducers of angiogenesis, such as the members of the vascular endothelial growth factor (VEGF) family, basic fibroblast growth factor (bFGF), angiopoietin (Ang), hepatocyte growth factor (HGF), and hypoxia inducible factor-1 (HIF-1), have an important role in angiogenesis. However, VEGF, platelet-derived growth factor (PDGF), and transforming growth factor β (TGF-β) expression appear to be important in intraplaque angiogenesis. Interaction and combined effects between growth factors is essential in endothelial cell migration, proliferation, differentiation, and endothelial cell-cell communication that ultimately lead to the microvessel formation. Since VEGF has a key role during angiogenesis; it may be considered as a good therapeutic target in the clinic. The essential function of several angiogenic factors involved in coronary angiogenesis and intraplaque angiogenesis in atherosclerosis are carefully considered along with the use of angiogenic factors in clinical practice.
Collapse
Affiliation(s)
- Sara Shoeibi
- Cellular and Molecular research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC
| | - Shabnam Mohammadi
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
80
|
Ding Q, Chen Y, Dong S, Xu X, Liu J, Song P, Yu C, Ma Z. Astrocyte elevated gene-1 is overexpressed in non-small-cell lung cancer and associated with increased tumour angiogenesis. Interact Cardiovasc Thorac Surg 2017; 26:395-401. [PMID: 29049797 DOI: 10.1093/icvts/ivx340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Qiuping Ding
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Yingrong Chen
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Shunli Dong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xuting Xu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jin Liu
- Department of Pathology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Caihua Yu
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Zhihong Ma
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
81
|
Hepatitis C Virus Core Protein Modulates Endoglin (CD105) Signaling Pathway for Liver Pathogenesis. J Virol 2017; 91:JVI.01235-17. [PMID: 28794048 DOI: 10.1128/jvi.01235-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022] Open
Abstract
Endoglin is part of the TGF-β receptor complex and has a crucial role in fibrogenesis and angiogenesis. It is also an important protein for tumor growth, survival, and cancer cell metastasis. In a previous study, we have shown that hepatitis C virus (HCV) infection induces epithelial-mesenchymal transition (EMT) state and cancer stem-like cell (CSC) properties in human hepatocytes. Our array data suggested that endoglin (CD105) mRNA is significantly upregulated in HCV-associated CSCs. In this study, we have observed increased endoglin expression on the cell surface of an HCV core-expressing hepatocellular carcinoma (HepG2) cell line or immortalized human hepatocytes (IHH) and activation of its downstream signaling molecules. The status of phospho-SMAD1/5 and the expression of inhibitor of DNA binding protein 1 (ID1) were upregulated in HCV-infected cells or viral core gene-transfected cells. Additionally, we observed upregulation of endoglin/ID1 mRNA expression in chronic HCV patient liver biopsy samples. CSC generation by HCV core protein was dependent on the endoglin signaling pathway using activin receptor-like kinase 1 (ALK1) Fc blocking peptide and endoglin small interfering RNA (siRNA). Further, follow-up from in vitro analysis suggested that the antiapoptosis Bcl2 protein, proliferation-related cyclin D1 protein, and CSC-associated Hes1, Notch1, Nanog, and Sox2 proteins are enhanced during infection or ectopic expression of HCV core protein.IMPORTANCE Endoglin plays a crucial role in fibrogenesis and angiogenesis and is an important protein for tumor growth, survival, and cancer cell metastasis. Endoglin enhances ALK1-SMAD1/5 signaling in different cell types, leading to increased proliferation and migration responses. We have observed endoglin expression on the HCV core-expressing cell surface of human hepatocyte origin and activation of phospho-SMAD1/5 and ID1 downstream signaling molecules. ID1 protein plays a role in CSC properties, and we found that this pathway is important for antiapoptotic and cell proliferation signaling. Blocking of endoglin-ALK1-SMAD1/5 might be a good candidate for therapy for liver cancer stem cells together with liver cirrhosis.
