51
|
Longyear TJ, Turner MA, Davis JP, Lopez J, Biesiadecki B, Debold EP. Ca++-sensitizing mutations in troponin, P(i), and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity. J Appl Physiol (1985) 2014; 116:1165-74. [PMID: 24651988 DOI: 10.1152/japplphysiol.01161.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca(++)-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca(++) levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca(++)-sensitizing mutation in the Ca(++)-binding subunit of Tn (TnC) increased VRTF at submaximal Ca(++) under acidic conditions but had no effect on VRTF at maximal Ca(++) levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca(++). Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate.
Collapse
Affiliation(s)
- Thomas J Longyear
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | | | | | | | | | | |
Collapse
|
52
|
Karpicheva OE, Redwood CS, Borovikov YS. The E117K mutation in β-tropomyosin disturbs concerted conformational changes of actomyosin in muscle fibers. Arch Biochem Biophys 2014; 549:12-6. [PMID: 24657080 DOI: 10.1016/j.abb.2014.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
The effect of the skeletal myopathy-causing E117K mutation in human β-tropomyosin on actomyosin structure during the ATPase cycle was studied using fluorescent probes bound to actin subdomain 1 and the myosin head. Multistep changes in flexural rigidity of actin filament and in spatial arrangement of actin subdomain 1 and myosin SH1 helix in troponin-free ghost muscle fibers were revealed. During the ATPase cycle E117K tropomyosin inhibited the rotation of subdomain 1 by 46% and the tilt of the SH1 helix by 49% compared with wild-type. At strong-binding stages the proportion of strong binding sub-states in the actomyosin population is decreased by the mutation. At weak-binding stages abnormally high numbers of switched-on actin monomers were observed, thus indicating a disturbance in concerted conformational changes of actomyosin. These structural alterations are likely to underlie the contractile deficit observed with this mutation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Charles S Redwood
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| |
Collapse
|
53
|
Rysev NA, Nevzorov IA, Avrova SV, Karpicheva OE, Redwood CS, Levitsky DI, Borovikov YS. Gly126Arg substitution causes anomalous behaviour of α-skeletal and β-smooth tropomyosins during the ATPase cycle. Arch Biochem Biophys 2013; 543:57-66. [PMID: 24374033 DOI: 10.1016/j.abb.2013.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
To investigate how TM stabilization induced by the Gly126Arg mutation in skeletal α-TM or in smooth muscle β-TM affects the flexibility of TMs and their position on troponin-free thin filaments, we labelled the recombinant wild type and mutant TMs with 5-IAF and F-actin with FITC-phalloidin, incorporated them into ghost muscle fibres and studied polarized fluorescence at different stages of the ATPase cycle. It has been shown that in the myosin- and troponin-free filaments the Gly126Arg mutation causes a shift of TM strands towards the outer domain of actin, reduces the number of switched on actin monomers and decreases the rigidity of the C-terminus of α-TM and increases the rigidity of the N-terminus of β-TMs. The binding of myosin subfragment-1 to the filaments shifted the wild type TMs towards the inner domain of actin, decreased the flexibility of both terminal parts of TMs, and increased the number of switched on actin monomers. Multistep alterations in the position of α- and β-TMs and actin monomers in the filaments and in the flexibility of TMs and F-actin during the ATPase cycle were observed. The Gly126Arg mutation uncouples a correlation between the position of TM and the number of the switched on actin monomers in the filaments.
Collapse
Affiliation(s)
- Nikita A Rysev
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Ilya A Nevzorov
- Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Stanislava V Avrova
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | - Charles S Redwood
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Dmitrii I Levitsky
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| |
Collapse
|
54
|
Kobayashi M, Debold EP, Turner MA, Kobayashi T. Cardiac muscle activation blunted by a mutation to the regulatory component, troponin T. J Biol Chem 2013; 288:26335-26349. [PMID: 23897817 DOI: 10.1074/jbc.m113.494096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca(2+) sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca(2+) activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca(2+) binding measurements. Ca(2+) activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca(2+) sensitivity observed in Ca(2+) binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.
Collapse
Affiliation(s)
- Minae Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612 and.
| | - Edward P Debold
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Matthew A Turner
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Tomoyoshi Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612 and
| |
Collapse
|
55
|
Marston S, Memo M, Messer A, Papadaki M, Nowak K, McNamara E, Ong R, El-Mezgueldi M, Li X, Lehman W. Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients. Hum Mol Genet 2013; 22:4978-87. [PMID: 23886664 DOI: 10.1093/hmg/ddt345] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.