Collapse
|
82
|
Markmee R, Aungsuchawan S, Narakornsak S, Tancharoen W, Bumrungkit K, Pangchaidee N, Pothacharoen P, Puaninta C. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte‑like cells. Mol Med Rep 2017; 16:6068-6076. [PMID: 28849052 PMCID: PMC5865810 DOI: 10.3892/mmr.2017.7333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Ischemic heart disease (IHD) is a major factor influencing worldwide mortality rates. Furthermore, IHD has become a significant health problem among the Thai population. Stem cell therapy using mesenchymal stem cells (MSCs) is an alternative therapeutic method that has been applied to improve the quality of life of patients. Amniotic fluid (AF) contains a heterogeneous cell population, including MSCs, which are multipotent stem cells that have the capability to differentiate into mesenchymal lineages. The purpose of the present study was to evaluate the MSC characteristics of human (h)AF and determine its potency regarding cardiogenic differentiation. MSC characterization following flow cytometric analysis revealed that the cells expressed MSC markers, cluster of differentiation (CD)44, CD90, human leukocyte antigen-ABC and CD73. The results of the alamar blue assay demonstrated that cell proliferation rate continuously increased from the early cultivation phase up to 5-fold during days 1 to 5 of cell culturing. The highest rate of cell proliferation was observed on day 17 with a 30-fold increase compared with that on day 1. During the cardiogenic induction stage, morphological changes were observed between day 0 and day 21, and it was revealed that the hAF derived-MSCs in the cardiogenic-induced group exhibited myotube-like morphology after 7 days of cell culturing. Following cardiogenic induction, immunohistochemistry staining was performed on day 21, and reverse transcription-quantitative polymerase chain reaction on day 7 and 21. These steps were performed to detect the protein and gene expression levels of cardiac specific proteins (GATA4, cardiac troponin T, Nkx2.5 and Connexin43). The results of the present study indicated that hAF-MSCs possess the potential to differentiate into cardiomyocyte-like cells. Thus, it was concluded that hAF may be a suitable source of MSCs for stem cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Kanokkarn Bumrungkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Nataporn Pangchaidee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Chaniporn Puaninta
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| |
Collapse
|
83
|
Fu J, Wiraja C, Muhammad HB, Xu C, Wang DA. Improvement of endothelial progenitor outgrowth cell (EPOC)-mediated vascularization in gelatin-based hydrogels through pore size manipulation. Acta Biomater 2017; 58:225-237. [PMID: 28611001 DOI: 10.1016/j.actbio.2017.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
In addition to chemical compositions, physical properties of scaffolds, such as pore size, can also influence vascularization within the scaffolds. A larger pore has been shown to improve host vascular tissue invasion into scaffolds. However, the influence of pore sizes on vascularization by endothelial cells directly encapsulated in hydrogels remains unknown. In this study, micro-cavitary hydrogels with different pore sizes were created in gelatin-methacrylate hydrogels with dissolvable gelatin microspheres (MS) varying in sizes. The effect of pore sizes on vascular network formation by endothelial progenitor outgrowth cells (EPOCs) encapsulated in hydrogels was then investigated both in vitro and in vivo. When cultured in vitro, vascular networks were formed around pore structures in micro-cavitary hydrogels. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro. When implantation in vivo, functional connections between encapsulated EPOCs and host vasculature micro-cavitary hydrogels were established. Vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones. STATEMENT OF SIGNIFICANCE This study reveals that the optimal pore size for hydrogel vascularization in vitro and in vivo is different. The middle pore size supported best differentiation of EPOCs and thus best hydrogel vascularization in vitro, while vascularization in vivo was promoted best in hydrogels with the large pore size due to the increased vascular tissue invasion. These results highlight the difference between in vitro and in vivo culture conditions and indicate that pore sizes shall be designed for in vitro and in vivo hydrogel vascularization respectively. Pore sizes for hydrogel vascularization in vitro shall be middle ones and pore sizes for hydrogel vascularization in vivo shall be large ones.
Collapse
|
84
|
Fernández-Pérez J, Binner M, Werner C, Bray LJ. Limbal stromal cells derived from porcine tissue demonstrate mesenchymal characteristics in vitro. Sci Rep 2017; 7:6377. [PMID: 28743889 PMCID: PMC5527094 DOI: 10.1038/s41598-017-06898-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
Limbal stromal cells (LSCs) from the human ocular surface display mesenchymal stromal cell characteristics in vitro. In this study, we isolated cells from the porcine limbal stroma (pLSCs), characterised them, and evaluated their ability to support angiogenesis and the culture of porcine limbal epithelial stem cells (pLESCs). The isolated cells adhered to plastic and grew in monolayers in vitro using serum-supplemented or serum-free medium. The pLSCs demonstrated expression of CD29, and cross-reactivity with anti-human CD45, CD90, CD105, CD146, and HLA-ABC. However, expression of CD105, CD146 and HLA-ABC reduced when cultured in serum-free medium. PLSCs did not undergo adipogenic or osteogenic differentiation, but differentiated towards the chondrogenic lineage. Isolated cells were also co-cultured with human umbilical vein endothelial cells (HUVECs) in star-shaped Poly(ethylene glycol) (starPEG)-heparin hydrogels to assess their pericyte capacity which supported angiogenesis networks of HUVECs. PLSCs supported the three dimensional HUVEC network for 7 days. The isolated cells were further growth-arrested and evaluated as feeder cells for pLESC expansion on silk fibroin membranes, as a potential carrier material for transplantation. PLSCs supported the growth of pLESCs comparably to murine 3T3 cells. In conclusion, although pLSCs were not completely comparable to their human counterpart, they display several mesenchymal-like characteristics in vitro.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Center of Regenerative Therapies, Hohe Straße 6, Dresden, Saxony, 01069, Germany.,Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin 2, Dublin, Ireland
| | - Marcus Binner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Center of Regenerative Therapies, Hohe Straße 6, Dresden, Saxony, 01069, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Center of Regenerative Therapies, Hohe Straße 6, Dresden, Saxony, 01069, Germany.,Dresden University of Technology, Dresden, Saxony, 01069, Germany
| | - Laura J Bray
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Center of Regenerative Therapies, Hohe Straße 6, Dresden, Saxony, 01069, Germany. .,Queensland University of Technology (QUT), Queensland, 4059, Kelvin Grove, Australia.