Collapse
|
56
|
Ju Y, Li J, Xie C, Ritchlin CT, Xing L, Hilton MJ, Schwarz EM. Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: characterization of Tnnt3(tm2a(KOMP)Wtsi) mice. Genesis 2013; 51:667-75. [PMID: 23775847 DOI: 10.1002/dvg.22407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/20/2013] [Accepted: 05/31/2013] [Indexed: 01/16/2023]
Abstract
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I, and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue-specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3(lacZ/+) mice are smaller than their WT littermates throughout development but do not display any gross phenotypes. Tnnt3(lacZ/lacZ) embryos are smaller than heterozygotes and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3(lacZ/lacZ) liver and kidney, which was not present in Tnnt3(lacZ/+) or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diaphragm and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach
Collapse
Affiliation(s)
- Yawen Ju
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | | | | | | | | | | |
Collapse
|
57
|
Memo M, Marston S. Skeletal muscle myopathy mutations at the actin tropomyosin interface that cause gain- or loss-of-function. J Muscle Res Cell Motil 2013; 34:165-9. [PMID: 23719967 DOI: 10.1007/s10974-013-9344-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/09/2013] [Indexed: 12/31/2022]
Abstract
It is well known that the regulation of muscle contraction relies on the ability of tropomyosin to switch between different positions on the actin filament, but it is still not well understood which amino acids are directly involved in the different states of the interaction. Recently the structure of the actin-tropomyosin interface has been determined both in the absence and presence of myosin heads. Interestingly, a number of mutations in tropomyosin that are associated with skeletal muscle myopathy are located within this interface. We first give an overview of the functional effect of mutations on amino acids that are involved in the contact with actin asp25, which represent a pattern repeated seven times along tropomyosin. It is explained how some of these amino acids (R167 and R244) which are thought to be involved in a salt bridge contact with actin in the closed state can produce a loss-of-function when mutated, while other positively charged tropomyosin amino acids positioned on the downstream side of the contact (K7, K49, R91, K168) can produce a gain-of-function when mutated. We then consider mutations of amino acids involved in another salt bridge contact between the two proteins in the closed state, actin K326N (which binds on five different points of tropomyosin) and tropomyosin ∆E139 and E181K, and we report how all of these mutations produce a gain-of-function. These observations can be important to validate the proposed structures and to understand more deeply how mutations affect the function of these proteins and to enable prediction of their outcomes.
Collapse
|
58
|
Ochala J, Iwamoto H. Myofilament lattice structure in presence of a skeletal myopathy-related tropomyosin mutation. J Muscle Res Cell Motil 2013; 34:171-5. [PMID: 23686574 DOI: 10.1007/s10974-013-9345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Human tropomyosin mutations deregulate skeletal muscle contraction at the cellular level. One key feature is the slowing of the kinetics of force development. The aim of the present study was to characterize the potential underlying molecular mechanisms by recording and analyzing the X-ray diffraction patterns of human membrane-permeabilized muscle cells expressing a particular β-tropomyosin mutation (E41K). During resting conditions, the d1,0 lattice spacing, Δ1,0 and I1,1 to I1,0 ratio were not different from control values. These results suggest that, in presence of the E41K β-tropomyosin mutation, the myofilament lattice geometry is well maintained and therefore may not have any detrimental influence on the contraction mechanisms and thus, on the rate of force generation.
Collapse
Affiliation(s)
- Julien Ochala
- Centre of Human & Aerospace Physiological Sciences, King's College London, Room 3.3, Shepherd's House, Guy's Campus, London, SE1 1UL, UK,
| | | |
Collapse
|
59
|
Karpicheva OE, Robinson P, Piers A, Borovikov YS, Redwood CS. The nemaline myopathy-causing E117K mutation in β-tropomyosin reduces thin filament activation. Arch Biochem Biophys 2013; 536:25-30. [PMID: 23689010 DOI: 10.1016/j.abb.2013.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023]
Abstract
The effect of the nemaline myopathy-causing E117K mutation in β-tropomyosin (TM) on the structure and function of this regulatory protein was studied. The E117K mutant was found to have indistinguishable actin affinity compared with wild-type (WT) and similar secondary structure as measured by circular dichroism. However the E117K mutation significantly lowered maximum activation of actomyosin ATPase. To explain the molecular mechanism of impaired ATPase activation, WT and E117K TMs were covalently labeled at Cys-36 with 5-iodoacetimido-fluorescein and incorporated into ghost muscle fibers. The changes in the position and flexibility of tropomyosin strands on the thin filaments were observed at simulation of weak and strong binding states of actomyosin at high or low Ca(2+) by polarized fluorescence techniques. The E117K mutation was found to shift the tropomyosin strands towards the closed position and restrict the tropomyosin displacement during the transformation of actomyosin from weak to strong binding state thus leading to a reduction in thin filament activation.
Collapse
Affiliation(s)
- Olga E Karpicheva
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
60
|
Ko JM, Choi IH, Baek GH, Kim KW. First Korean family with a mutation in TPM2 associated with Sheldon-Hall syndrome. J Korean Med Sci 2013; 28:780-3. [PMID: 23678273 PMCID: PMC3653094 DOI: 10.3346/jkms.2013.28.5.780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/31/2013] [Indexed: 01/22/2023] Open
Abstract
Sheldon-Hall syndrome (SHS) is a rare autosomal dominant, inherited arthrogryposis syndrome characterized by multiple congenital contractures of the distal limbs. To date, four genes that encode the skeletal muscle fiber complex have been confirmed as the causative genes. Mutations in MYH3 have been identified most frequently and few cases of SHS caused by TPM2 mutations have been reported worldwide. This report describes, for the first time, a Korean family with two generations of SHS resulting from a rare TPM2 mutation, p.R133W. The affected mother and daughter manifested typical facial features of SHS including a triangular face with downslanting palpebral fissures, small mouth, high arched palate, and prominent nasolabial folds, and showed camptodactyly of fingers and deformities of feet with congenital vertical tali. Generalized myopathy with relative sparing of the slow-twitch muscle fibers was also revealed by electromyography in the affected mother.
Collapse
Affiliation(s)
- Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | |
Collapse
|
61
|
Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. Proc Natl Acad Sci U S A 2013; 110:4667-72. [PMID: 23487782 DOI: 10.1073/pnas.1221400110] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mechanotransduction, the pathway by which mechanical forces are translated to biological signals, plays important but poorly characterized roles in physiology. PIEZOs are recently identified, widely expressed, mechanically activated ion channels that are hypothesized to play a role in mechanotransduction in mammals. Here, we describe two distinct PIEZO2 mutations in patients with a subtype of Distal Arthrogryposis Type 5 characterized by generalized autosomal dominant contractures with limited eye movements, restrictive lung disease, and variable absence of cruciate knee ligaments. Electrophysiological studies reveal that the two PIEZO2 mutations affect biophysical properties related to channel inactivation: both E2727del and I802F mutations cause the PIEZO2-dependent, mechanically activated currents to recover faster from inactivation, while E2727del also causes a slowing of inactivation. Both types of changes in kinetics result in increased channel activity in response to a given mechanical stimulus, suggesting that Distal Arthrogryposis Type 5 can be caused by gain-of-function mutations in PIEZO2. We further show that overexpression of mutated PIEZO2 cDNAs does not cause constitutive activity or toxicity to cells, indicating that the observed phenotype is likely due to a mechanotransduction defect. Our studies identify a type of channelopathy and link the dysfunction of mechanically activated ion channels to developmental malformations and joint contractures.
Collapse
|
62
|
Mokbel N, Ilkovski B, Kreissl M, Memo M, Jeffries CM, Marttila M, Lehtokari VL, Lemola E, Grönholm M, Yang N, Menard D, Marcorelles P, Echaniz-Laguna A, Reimann J, Vainzof M, Monnier N, Ravenscroft G, McNamara E, Nowak KJ, Laing NG, Wallgren-Pettersson C, Trewhella J, Marston S, Ottenheijm C, North KN, Clarke NF. K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. ACTA ACUST UNITED AC 2013; 136:494-507. [PMID: 23378224 DOI: 10.1093/brain/aws348] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in the TPM2 gene, which encodes β-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype. Patients develop large joint contractures during childhood, followed by slowly progressive skeletal muscle weakness during adulthood. The TPM2 p.K7del mutation results in the loss of a highly conserved lysine residue near the N-terminus of β-tropomyosin, which is predicted to disrupt head-to-tail polymerization of tropomyosin. Recombinant K7del-β-tropomyosin incorporates poorly into sarcomeres in C2C12 myotubes and has a reduced affinity for actin. Two-dimensional gel electrophoresis of patient muscle and primary patient cultured myotubes showed that mutant protein is expressed but incorporates poorly into sarcomeres and likely accumulates in nemaline rods. In vitro studies using recombinant K7del-β-tropomyosin and force measurements from single dissected patient myofibres showed increased myofilament calcium sensitivity. Together these data indicate that p.K7del is a common recurrent TPM2 mutation associated with mild nemaline myopathy. The p.K7del mutation likely disrupts head-to-tail polymerization of tropomyosin, which impairs incorporation into sarcomeres and also affects the equilibrium of the troponin/tropomyosin-dependent calcium switch of muscle. Joint contractures may stem from chronic muscle hypercontraction due to increased myofibrillar calcium sensitivity while declining strength in adulthood likely arises from other mechanisms, such as myofibre decompensation and fatty infiltration. These results suggest that patients may benefit from therapies that reduce skeletal muscle calcium sensitivity, and we highlight late muscle decompensation as an important cause of morbidity.