| |
Collapse
|
85
|
Opławski M, Michalski M, Witek A, Michalski B, Zmarzły N, Jęda-Golonka A, Styblińska M, Gola J, Kasprzyk-Żyszczyńska M, Mazurek U, Plewka A. Identification of a gene expression profile associated with the regulation of angiogenesis in endometrial cancer. Mol Med Rep 2017; 16:2547-2555. [PMID: 28656251 PMCID: PMC5547990 DOI: 10.3892/mmr.2017.6868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The publication of the human genome sequence provided direction in the search for novel diagnostic and therapeutic methods for the treatment of human diseases. The aim of the present study was to investigate the hypothesis that the expression profile of genes involved in the regulation of angiogenesis may be a marker in endometrial cancer that facilitates the diagnosis and prognosis of patients, as well as the identification of novel therapeutic targets. The current study included 36 patients with grade (G) 1 to 3 endometrial cancer, and a control group of patients consisting of females that qualified for the removal of the uterus. Out of these, 28 samples (control, 3; G1, 7; G2, 12; and G3, 6) were selected for microarray analysis. Molecular analysis of the endometrial samples involved the extraction of total RNA, purification of the obtained extracts and subsequent analysis of the gene expression profiles using an oligonucleotide microarray technique (GeneChip® Human Genome U133A plates). The results indicated that the mRNA expression profile of genes involved in the regulation of angiogenesis varies depending on the degree of histological differentiation of endometrial adenocarcinoma. Similar results were obtained from descriptive statistics characterizing the expression profile of 691 mRNAs associated with the regulation of angiogenesis in the groups of patients with endometrial adenocarcinoma. In addition, the results of the present study indicated that neuropilin2 (NRP2) may serve an important role in the activity of endothelial cells, and may affect vascular endothelial growth factor, and potentially plexins and integrins via regulation of their functions. An understanding of how these proteins interact remains to be determined; however, elucidating these interactions may provide an explanation for the mechanisms underlying angiogenesis. In conclusion, the results of the present study suggest that NRP2 may be a valuable target for investigation in future pharmacological studies involving angiogenesis in endometrial cancer.
Collapse
Affiliation(s)
- Marcin Opławski
- Department of Proteomics, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Mateusz Michalski
- Department of Gynecological Oncology, Gynecology and Obstetrics, Regional Railway Hospital, Katowice 40‑760, Poland
| | - Andrzej Witek
- Department of Gynecology, Obstetrics and Oncologic Gynecology, Medical University of Silesia, Katowice 40‑752, Poland
| | - Bogdan Michalski
- Department of Oncological Gynaecology, School of Health Sciences, Medical University of Silesia, Katowice 40‑752, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Agnieszka Jęda-Golonka
- Department of Gynecological Oncology, Gynecology and Obstetrics, Regional Railway Hospital, Katowice 40‑760, Poland
| | - Maria Styblińska
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Joanna Gola
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Małgorzata Kasprzyk-Żyszczyńska
- Department of Proteomics, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| | - Andrzej Plewka
- Department of Proteomics, School of Pharmacy, Division of Medical Analytics, Medical University of Silesia, Sosnowiec 41‑200, Poland
| |
Collapse
|
86
|
From skeletal muscle to stem cells: an innovative and minimally-invasive process for multiple species. Sci Rep 2017; 7:696. [PMID: 28386120 PMCID: PMC5429713 DOI: 10.1038/s41598-017-00803-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow and adipose tissue represent the two most commonly exploited sources of adult mesenchymal stem cells for musculoskeletal applications. Unfortunately the sampling of bone marrow and fat tissue is invasive and does not always lead to a sufficient number of cells. The present study describes a novel sampling method based on microbiopsy of skeletal muscle in man, pigs, dogs and horses. The process includes explant of the sample, Percoll density gradient for isolation and subsequent culture of the cells. We further characterized the cells and identified their clonogenic and immunomodulatory capacities, their immune-phenotyping behavior and their capability to differentiate into chondroblasts, osteoblasts and adipocytes. In conclusion, this report describes a novel and easy-to-use technique of skeletal muscle-derived mesenchymal stem cell harvest, culture, characterization. This technique is transposable to a multitude of different animal species.