Collapse
Affiliation(s)
- Nancy Mokbel
- Institute for Neuroscience and Muscle Research, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
van de Meerakker JBA, Christiaans I, Barnett P, Lekanne Deprez RH, Ilgun A, Mook ORF, Mannens MMAM, Lam J, Wilde AAM, Moorman AFM, Postma AV. A novel alpha-tropomyosin mutation associates with dilated and non-compaction cardiomyopathy and diminishes actin binding. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:833-9. [PMID: 23147248 DOI: 10.1016/j.bbamcr.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is characterized by idiopathic dilatation and systolic contractile dysfunction of the ventricle(s) leading to an impaired systolic function. The origin of DCM is heterogeneous, but genetic transmission of the disease accounts for up to 50% of the cases. Mutations in alpha-tropomyosin (TPM1), a thin filament protein involved in structural and regulatory roles in muscle cells, are associated with hypertrophic cardiomyopathy (HCM) and very rarely with DCM. METHODS AND RESULTS Here we present a large four-generation family in which DCM is inherited as an autosomal dominant trait. Six family members have a cardiomyopathy with the age of diagnosis ranging from 5 months to 52 years. The youngest affected was diagnosed with dilated and non-compaction cardiomyopathy (NCCM) and died at the age of five. Three additional children died young of suspected heart problems. We mapped the phenotype to chromosome 15 and subsequently identified a missense mutation in TPM1, resulting in a p.D84N amino acid substitution. In addition we sequenced 23 HCM/DCM genes using next generation sequencing. The TPM1 p.D84N was the only mutation identified. The mutation co-segregates with all clinically affected family members and significantly weakens the binding of tropomyosin to actin by 25%. CONCLUSIONS We show that a mutation in TPM1 is associated with DCM and a lethal, early onset form of NCCM, probably as a result of diminished actin binding caused by weakened charge-charge interactions. Consequently, the screening of TPM1 in patients and families with DCM and/or (severe, early onset forms of) NCCM is warranted. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
|
64
|
Nevzorov IA, Levitsky DI. Tropomyosin: double helix from the protein world. BIOCHEMISTRY (MOSCOW) 2012; 76:1507-27. [PMID: 22339601 DOI: 10.1134/s0006297911130098] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review concerns the structure and functions of tropomyosin (TM), an actin-binding protein that plays a key role in the regulation of muscle contraction. The TM molecule is a dimer of α-helices, which form a coiled-coil. Recent views on the TM structure are analyzed, and special attention is concentrated on those structural traits of the TM molecule that distinguish it from the other coiled-coil proteins. Modern data are presented on TM functional properties, such as its interaction with actin and ability to move on the surface of actin filaments, which underlies the regulation of the actin-myosin interaction upon contraction of skeletal and cardiac muscles. Also, part of the review is devoted to analysis of the effects of mutations in TM genes associated with muscle diseases (myopathies) on the structure and functions of TM.
Collapse
Affiliation(s)
- I A Nevzorov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
65
|
Abnormal actin binding of aberrant β-tropomyosins is a molecular cause of muscle weakness in TPM2-related nemaline and cap myopathy. Biochem J 2012; 442:231-9. [PMID: 22084935 DOI: 10.1042/bj20111030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.
Collapse
|
66
|
Little SC, Tikunova SB, Norman C, Swartz DR, Davis JP. Measurement of calcium dissociation rates from troponin C in rigor skeletal myofibrils. Front Physiol 2011; 2:70. [PMID: 22013424 PMCID: PMC3190119 DOI: 10.3389/fphys.2011.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022] Open
Abstract
Ca2+ dissociation from the regulatory domain of troponin C may influence the rate of striated muscle relaxation. However, Ca2+ dissociation from troponin C has not been measured within the geometric and stoichiometric constraints of the muscle fiber. Here we report the rates of Ca2+ dissociation from the N-terminal regulatory and C-terminal structural domains of fluorescent troponin C constructs reconstituted into rabbit rigor psoas myofibrils using stopped-flow technology. Chicken skeletal troponin C fluorescently labeled at Cys 101, troponin CIAEDANS, reported Ca2+ dissociation exclusively from the structural domain of troponin C at ∼0.37, 0.06, and 0.07/s in isolation, in the presence of troponin I and in myofibrils at 15°C, respectively. Ca2+ dissociation from the regulatory domain was observed utilizing fluorescently labeled troponin C containing the T54C and C101S mutations. Troponin CMIANST54C,C101S reported Ca2+ dissociation exclusively from the regulatory domain of troponin C at >1000, 8.8, and 15/s in isolation, in the presence of troponin I and in myofibrils at 15°C, respectively. Interestingly, troponin CIAANST54C,C101S reported a biphasic fluorescence change upon Ca2+ dissociation from the N- and C-terminal domains of troponin C with rates that were similar to those reported by troponin CMIANST54C,C101S and troponin CIAEDANS at all levels of the troponin C systems. Furthermore, the rate of Ca2+ dissociation from troponin C in the myofibrils was similar to the rate of Ca2+ dissociation measured from the troponin C-troponin I complexes. Since the rate of Ca2+ dissociation from the regulatory domain of TnC in myofibrils is similar to the rate of skeletal muscle relaxation, Ca2+ dissociation from troponin C may influence relaxation.
Collapse
Affiliation(s)
- Sean C Little
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
67
|
Luther PK, Vydyanath A. Myosin binding protein-C: an essential protein in skeletal and cardiac muscle. J Muscle Res Cell Motil 2011; 31:303-5. [PMID: 21229295 DOI: 10.1007/s10974-010-9235-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/13/2010] [Indexed: 12/28/2022]
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
68
|
Varughese JF, Chalovich JM, Li Y. Molecular dynamics studies on troponin (TnI-TnT-TnC) complexes: insight into the regulation of muscle contraction. J Biomol Struct Dyn 2010; 28:159-74. [PMID: 20645650 DOI: 10.1080/07391102.2010.10507350] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Mutations of any subunit of the troponin complex may lead to serious disorders. Rational approaches to managing these disorders require knowledge of the complex interactions among the three subunits that are required for proper function. Molecular dynamics (MD) simulations were performed for both skeletal (sTn) and cardiac (cTn) troponin. The interactions and correlated motions among the three components of the troponin complex were analyzed using both Molecular Mechanics-Generalized Born Surface Area (MMGBSA) and cross-correlation techniques. The TnTH2 helix was strongly positively correlated with the two long helices of TnI. The C domain of TnC was positively correlated with TnI and TnT. The N domain of TnC was negatively correlated with TnI and TnT in cTn, but not in sTn. The two C-domain calcium-binding sites of TnC were dynamically correlated. The two regulatory N-domain calcium-binding sites of TnC were dynamically correlated, even though the calcium-binding site I is dysfunctional. The strong interaction residue pairs and the strong dynamically correlated residues pairs among the three components of troponin complexes were identified. These correlated motions are consistent with the idea that there is a high degree of cooperativity among the components of the regulatory complex in response to Ca(2+) and other effectors. This approach may give insight into the mechanism by which mutations of troponin cause disease. It is interesting that some observed disease causing mutations fall within regions of troponin that are strongly correlated or interacted.