Collapse
|
87
|
Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood 2017; 129:2526-2536. [PMID: 28351936 DOI: 10.1182/blood-2017-01-763581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/20/2017] [Indexed: 12/23/2022] Open
Abstract
Endoglin (CD105), a receptor of the transforming growth factor-β superfamily, has been reported to identify functional long-term repopulating hematopoietic stem cells, and has been detected in certain subtypes of acute leukemias. Whether this receptor plays a functional role in leukemogenesis remains unknown. We identified endoglin expression on the majority of blasts from patients with acute myeloid leukemia (AML) and acute B-lymphoblastic leukemia (B-ALL). Using a xenograft model, we find that CD105+ blasts are endowed with superior leukemogenic activity compared with the CD105- population. We test the effect of targeting this receptor using the monoclonal antibody TRC105, and find that in AML, TRC105 prevented the engraftment of primary AML blasts and inhibited leukemia progression following disease establishment, but in B-ALL, TRC105 alone was ineffective due to the shedding of soluble CD105. However, in both B-ALL and AML, TRC105 synergized with reduced intensity myeloablation to inhibit leukemogenesis, indicating that TRC105 may represent a novel therapeutic option for B-ALL and AML.
Collapse
|
88
|
Ketkaew Y, Osathanon T, Pavasant P, Sooampon S. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol 2017; 74:69-74. [DOI: 10.1016/j.archoralbio.2016.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
|
89
|
McGahan BG, Neilsen BK, Kelly DL, McComb RD, Kazmi SAJ, White ML, Zhang Y, Aizenberg MR. Assessment of vascularity in glioblastoma and its implications on patient outcomes. J Neurooncol 2017; 132:35-44. [PMID: 28102487 DOI: 10.1007/s11060-016-2350-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/23/2016] [Indexed: 12/15/2022]
Abstract
There is little data on why glioblastomas (GBM) hemorrhage and how it may affect patient outcomes. The aim of this study was to investigate the mechanisms of hemorrhage in glioblastoma by examining molecular and genetic features by immunohistochemistry (IHC) and mRNA expression profiles in association with imaging and clinical outcomes. An observational retrospective cohort analysis was performed on 43 FFPE GBM tissue samples. MR images were assessed for the presence of hemorrhage and extent of resection. Specimens were examined for CD34 and CD105 expression using IHC. Tumor mRNA expression profiles were analyzed for 92 genes related to angiogenesis and vascularity. Forty-three specimens were analyzed, and 20 showed signs of hemorrhage, 23 did not. The average OS for patients with GBM with hemorrhage was 19.12 months (95% CI 10.39-27.84), versus 13.85 months (95% CI 8.85-18.85) in those without hemorrhage (p > 0.05). Tumors that hemorrhaged had higher IHC staining for CD34 and CD105. mRNA expression analysis revealed tumor hemorrhage was associated with increased expression of HIF1α and MDK, and decreased expression of F3. Hemorrhage in GBM was not associated with worsened OS. Increased expression of angiogenic factors and increased CD34 and CD105 IHC staining in tumors with hemorrhage suggests that increased hypoxia-induced angiogenesis and vessel density may play a role in glioblastoma hemorrhage. Characterizing tumors that are prone to hemorrhage and mechanisms behind the development of these hemorrhages may provide insights that can lead to the development of targeted, individualized therapies for glioblastoma.
Collapse
Affiliation(s)
- Ben G McGahan
- Division of Neurosurgery, University of Nebraska Medical Center, 982035 Nebraska Medical Center, Omaha, NE, 68198-2035, USA
| | - Beth K Neilsen
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, USA
| | - David L Kelly
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, USA
| | - Rodney D McComb
- Department of Pathology, University of Nebraska Medical Center, Omaha, USA
| | - S A Jaffar Kazmi
- Geisinger Medical Laboratories, Geisinger Medical Center, Danville, PA, USA
| | - Matt L White
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yan Zhang
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Aizenberg
- Division of Neurosurgery, University of Nebraska Medical Center, 982035 Nebraska Medical Center, Omaha, NE, 68198-2035, USA.