Collapse
Affiliation(s)
- Jayson F Varughese
- Department of Chemistry, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | |
Collapse
|
69
|
Avrova SV, Shelud'ko NS, Borovikov YS. A new property of twitchin to restrict the "rolling" of mussel tropomyosin and decrease its affinity for actin during the actomyosin ATPase cycle. Biochem Biophys Res Commun 2010; 394:126-9. [PMID: 20184863 DOI: 10.1016/j.bbrc.2010.02.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/19/2010] [Indexed: 11/18/2022]
Abstract
A new evidence on the regulatory function of twitchin, a titin-like protein of molluscan muscles, at muscle contraction has been obtained at studying the movements of IAF-labeled mussel tropomyosin in skeletal ghost fibers during the ATP hydrolysis cycle simulated using nucleotides and non-hydrolysable ATP analogs. For the first time, myosin-induced multistep changes in mobility and in the position of mussel tropomyosin strands on the surface of the thin filament during the ATP hydrolysis cycle have been demonstrated directly. Unphosphorylated twitchin shifts the tropomyosin towards the position typical for muscle relaxation, decreases the tropomyosin affinity to actin and inhibits its movements during the ATPase cycle. Phosphorylation of twitchin by the catalytic subunit of protein kinase A reverses this effect. These data imply that twitchin is a thin filament regulator that controls actin-myosin interaction by "freezing" tropomyosin in the blocked position, resulting in the inhibition of the transformation of weak-binding states into strong-binding ones during ATPase cycle.
Collapse
Affiliation(s)
- Stanislava V Avrova
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St Petersburg 194064, Russia
| | | | | |
Collapse
|
70
|
Affiliation(s)
- Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle Children's Hospital, 1959 Northeast Pacific Street, HSC RR349, M/S Box 356320, Seattle, WA 98195. E-mail address:
| | - Ann E. Van Heest
- Department of Orthopaedic Surgery, University of Minnesota, 2450 Riverside Avenue, Suite R200, Minneapolis, MN 55454
| | - David Pleasure
- Departments of Neurology and Pediatrics, UC Davis School of Medicine, c/o Shriners Hospital, 2425 Stockton Boulevard, Sacramento, CA 95817
| |
Collapse
|
71
|
Borovikov YS, Karpicheva OE, Avrova SV, Redwood CS. Modulation of the effects of tropomyosin on actin and myosin conformational changes by troponin and Ca2+. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:985-94. [PMID: 19100866 DOI: 10.1016/j.bbapap.2008.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 10/09/2008] [Accepted: 11/05/2008] [Indexed: 11/24/2022]
Abstract
The molecular mechanisms by which troponin (TN)-tropomyosin (TM) regulates the myosin ATPase cycle were investigated using fluorescent probes specifically bound to Cys36 of TM, Cys707 of myosin subfragment-1, and Cys374 of actin incorporated into ghost muscle fibers. Intermediate states of actomyosin were simulated by using nucleotides and non-hydrolysable ATP analogs. Multistep changes in mobility and spatial arrangement of SH1 helix of myosin motor domain and actin subdomain-1 during the ATPase cycle were observed. Each intermediate state of actomyosin induced a definite conformational state and specific position of TM strands on the surface of thin filament. TM increased the amplitude of myosin SH1 helix and actin subdomain-1 movements at transition from weak- to strong-binding states shifting to the center of thin filament at strong-binding and to the periphery of thin filament at weak-binding states. TN modulated those movements in a capital ES, Cyrillicsmall a, Cyrillic(2+)-dependent manner. At high-Ca(2+), TN enhanced the effect of TM on SH1 helix and subdomain-1 movements by transferring TM further to the center of thin filament at strong-binding states. In contrast, at low-Ca(2+), TN inhibited the effect of TM movements, "freezing" actin structure in "OFF" state and TM in the position typical for weak-binding states, resulting in disturbing the interplay of actin and myosin.
Collapse
Affiliation(s)
- Yurii S Borovikov
- Laboratory of Mechanisms of Cell Motility, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, St. Petersburg 194064, Russia.