| |
Collapse
|
90
|
Zygoń J, Szajewski M, Kruszewski WJ, Rzepko R. VEGF, Flt-1, and microvessel density in primary tumors as predictive factors of colorectal cancer prognosis. Mol Clin Oncol 2016; 6:243-248. [PMID: 28357103 DOI: 10.3892/mco.2016.1121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/13/2023] Open
Abstract
Angiogenesis in the primary tumor is known to be necessary for tumor progression in adenocarcinomas of the colon. However, whether angiogenesis in the primary tumors of patients with colorectal cancer affects their prognosis has yet to be fully elucidated. The aim of the present study was to assess the association between selected pathoclinical parameters and overall survival of resectable colorectal cancer patients with the expression of angiogenesis-promoting factors, including vascular endothelial growth factor (VEGF) and Fms-like tyrosine kinase receptor (Flt-1), and microvessel density (MVD) in the primary tumor. VEGF and Flt-1 expression were assessed, as well as MVD (with anti-CD34) by immunohistochemistry in 139 archived primary colorectal cancer tissue samples. These results were compared with the overall survival of the patients and potential prognostic pathoclinical parameters. A higher MVD in the tumors expressing Flt-1 (P=0.04) was identified. However, there was no correlation between the pathoclinical parameters of colon cancer and Flt-1 expression, VEGF expression, or MVD in the tumor. Furthermore, the intensity of VEGF expression, Flt-1 expression and tumor MVD did not correlate with the overall survival of the patients. Therefore, although increased expression of VEGF and Flt-1 was correlated with an increased expression of MVD in the primary tumors of resectable colorectal cancer patients, these factors were not correlated with prognostic pathoclinical factors and overall survival.
Collapse
Affiliation(s)
- Justyna Zygoń
- Department of General Surgery, Kościerzyna Hospital Ltd., Kościerzyna 83-400, Poland
| | - Mariusz Szajewski
- Department of Surgical Oncology, Gdynia Oncology Centre, PCK's Maritime Hospital in Gdynia, Gdynia 81-519, Poland; Department of Propaedeutic of Oncology, Faculty of Health Sciences, Medical University of Gdańsk, Gdynia 81-519, Poland
| | - Wiesław Janusz Kruszewski
- Department of Surgical Oncology, Gdynia Oncology Centre, PCK's Maritime Hospital in Gdynia, Gdynia 81-519, Poland; Department of Propaedeutic of Oncology, Faculty of Health Sciences, Medical University of Gdańsk, Gdynia 81-519, Poland
| | - Robert Rzepko
- Department of Pathology, Prabuty Hospital Ltd., Prabuty 82-550, Poland
| |
Collapse
|
91
|
Khan MI, Czarnecka AM, Lewicki S, Helbrecht I, Brodaczewska K, Koch I, Zdanowski R, Król M, Szczylik C. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells. PLoS One 2016; 11:e0165718. [PMID: 27812180 PMCID: PMC5094751 DOI: 10.1371/journal.pone.0165718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design.
Collapse
Affiliation(s)
- Mohammed I. Khan
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Anna M. Czarnecka
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- * E-mail: (MIK); (AMC)
| | - Sławomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Igor Helbrecht
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland
| | - Klaudia Brodaczewska
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Irena Koch
- Department of Pathomorphology, Institute of Mother and Child, Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Król
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences—WULS, Warsaw, Poland
| | - Cezary Szczylik
- Molecular Oncology Laboratory, Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
92
|
Goel S, Chen F, Luan S, Valdovinos HF, Shi S, Graves SA, Ai F, Barnhart TE, Theuer CP, Cai W. Engineering Intrinsically Zirconium-89 Radiolabeled Self-Destructing Mesoporous Silica Nanostructures for In Vivo Biodistribution and Tumor Targeting Studies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600122. [PMID: 27980987 PMCID: PMC5102673 DOI: 10.1002/advs.201600122] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/19/2016] [Indexed: 05/04/2023]
Abstract
A systematic study of in vitro and in vivo behavior of biodegradable mesoporous silica nanoparticles (bMSNs), designed to carry multiple cargos (both small and macromolecular drugs) and subsequently self-destruct following release of their payloads, is presented. Complete degradation of bMSNs is seen within 21 d of incubation in simulated body fluid. The as-synthesized bMSNs are intrinsically radiolabeled with oxophilic zirconium-89 (89Zr, t1/2 = 78.4 h) radionuclide to track their in vivo pharmacokinetics via positron emission tomography imaging. Rapid and persistent CD105 specific tumor vasculature targeting is successfully demonstrated in murine model of metastatic breast cancer by using TRC105 (an anti-CD105 antibody)-conjugated bMSNs. This study serves to illustrate a simple, versatile, and readily tunable approach to potentially overcome the current challenges facing nanomedicine and further the goals of personalized nanotheranostics.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science ProgramUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Feng Chen