| | | | | | | |
Collapse
|
72
|
Cap disease due to mutation of the beta-tropomyosin gene (TPM2). Neuromuscul Disord 2009; 19:348-51. [DOI: 10.1016/j.nmd.2009.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 11/23/2022]
|
73
|
Gurnett CA, Alaee F, Desruisseau D, Boehm S, Dobbs MB. Skeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfoot. Clin Orthop Relat Res 2009; 467:1195-200. [PMID: 19142688 PMCID: PMC2664426 DOI: 10.1007/s11999-008-0694-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 12/18/2008] [Indexed: 01/31/2023]
Abstract
UNLABELLED Arthrogryposis presents with lower limb contractures that resemble clubfoot and/or vertical talus. Recently, mutations in skeletal muscle contractile genes MYH3 (myosin heavy chain 3), TNNT3 (troponin T3), and TPM2 (tropomyosin 2) were identified in patients with distal arthrogryposis DA2A (Freeman-Sheldon syndrome) or DA2B (Sheldon-Hall syndrome). We asked whether the contractile genes responsible for distal arthrogryposis are also responsible for cases of familial clubfoot or vertical talus. We determined the frequency of MYH3, TNNT3, and TPM2 mutations in patients with idiopathic clubfoot, vertical talus, and distal arthrogryposis type 1 (DA1). We resequenced the coding exons of the MYH3, TNNT3, and TPM2 genes in 31 patients (five with familial vertical talus, 20 with familial clubfoot, and six with DA1). Variants were evaluated for segregation with disease in additional family members, and the frequency of identified variants was determined in a control population. In one individual with DA1, we identified a de novo TNNT3 mutation (R63H) previously identified in an individual with DA2B. No other causative mutations were identified, though we found several previously undescribed single-nucleotide polymorphisms of unknown importance. Although mutations in MYH3, TNNT3, and TPM2 are frequently associated with distal arthrogryposis syndromes, they were not present in patients with familial vertical talus or clubfoot. The TNNT3 R63H recurrent mutation identified in two unrelated individuals may be associated with either DA1 or DA2B. LEVEL OF EVIDENCE Level II, prospective study. See the Guidelines for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Christina A. Gurnett
- Department of Neurology,
Washington University School of Medicine, St Louis, MO USA
,Department of Pediatrics,
Washington University School of Medicine,
St Louis, MO
USA ,Department of Orthopaedic Surgery, Washington University School of Medicine, One Children’s Place, St Louis, MO 63110 USA
| | - Farhang Alaee
- Department of Orthopaedic Surgery, Washington University School of Medicine, One Children’s Place, Suite 4S20, St Louis, MO 63110 USA
| | - David Desruisseau
- Department of Orthopaedic Surgery, Washington University School of Medicine, One Children’s Place, Suite 4S20, St Louis, MO 63110 USA
| | - Stephanie Boehm
- Department of Orthopaedic Surgery, Washington University School of Medicine, One Children’s Place, Suite 4S20, St Louis, MO 63110 USA
| | - Matthew B. Dobbs
- Department of Orthopaedic Surgery, Washington University School of Medicine, One Children’s Place, Suite 4S60, St Louis, MO 63110 USA ,St Louis Shriners Hospital for Children, St Louis, MO USA
| |
Collapse
|
74
|
Toydemir RM, Bamshad MJ. Sheldon-Hall syndrome. Orphanet J Rare Dis 2009; 4:11. [PMID: 19309503 PMCID: PMC2663550 DOI: 10.1186/1750-1172-4-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 03/23/2009] [Indexed: 11/25/2022] Open
Abstract
Sheldon-Hall syndrome (SHS) is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome). Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.
Collapse
Affiliation(s)
- Reha M Toydemir
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| | | |
Collapse
|
75
|
Nevzorov IA, Redwood CS, Levitsky DI. Effect of mutation Arg91Gly on the thermal stability of β-tropomyosin. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350908060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
76
|
Stability of two β-tropomyosin isoforms: effects of mutation Arg91Gly. J Muscle Res Cell Motil 2009; 29:173-6. [DOI: 10.1007/s10974-009-9171-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
77
|
Philip-Sarles N. Malformations congénitales de la main et génétique. ACTA ACUST UNITED AC 2008; 27 Suppl 1:S7-20. [DOI: 10.1016/j.main.2008.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
78
|
Gurnett CA, Boehm S, Connolly A, Reimschisel T, Dobbs MB. Impact of congenital talipes equinovarus etiology on treatment outcomes. Dev Med Child Neurol 2008; 50:498-502. [PMID: 18611198 DOI: 10.1111/j.1469-8749.2008.03016.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although congenital talipes equinovarus (CTEV) is often idiopathic, additional birth defects occur in some patients that may have an impact on the treatment of this disorder. The purpose of this study was to determine the prevalence of associated malformations, chromosomal abnormalities, or known genetic syndromes, and to compare treatment outcomes of children with idiopathic CTEV with children with non-idiopathic CTEV. Of 357 children evaluated, 273 (76%) had idiopathic CTEV (179 males, 94 females; mean age 2 y 1 mo [SD 1 y 2 mo], range 0-18 y) and 84 (24%) had non-idiopathic CETV (51 males, 33 females; mean age 2 y 5 mo [SD 2 y], range 0-16 y). Disorders affecting the nervous system were found in 46 (54%) children with non-idiopathic CTEV. In a subgroup of patients treated entirely at our institution (n=196), children with non-idiopathic CTEV (n=47) required more casts for correction than those with idiopathic CTEV (n=149; 5.3 vs 4.6; p=0.016). There was also a greater risk of recurrence in non-idiopathic CTEV (14.9% vs 4%; p=0.009), but no significant difference in the need for extensive surgery (2.7% vs 8.5%; p=0.096). Treatment was initiated at a mean age of 13 weeks (range 1 wk to 2 y 6 mo) for both idiopathic and non-idiopathic patients, and treatment was assessed during a minimum 2-year follow-up. Non-idiopathic CTEV can be successfully treated with the Ponseti method of serial casting, with low recurrence rates or need for surgery.