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Shijie Luan
- School of PharmacyTemple UniversityPhiladelphiaPA19140USA
| | | | - Sixiang Shi
- Materials Science ProgramUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Stephen A. Graves
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Fanrong Ai
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
| | - Todd E. Barnhart
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
| | | | - Weibo Cai
- Materials Science ProgramUniversity of Wisconsin–MadisonMadisonWI53705USA
- Department of RadiologyUniversity of Wisconsin–MadisonMadisonWI53705USA
- Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonWI53705USA
- University of Wisconsin Carbone Cancer CentreMadisonWI53705USA
| |
Collapse
|
93
|
Fu J, Fan C, Lai WS, Wang D. Enhancing vascularization of a gelatin-based micro-cavitary hydrogel by increasing the density of the micro-cavities. ACTA ACUST UNITED AC 2016; 11:055012. [PMID: 27716648 DOI: 10.1088/1748-6041/11/5/055012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The transport of nutrients and oxygen by vascular networks into engineered tissue constructs is critical to their successful integration into host tissues. Hydrogel has achieved some promising results as scaffolds for vascularization. However, the vascularization of hydrogel is still constrained by its inherent submicron- or nano-sized pores. In this study, two gelatin-based micro-cavitary gel (Gel-MCG) constructs with varying densities of micro-cavities were developed with a photocrosslinkable gelatin methacrylate (Gel-MA) precursor and porogenic gelatin microspheres (MS), and their functions in supporting vascularization within hydrogels were evaluated with endothelial progenitor outgrowth cells (EPOCs). The increase of cavitary density could enhance the vascularization of Gel-MCG constructs. After 14 d of culture in vitro, the vascularization of Gel-MCG constructs with higher cavitary density was significantly superior to that of gelatin spongy control and the fusion of vascularized cavities in the constructs could be observed. Further subcutaneous implantation of the Gel-MCG constructs with higher cavitary density into nude mice also showed obvious vascular invasion from host tissues. Taken together, these results indicate that the increase in cavitary density can efficiently facilitate the vascularization of Gel-MCG constructs both in vitro and in vivo and that such highly-porous Gel-MCG constructs have great potential to be a promising scaffold for the development of vascularized tissue constructs.
Collapse
Affiliation(s)
- Jiayin Fu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore. These authors contributed equally to this work
| | | | | | | |
Collapse
|
94
|
Immunohistochemical Expression of CD105 and TGF-β1 in Oral Squamous Cell Carcinoma and Adjacent Apparently Normal Oral Mucosa and its Correlation With Clinicopathologic Features. Appl Immunohistochem Mol Morphol 2016; 24:35-41. [PMID: 25710582 DOI: 10.1097/pai.0000000000000152] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis in oral squamous cell carcinomas (OSCC) is essential for its growth, invasion, and metastasis. This entails a shift in the balance between proangiogenic and antiangiogenic factors. CD105 and TGF-β1 are 2 such proangiogenic factors wherein CD105 exerts its angiogenic effect by binding to and modulating the TGF-β1 pathway. A total of 50 resected specimens of OSCC were considered. One tissue specimen was taken from tumor proper and another specimen from adjacent apparently normal mucosa (AANM). Both tissues were immunohistochemically stained using CD105 and TGF-β1 antibodies. The expression of each antibody was individually assessed and then compared. Pearson χ test was used for statistical comparison of expression. CD105 was significantly expressed in OSCC as compared with AANM and also correlated with increasing TNM stage. The mean microvessel density was higher in OSCC. TGF-β1 was significantly expressed in epithelium of OSCC as compared with AANM. On comparing expression of TGF-β1 and CD105, 79.54% of endothelial cells expressed positivity for both molecules. Both CD105 and TGF-β1 were increased in OSCC, although based on our results CD105 alone can be used as a prognostic marker. On the basis of immunohistochemical expression of CD105 and TGF-β1 in endothelial cells, our results demonstrate that CD105 acts as one of the receptors of TGF-β1 on endothelial cells and induces the angiogenic pathway in OSCC.