Collapse
Affiliation(s)
- Christina A Gurnett
- Department of Orthopedic Surgery, Washington University School of Medicine, One Children's Place, St Louis, MO 63110, U.S.A.
| | | | | | | | | |
Collapse
|
79
|
Thin filament proteins mutations associated with skeletal myopathies: Defective regulation of muscle contraction. J Mol Med (Berl) 2008; 86:1197-204. [DOI: 10.1007/s00109-008-0380-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 05/19/2008] [Accepted: 06/09/2008] [Indexed: 01/11/2023]
|
80
|
Ochala J, Li M, Ohlsson M, Oldfors A, Larsson L. Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation. J Physiol 2008; 586:2993-3004. [PMID: 18420702 DOI: 10.1113/jphysiol.2008.153650] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A novel E41K beta-tropomyosin (beta-Tm) mutation, associated with congenital myopathy and muscle weakness, was recently identified in a woman and her daughter. In both patients, muscle weakness was coupled with muscle fibre atrophy. It remains unknown, however, whether the E41K beta-Tm mutation directly affects regulation of muscle contraction, contributing to the muscle weakness. To address this question, we studied a broad range of contractile characteristics in skinned muscle fibres from the two patients and eight healthy controls. Results showed decreases (i) in speed of contraction at saturated Ca(2+) concentration (apparent rate constant of force redevelopment (k(tr)) and unloaded shortening speed (V(0))); and (ii) in contraction sensitivity to Ca(2+) concentration, in fibres from patients compared with controls, suggesting that the mutation has a negative effect on contractile function, contributing to the muscle weakness. To investigate whether these negative impacts are reversible, we exposed skinned muscle fibres to the Ca(2+) sensitizer EMD 57033. In fibres from patients, 30 mum of EMD 57033 (i) had no effect on speed of contraction (k(tr) and V(0)) at saturated Ca(2+) concentration but (ii) increased Ca(2+) sensitivity of contraction, suggesting a potential therapeutic approach in patients carrying the E41K beta-Tm mutation.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Neuroscience, Clinical Neurophysiology, University Hospital, Entrance 85, 3rd floor, SE-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
81
|
Skeletal Muscle Disease Due to Mutations in Tropomyosin, Troponin and Cofilin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:40-54. [DOI: 10.1007/978-0-387-84847-1_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
82
|
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an up-to-date personal analysis of current congenital myopathy research. RECENT FINDINGS In the past year novel congenital myopathies have been suggested, genes have been discovered for some of the congenital myopathies for the first time (beta-tropomyosin in cap disease and perhaps skeletal muscle alpha-actin in Zebra body myopathy), further genes have been identified for congenital myopathies where other genes had already been found (cofilin in nemaline myopathy, selenoprotein N in congenital fibre type disproportion) and recessive myosin storage myopathy was associated with homozygous mutation of slow-skeletal/beta-cardiac myosin which was already known to be mutated in dominant myosin storage myopathy. There has been further clarification of the pathobiology of the congenital myopathies, including determination of the basis of epigenetic effects: silencing of the normal allele in recessive central core disease and persistence of cardiac (fetal) alpha-actin in nemaline myopathy patients with no skeletal actin. SUMMARY The increased understanding of the genes and pathobiology of the congenital myopathies that is developing should ultimately lead to effective treatments.
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia and Western Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
83
|
Bibliography. Current world literature. Neuro-muscular diseases: nerve. Curr Opin Neurol 2007; 20:600-4. [PMID: 17885452 DOI: 10.1097/wco.0b013e3282efeb3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Affiliation(s)
- P Bryant Chase
- Florida State University, Department of Biological Science, Tallahassee, FL, USA.
| |
Collapse
|