Collapse
|
95
|
Torrente-Rodríguez RM, Campuzano S, Ruiz-Valdepeñas-Montiel V, Pedrero M, Fernández-Aceñero MJ, Barderas R, Pingarrón JM. Rapid endoglin determination in serum samples using an amperometric magneto-actuated disposable immunosensing platform. J Pharm Biomed Anal 2016; 129:288-293. [PMID: 27448312 DOI: 10.1016/j.jpba.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/22/2022]
Abstract
A sensitive and rapid method for the determination of the clinically relevant biomarker human endoglin (CD105) in serum samples is presented, involving a magneto-actuated immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs). Micro-sized magnetic particles were modified with a specific antibody to selectively capture the target protein which was further sandwiched with a secondary HRP-labeled antibody. The immunocomplexes attached to the magnetic carriers were amperometrically detected at SPCEs using the hydroquinone (HQ)/H2O2/HRP system. The magneto-actuated immunosensing platform was able to detect 5 pmoles of endoglin (in 25μL of sample, 0.2μM) in 30min providing statistically similar results to those obtained using a commercial ELISA kit for the determination of endogenous content of endoglin in human serum samples.
Collapse
Affiliation(s)
- Rebeca M Torrente-Rodríguez
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | | | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | | | - Rodrigo Barderas
- Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
96
|
Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A, Bartnik E, Kukwa W, Kieda C, Szczylik C. The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Rev Rep 2016. [PMID: 26210994 PMCID: PMC4653234 DOI: 10.1007/s12015-015-9611-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cancer stem cell (CSC) model has recently been approached also in renal cell carcinoma (RCC). A few populations of putative renal tumor-initiating cells (TICs) were identified, but they are indifferently understood; however, the first and most thoroughly investigated are CD105-positive CSCs. The article presents a detailed comparison of all renal CSC-like populations identified by now as well as their presumable origin. Hypoxic activation of hypoxia-inducible factors (HIFs) contributes to tumor aggressiveness by multiple molecular pathways, including the governance of immature stem cell-like phenotype and related epithelial-to-mesenchymal transition (EMT)/de-differentiation, and, as a result, poor prognosis. Due to intrinsic von Hippel-Lindau protein (pVHL) loss of function, clear-cell RCC (ccRCC) develops unique pathological intra-cellular pseudo-hypoxic phenotype with a constant HIF activation, regardless of oxygen level. Despite satisfactory evidence concerning pseudo-hypoxia importance in RCC biology, its influence on putative renal CSC-like largely remains unknown. Thus, the article discusses a current knowledge of HIF-1α/2α signaling pathways in the promotion of undifferentiated tumor phenotype in general, including some experimental findings specific for pseudo-hypoxic ccRCC, mostly dependent from HIF-2α oncogenic functions. Existing gaps in understanding both putative renal CSCs and their potential connection with hypoxia need to be filled in order to propose breakthrough strategies for RCC treatment.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| | - Damian Matak
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Lukasz Szymanski
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Fei Lian
- Emory School of Medicine, Atlanta, GA, USA
| | - Anna Kornakiewicz
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of General Surgery and Transplantology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Czerniakowski Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| |
Collapse
|
97
|
Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 2016; 73:3311-21. [PMID: 27141940 PMCID: PMC11108490 DOI: 10.1007/s00018-016-2229-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.
Collapse
Affiliation(s)
- Miaohua Mo
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Shan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Ying Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Hong Li
- Department of General Surgery, Qingdao Municipal Hospital, 5 Donghai M Rd, Qingdao, China.
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China.
| |
Collapse
|
98
|
Rathnayake AJIS, Goonasekera HWW, Dissanayake VHW. Phenotypic and Cytogenetic Characterization of Mesenchymal Stromal Cells in De Novo Myelodysplastic Syndromes. Anal Cell Pathol (Amst) 2016; 2016:8012716. [PMID: 27660743 PMCID: PMC5021885 DOI: 10.1155/2016/8012716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/02/2016] [Accepted: 08/07/2016] [Indexed: 01/13/2023] Open
Abstract
Bone marrow (BM) mesenchymal stem/stromal cells (MSCs) are vital in hematopoiesis. Whether BM-MSCs alter their characteristics in Myelodysplastic Syndromes (MDS) is still controversial. We characterized MSCs of de novo MDS patients in Sri Lanka who have not been reported previously in the literature. We also analyzed MSCs derived from different MDS subtypes. MSCs were culture-expanded, characterized by flow cytometry, and induced towards osteogenic and adipogenic differentiation. Growth properties were determined using growth curves and population doubling times. Karyotyping and FISH were performed on MSCs. Cell morphology, differentiation potential, and CD marker expression of MDS-MSCs of all subtypes were comparable to those of control-MSCs. No significant growth differences were observed between control MSCs and MDS-MSCs of all subtypes (p > 0.05). 31% of MDS-MSCs had chromosomal aberrations (der(3),del(6q),del(7p), loss of chromosomes) whose BM karyotypes were normal. Highest percentage of karyotypic abnormalities was observed in RCMD-MSCs. Patients with abnormal BM karyotypes had no aberrant MSC clones. Results show that in spite of presence of genetically abnormal clones in MDS-MSC populations, in vitro phenotypic and growth characteristics of MSCs in MDS remain unchanged. Further, the occurrence of genetic abnormalities in BM-MSCs in MDS could be considered as an autonomous event from that of their hematopoietic counterparts.
Collapse
Affiliation(s)
- A. J. I. S. Rathnayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 00800 Colombo, Sri Lanka
- Department of Pre-Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - H. W. W. Goonasekera
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 00800 Colombo, Sri Lanka
| | - V. H. W. Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, 00800 Colombo, Sri Lanka
| |
Collapse
|
99
|
Gong M, Yang H, Zhang S, Yang Y, Zhang D, Li Z, Zou L. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles. Int J Nanomedicine 2016; 11:4051-63. [PMID: 27578974 PMCID: PMC4998025 DOI: 10.2147/ijn.s104686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis plays very important roles for tumorigenesis, tumor development, metastasis, and prognosis. Targeting T1/T2 dual modality magnetic resonance (MR) imaging of the tumor vascular endothelial cells (TVECs) with MR molecular probes can greatly improve diagnostic sensitivity and specificity, as well as helping to make an early diagnosis of tumor at the preclinical stage. In this study, a new T1 and T2 dual modality nanoprobe was successfully fabricated. The prepared nanoprobe comprise peptides CL 1555, poly(ε-caprolactone)-block-poly(ethylene glycol) amphiphilic copolymer shell, and dozens of manganese ferrite (MnFe2O4) nanoparticle core. The results showed that the hydrophobic MnFe2O4 nanoparticles were of uniform spheroidal appearance and narrow size distribution. Due to the self-assembled nanomicelles structure, the prepared probes were of high relaxivity of 281.7 mM−1 s−1, which was much higher than that of MnFe2O4 nanoparticles (67.5 mM 1 s−1). After being grafted with the targeted CD105 peptide CL 1555, the nanomicelles can combine TVECs specifically and make the labeled TVECs dark in T2-weighted MR imaging. With the passage on, the Mn2+ ions were released from MnFe2O4 and the size decreased gradually, making the signal intensity of the second and third passage of labeled TVECs increased in T1-weighted MR imaging. Our results demonstrate that CL-poly(ethylene glycol)-MnFe2O4 can conjugate TVECs and induce dark and bright contrast in MR imaging, and act as a novel molecular probe for T1- and T2-enhanced MR imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China; Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Song Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yan Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhaohui Li
- Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI, USA
| | - Liguang Zou
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
100
|
Rae DT, Hocum JD, Bii V, Deeg HJ, Trobridge GD. A novel retroviral mutagenesis screen identifies prognostic genes in RUNX1 mediated myeloid leukemogenesis. Oncotarget 2016; 6:30664-74. [PMID: 26384344 PMCID: PMC4741560 DOI: 10.18632/oncotarget.5133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/31/2015] [Indexed: 12/16/2022] Open
Abstract
Using a novel retroviral shuttle vector approach we identified genes that collaborate with a patient derived RUNX1 (AML1) mutant. RUNX1 mutations occurs in 40% of myelodysplastic syndromes (MDS). MDS are a group of hematopoietic stem cell disorders that are characterized by dysplasia that often progress to acute myeloid leukemia (AML). Our goal was to identify genes dysregulated by vector-mediated genotoxicity that may collaborate with the RUNX1 mutant (D171N). D171N expressing cells have a survival and engraftment disadvantage and require additional genetic lesions to survive and persist. By dysregulating genes near the integrated vector provirus, the shuttle vector can promote transformation of D171N cells and tag the nearby genes that collaborate with D171N. In our approach, a gammaretroviral shuttle vector that expresses D171N is used to transduce CD105+, Sca-1+ mouse bone marrow. Mutagenized cells are expanded in liquid culture and vector integration sites from surviving cells are then identified using a retroviral shuttle vector approach. We repeatedly recovered integrated vector proviruses near genes (Itpkb, Ccdc12, and Nbeal2). To assess the prognostic significance of the genes identified we examined differential expression, overall survival, and relapse free survival of AML patients with alteration in the genes identified using The Cancer Genome Atlas (TCGA) AML data set. We found that ITPKB functions as an independent factor for poor prognoses and RUNX1 mutations in conjunction with ITPKB, CCDC12, and NBEAL2 have prognostic potential in AML.
Collapse
Affiliation(s)
- Dustin T Rae
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - Jonah D Hocum
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - Victor Bii
- Washington State University College of Pharmacy, Spokane, WA, USA
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Grant D Trobridge
- Washington State University College of Pharmacy, Spokane, WA, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|